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ABSTRACT G protein-coupled receptors are 7-pass transmembrane receptors that couple to heterotri-
meric G proteins to mediate cellular responses to a diverse array of stimuli. Understanding the mechanisms
that regulate G protein-coupled receptors is crucial to manipulating their signaling for therapeutic benefit.
One key regulatory mechanism that contributes to the functional diversity of many signaling proteins is
post-translational modification. Whereas phosphorylation remains the best studied of such modifications,
arginine methylation by protein arginine methyltransferases is emerging as a key regulator of protein
function. We previously published the first functional evidence that arginine methylation of G protein-
coupled receptors modulates their signaling. We report here a third receptor that is regulated by arginine
methylation, the Caenorhabditis elegans SER-2 tyramine receptor. We show that arginines within a putative
methylation motif in the third intracellular loop of SER-2 are methylated by PRMT5 in vitro. Our data also
suggest that this modification enhances SER-2 signaling in vivo to modulate animal behavior. The identi-
fication of a third G protein-coupled receptor to be functionally regulated by arginine methylation suggests
that this post-translational modification may be utilized to regulate signaling through a broad array of G
protein-coupled receptors.
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One way in whichG protein-coupled receptor (GPCR) signaling can be
regulated is through post-translational modification of receptors. Al-
though a large-scale proteomics analysis performed in 2003 identified
several GPCRs as substrates of an anti-methylarginine antibody
(Boisvert et al. 2003), there was no direct evidence at that time that
this receptor class is regulated by methylation. In 2015, we reported the
first functional evidence that protein arginine methylation regulates
GPCR signaling (Likhite et al. 2015). Methylation of D2-like dopamine
receptors (humanD2 andC. elegansDOP-3) by protein argininemeth-
yltransferase 5 (human PRMT5 and C. elegans PRMT-5, respectively)
promoted signaling in both cell culture and in vivo (Likhite et al. 2015).

The D2-like dopamine receptor family was identified as a possible
substrate for PRMT5 in a bioinformatics analysis that examined
GPCRs for predicted methylation motifs (RGG or RXR) in their in-
tracellular domains. The human D2 receptor was found to have a
putative methylation motif in its third intracellular loop that is con-
served in the corresponding receptor sequences from other mamma-
lian, vertebrate and invertebrate species, including the corresponding
C. elegans D2-like dopamine receptor, DOP-3. The third intracellular
loop of both the human D2 and C. elegansDOP-3 receptors was meth-
ylated by human PRMT5 in vitro, and changing the conserved argi-
nines of the putative methylationmotif to alanines diminished receptor
methylation. Correspondingly, changing these arginines to disrupt the
methylation motif also diminished signaling through both of these
receptors (Likhite et al. 2015). Combined, the results of that study
revealed that arginine methylation promotes signaling through the
D2 receptor to dampen cAMP signaling in cultured human cells, and
also promotes DOP-3 signaling to regulate C. elegans behavior.

PRMT5 is a type 2 protein arginine methyltransferase (PRMT) that
transfers two methyl groups from S-adenosyl-L-methionine (SAM) to
form symmetric dimethylarginines (SDMAs) (Branscombe et al. 2001).
This modification can be added to arginines in glycine- and arginine-
rich motifs, in proline-, glycine-, and methionine-rich motifs, and even
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in the absence of any recognizable motif (Bedford and Clarke 2009;
Wang et al. 2013; Wang et al. 2014). PRMT5 has been shown to influ-
ence gene expression, snRNP biogenesis, the DNA damage response,
and germ cell development (Meister et al. 2001; Fabbrizio et al. 2002;
Ancelin et al. 2006; Tee et al. 2010; He et al. 2011; Huang et al. 2011). In
their study ofD2-like dopamine receptors, Likhite et al. (2015) added to
the growing list of PRMT5 substrates and described the founding
members of a new class of proteins – GPCRs – that are functionally
regulated by arginine methylation.

The bioinformatics analysis performed by Likhite et al. (2015) iden-
tified 300 human GPCRs and 64 C. elegans GPCRs that contain an
intracellular RGG or RXR putative methylation motif. Many of the
identified C. elegans receptors are predicted or known to bind biogenic
amines including dopamine, serotonin, octopamine and tyramine
(Chase and Koelle 2007). In humans, tyramine has been considered a
trace amine because it is found at low levels. However, a new family of
GPCRs, the trace amine-associated receptors (TAARs), was discovered
in 2001, suggesting that tyraminemay act as a classical neurotransmitter
in vertebrates (Borowsky et al. 2001). In addition, there is evidence that
tyramine plays an important physiological role in humans and has been
linked to human disorders such as hypertensive crisis and attention
deficit hyperactivity disorder (ADHD) (Blackwell and Mabbitt 1965;
Burchett andHicks 2006; Berry 2007; D’Andrea et al. 2013). InC. elegans,
tyramine also acts as a neurotransmitter and is considered the inverte-
brate counterpart of adrenaline (Roeder et al. 2003; Alkema et al. 2005;
Roeder 2005). Once thought to act only as the precursor to octopamine, it
is now clear that tyramine signaling modulates numerous C. elegans
behaviors, ranging from the inhibition of egg laying to the formation
and retrieval of imprinted memories (Rex et al. 2004; Alkema et al. 2005;
Rex et al. 2005; Chase andKoelle 2007;Wragg et al. 2007; Pirri et al. 2009;
Ringstad et al. 2009; Donnelly et al. 2013; Jin et al. 2016).

The C. elegans genome encodes three tyraminergic GPCRs, SER-2,
TYRA-2 and TYRA-3, and one ligand-gated ion channel, LGC-55, that
bind tyramine (Rex and Komuniecki 2002; Tsalik et al. 2003; Rex et al.
2004; Wragg et al. 2007; Pirri et al. 2009; Donnelly et al. 2013). The
most extensively characterized of the GPCRs is the SER-2 receptor,
which is expressed in a subset of sensory neurons, interneurons and
motor neurons, as well as head muscles and pharyngeal cells (Altun-
Gultekin et al. 2001; Rex and Komuniecki 2002; Tsalik et al. 2003; Rex
et al. 2004; Alkema et al. 2005; Donnelly et al. 2013;Wilson et al. 2017).
Among tyramine-regulated behaviors, a role for SER-2 has been shown
in mediating tyramine (TA) -induced immobilization (Donnelly et al.
2013) and in antagonizing serotonin (5-HT) -stimulated pharyngeal
pumping (Rex et al. 2004). In these studies, ser-2 loss-of-function (lof)
animals were resistant to the paralytic effects of exogenous TA
(Donnelly et al. 2013) and the addition of TA did not antagonize
5-HT-stimulated pumping in ser-2(lof) animals (Rex et al. 2004), re-
spectively. In both cases, expression of a wild-type ser-2 transgene
rescued the behavioral phenotypes, demonstrating that they were spe-
cific to the loss of SER-2 receptor function.

While exploring their environments during forward locomotion,
C. elegans display a foraging behavior in which they move their nose
from side-to-side (Croll and Smith 1978). This foraging behavior is
inhibited while animals reverse in response to light anterior mechano-
sensory stimulation, termed anterior touch (Chalfie et al. 1985; Alkema
et al. 2005). Suppression of head movements while reversing in re-
sponse to touch could help an animal escape from nematophagous
fungi that can trap worms with constricting hyphal rings (Barron
1977). Extensive circuit-level analyses have revealed a critical role for
TA and LGC-55 in suppressing foraging behavior in response to ante-
rior touch; animals unable to synthesize TA and animals lacking

LGC-55 do not suppress head oscillations during this backing response
(Alkema et al. 2005; Pirri et al. 2009). Although not seen by Alkema
et al. (2005), it has been reported that animals also suppress foraging
while reversing in response to nose touch (Rex et al. 2004). The expla-
nation for the difference is not clear, but could be the result of nuanced
differences in the execution of the nose touch assay. Rex et al. (2004)
found that ser-2(lof) animals continued to display foraging behavior
while reversing following nose touch, unlike the wild-type animals in
their study, and expression of a wild-type ser-2 transgene rescued the
behavioral phenotype (Rex et al. 2004). We also have observed that, in
contrast to wild-type animals, ser-2(lof) animals do not cease foraging
while backing in response to nose touch.

Following the bioinformatics analysis of Likhite et al. (2015), it was
unknown if any of the other GPCRs identified to contain an intracel-
lular RGG or RXR putative methylation motif are functionally regu-
lated by arginine methylation, similar to the D2-like dopamine
receptors. Herein, we report that the C. elegans SER-2 tyramine re-
ceptor is also regulated by methylation. We show that human PRMT5
methylates a portion of the third intracellular loop of SER-2 in vitro,
and that the conserved arginines within the predicted methylation
motif are required for methylation by PRMT5. Using C. elegans behav-
ior as a readout for nervous system function, we show that PRMT-5
also promotes tyraminergic signaling through the C. elegans SER-2
receptor in vivo, and that changing the predicted arginine methylation
target sites in SER-2 diminished its ability to regulate C. elegans behav-
ior. Together, our data reveal a third receptor that appears to be func-
tionally regulated by protein arginine methylation. This work suggests
that argininemethylationmay be a widespread post-translational mod-
ification used to regulate the activity of GPCRs.

MATERIALS AND METHODS

C. elegans Culture
Strains weremaintained at 20� under standard conditions on nematode
growth media (NGM) agar plates seeded with OP50 E. coli bacteria
(Brenner 1974).

Strains
Strains used in this study include: N2 Bristol wild-type, OH313 ser-2
(pk1357), FG129 prmt-5(gk357), FG807 ser-2(pk1357);prmt-5(gk357),
FG808 ser-2(pk1357);udEx460[ser-2p::ser-2,elt-2::GFP], FG809 ser-2
(pk1357);udEx461[ser-2p::ser-2,elt-2::GFP], FG810 ser-2(pk1357);
udEx462[ser-2p::ser-2,elt-2::GFP], FG811 ser-2(pk1357);udEx463[ser-
2p::ser-2(R245A/R247A),elt-2::GFP], FG812 ser-2(pk1357);udEx464
[ser-2p::ser-2(R245A/R247A),elt-2::GFP], FG813 ser-2(pk1357);
udEx465[ser-2p::ser-2(R245A/R247A),elt-2::GFP], FG814 prmt-5(gk357);
udEx466[ser-2p::prmt-5,elt-2::GFP], FG815 prmt-5(gk357);udEx467[ser-
2p::prmt-5,elt-2::GFP] and FG816 prmt-5(gk357);udEx468[ser-2p::prmt-5,
elt-2::GFP].

Transgenic Strains
Germline transformations were performed as previously described
(Mello et al. 1991). For prmt-5 and ser-2 rescue experiments, pJM67
elt-2::gfp plasmid (25 ng/ml) (Fukushige et al. 1998) was used as the
co-injection marker, along with either the prmt-5 or ser-2 rescuing
plasmid (50 ng/ml).

Plasmid Construction

pFG2: The �5.3 kb glr-1 promoter was cut out of C06E1xP, first by
digesting with SalI and blunting with Klenow, followed by digestion
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with PstI. This fragment was gel purified and ligated into the PstI/SmaI
sites of pPD49.26 (Fire Lab C. elegans Vector Kit, Addgene).

pFG102: The ser-2 cDNA (isoform e) was PCR amplified from ser-2 in
pFLAG (gift from Rick Komunicki) (Rex et al. 2004) with primers
designed to incorporate a 59 KpnI site and a 39 SacI site, and subcloned
into these sites of pFG2.

pFG288: The �2.2 kb ser-2 promoter (Donnelly et al. 2013) was PCR
amplified from N2 genomic DNA, incorporating a 59 BamHI and a 39
HindIII site, and subcloned into these sites of pPD49.26 (Fire Lab
C. elegans Vector Kit, Addgene).

pFG289: The cDNA encoding ser-2 (isoform e) was isolated from
pFG102 with KpnI/SacI, and subcloned into these sites of pPD49.26
(Fire Lab C. elegans Vector Kit, Addgene).

pFG290 ser-2p::ser-2: The �2.2 kb ser-2 promoter (Donnelly et al.
2013) was PCR amplified from N2 genomic DNA, incorporating a 59
BamHI and a 39HindIII site, and subcloned into these sites of pFG289.

pFG291 ser-2p::ser-2(R245A/R247A): Site-directed mutagenesis
(QuikChange, Stratagene) was used to incorporate the R245A and
R247A substitutions into the ser-2p::ser-2 plasmid pFG290.

pFG292 ser-2p::prmt-5: The cDNAencoding prmt-5was isolated from
pFG66 (Likhite et al. 2015) withNheI/KpnI, and inserted into these sites
of pFG288.

pFG293 GST-S-SER-2 3ICL-S 30 aa: Aportionof the cDNAencoding
the third intracellular loop (ICL) of SER-2 (amino acid residues 240 to
269 of isoform e) was amplified by PCR from ser-2p::ser-2 (pFG290),
incorporating sequence encoding an N- and C-terminal S-tag (amino
acids KETAAAKFERQHMDS) as well as a 59 BamHI and a 39 XmaI site.
This DNAwas then inserted into the corresponding sites of pGEX-5X-3.

pFG294 GST-S-SER-2(R245A/R247A) 3ICL-S 30 aa:Aportionof the
cDNA encoding the third intracellular loop (ICL) of SER-2(R245A/
R247A) (amino acid residues 240 to 269 of isoform e) was amplified by
PCR from ser-2p::ser-2(R245A/R247A) (pFG291), incorporating se-
quence encoding anN- andC-terminal S-tag (amino acids KETAAAK-
FERQHMDS) as well as a 59 BamHI and a 39 XmaI site. This DNAwas
then inserted into the corresponding sites of pGEX-5X-3.

All constructs were verified by sequencing where appropriate.

Behavioral Assays
All behavioral assays were performed on at least three separate days, in
parallel with controls. Assays were performed at room temperature using
young adult animals aged 24 hr post the L4 larval stage. For all behavioral
experiments the combined data of$ 3 transgenic lines is shown, and the
number of transgenic animals assayed in each experiment is indicated
within the figure legends. In all cases n$ 24 for non-transgenic animals.
The Student’s two-tailed t-Test and one-way Anova with Tukey’s Hon-
estly Significant Difference (HSD) were used for statistical analyses.

To quantify resistance to tyramine-induced immobilization, young
adult animals were transferred to agar plates supplementedwith 12mM
tyramine. Approximately 8 animals were transferred to assay plates and
scored for locomotion every minute for a 10 min period. Animals were
scored as immobilized if there was no sustained forward or backward

locomotion in a 5 sec interval (Donnelly et al. 2013). Tyramine plates
were prepared by autoclaving 1.7% agar in water, cooling to �55� and
adding glacial acetic acid to a concentration of 2 mM and tyramine-
hydrochloride (Sigma-Aldrich) to a concentration of 12 mM.

Pharyngeal pumpingwasmeasured bywashing young adult animals
aged 24 hr post the L4 larval stage off of a seeded plate with M9 buffer.
Animals were washed twice in M9 buffer (Wood 1988) and then in-
cubated in ligand for 20min. Animals were then spun down and trans-
ferred onto agar pads and the number of pumps per 20 sec was counted.
A pump was defined as the movement of the pharyngeal grinder. The
ligands tyramine-hydrochloride (Sigma-Aldrich) and serotonin creat-
inine sulfate monohydrate (Sigma-Aldrich) were prepared at the in-
dicated concentrations in M9 buffer.

Thenose touch assaywasperformedessentially as described (Kaplan
and Horvitz 1993; Hart et al. 1995). Briefly, young adult animals were
transferred to agar plates spread with 100 ml OP50 and allowed to
recover for 5 min. An arm hair was placed in the path of a forward-
moving animal to allow a “nose-on” collision. The presence or absence
of foraging (classified as the continuous movement of the head in an
exploratory fashion) while reversing was recorded. Five trials per ani-
mal and $30 animals per genotype were scored as follows: no forag-
ing (no headmovement while reversing) and foraging (headmovement
while reversing). Occasionally, animals did not reverse upon nose touch
and were scored as no response.

Protein Purification
Overnight cultures of E. coli expressing either GST, GST-SER-2240-269
[GST-S-SER-2 3ICL-S (30 amino acids)] or GST-SER-2240-269(R245A/
R247A) [GST-S-SER-2(R245A/R247A) 3ICL-S (30 amino acids)] were
pelleted, resuspended in lysis buffer (1x PBS/1 M NaCl, 1 mM PMSF,
1 mM DTT, 1 mg/ml lysozyme) and subjected to two rounds of French
Press lysis. Lysates was centrifuged at 30,000 · g for 30 min at 4�.
Supernatants were incubated with Glutathione Sepharose High Perfor-
mance beads (Amersham Biosciences) that had been equilibrated with
wash buffer (1x PBS/1 M NaCl, 0.02% v/v Triton X-100, 1 mM DTT).
Unbound sample was allowed to flow through and the resin was washed
3x with 10 mL of wash buffer. GST-tagged proteins were eluted with
elution buffer (50mMTris pH 8, 200mMNaCl, 0.01% v/v TritonX-100,
1mMDTT, 15mMglutathione). Fractions containing the protein eluate
were dialyzed in dialysis buffer (1x PBS, 15% glycerol) for storage at -80�.

In vitro Methylation
The in vitro methylation assay was performed essentially as described
(Likhite et al. 2015) in a total volume of 20 ml with 6 mg of substrate
(50 ng of SmB’ (Goulet et al. 2007)), 210 ng of recombinant human
PRMT5 complex (ActiveMotif), and 5.5mCi of S-[methyl-3H]adenosyl-
L-methionine (55 to 85 Ci/mmol; PerkinElmer) in 1xmethylation buffer
[150mMNaCl, 50 mMTris-HCl (pH 8), 1 mMEDTA]. Reactions were
incubated at 37� for 4 hr, resolved by SDS-polyacrylamide gel electro-
phoresis, and then transferred to polyvinylidene difluoride (PVDF)
membranes. The membranes were sprayed with 6% PPO enhance re-
agent (2,5-Diphenyloxazole, in isopropanol) three times at 10 min in-
tervals before being exposed to Kodak BioMax MS film with a BioMax
Transcreen LE Intensifying Screen at -80� for two weeks and subse-
quently developed. Band intensities were quantifiedwith Bio-Rad Image-
Lab software and were normalized according to gel loading.

Western Blotting
Following film exposure for quantification of methylation signal, the
PVDF membrane was washed two times with 100%methanol and two
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times in PBS-T to remove the PPO. The washed membrane was then
blockedwith blocking solution (5%milk inPBS-T) for onehour at room
temperature. Polyclonal anti-GST primary antibody (Abcam, ab19256)
was used at a 1:20,000 dilution. The secondary antibody (horseradish
peroxidase-conjugated light-chain specific mouse anti-rabbit IgG, Bio-
Rad)wasusedat a1:10,000dilution.Thechemiluminescentreactionwas
performed using Amersham ECL Prime Western Blotting Detecting
Reagent (GE Healthcare).

Bioinformatics Analysis
TMpred (Prediction of Transmembrane Regions and Orientation)
(Hofmann and Stoffel 1993) and TMHMM(Predication of Transmem-
brane Helices in Proteins, v2.0) (Krogh et al. 2001) were used (with the
default model parameters) to predict the locations of transmembrane
domains (TMDs).

Data and Reagent Availability
Strains and plasmids are available upon request. The authors affirm that
all data necessary for confirming the conclusions of this article are
represented fully within the article and its figures. Figure S1 shows the
sequence alignments of the predicted argininemethylationmotifs from
related receptors, as included in the Discussion. Supplemental material
available at Figshare: https://doi.org/10.25387/g3.6193037.

RESULTS

PRMT5 methylates the C. elegans SER-2 receptor
Wepreviously reported the PRMT5-dependentmethylation of twoD2-
like dopamine GPCRs, the human D2 and C. elegans DOP-3 receptors
(Likhite et al. 2015). These receptors contain an arginine methylation
motif in the third intracellular loop that is highly conserved across
species (Likhite et al. 2015). We wished to investigate the possible
methylation of another GPCR, the C. elegans SER-2 tyramine receptor.
SER-2 has a predicted methylation motif in the third intracellular loop
with identical placement to those seen in the human D2 and C. elegans
DOP-3 receptors (Figure 1A). To test the ability of the methyltransfer-
ase PRMT5 to methylate the SER-2 receptor, we performed an in vitro
methylation assay. A recombinant fragment of the third intracellular
loop of the SER-2 receptor [amino acid residues 240-269, flanked both
amino- and carboxy- terminally with an S-tag to increase solubility, and
fused to glutathione S-transferase (GST)] was methylated by PRMT5
(Figure 1B). To determine whether the arginines of the predictedmeth-
ylation motif (Arg245 and Arg247) were necessary for SER-2 methyl-
ation, we generated a recombinant fragment in which these arginines
were changed to alanines (R245A/R247A). SER-2 receptor methylation
was markedly diminished when the two conserved arginine residues
were replaced with alanines (Figure 1B). Quantification of the bands
from three independent experiments showed that less than 30% of the
wild-type SER-2240-269 signal was present when SER-2240-269(R245A/
R247A) was used as substrate (Figure 1C). These data establish the
third intracellular loop of the SER-2 receptor as a substrate for PRMT5
in vitro and suggest that Arg245 and Arg247 are key sites of methylation
within this region.

C. elegans PRMT-5 contributes to the regulation of
locomotion by exogenous tyramine
Having identified the SER-2 receptor as a substrate for PRMT5-medi-
ated methylation in vitro, we wished to determine the extent to which
arginine methylation affects SER-2 signaling in vivo. To do this, we
examined C. elegans behaviors that are modulated by tyramine

signaling through the SER-2 receptor, in animals lacking the protein
arginine methyltransferase PRMT-5.

Tyramine (TA) modulates C. elegans locomotor behavior by acti-
vating SER-2 in the GABAergic motor neurons (Donnelly et al. 2013).
Wild-type animals become immobilized on plates containing exoge-
nous tyramine, while ser-2(lof) animals are resistant to this paralysis
(Donnelly et al. 2013). To determine if protein arginine methylation
contributes to TA-induced immobilization through SER-2 signaling
in vivo, we tested the effect of exogenous TA on animals lacking
PRMT-5. prmt-5(lof) animals displayed an intermediate level of immo-
bilization when compared to wild-type and ser-2(lof) animals (Figure
2). Animals lacking both the SER-2 receptor and PRMT-5 [ser-2(lof);
prmt-5(lof) double mutants] displayed immobilization levels similar to
those of the ser-2(lof) single mutants, suggesting that these two proteins
function in the same pathway. The partial tyramine resistance observed
in prmt-5(lof) animals is consistent with PRMT-5 playing a role in
promoting SER-2-mediated tyramine signaling.

To determine whether PRMT-5 regulates tyramine-modulated pa-
ralysis by acting in the same cells as SER-2, we used the ser-2 promoter
(ser-2p, 2.2 kb upstream of the first translational start site (Donnelly
et al. 2013)) to drive prmt-5 cDNA expression and restore PRMT-5
function in ser-2-expressing cells. prmt-5(lof) animals expressing the
ser-2p::prmt-5 transgene displayed an immobilization phenotype sim-
ilar to that of wild-type animals (Figure 2). Using the ser-2 promoter to
restore SER-2 (isoform e) receptor expression [ser-2p::ser-2(WT)] in
ser-2(lof) animals also fully rescued TA-induced immobilization (Fig-
ure 2). To determine if the arginines of the predicted PRMT-5 meth-
ylation motif (Arg245 and Arg247) contributed to SER-2 function
in vivo, we generated a SER-2(R245A/R247A) mutant receptor using
site-directed mutagenesis. ser-2(lof) animals expressing the ser-2p::ser-
2(R245A/R247A) transgene phenocopied prmt-5(lof) animals (Figure
2). Taken together, these results suggest that Arg245 and Arg247 in the
predicted PRMT-5 methylation motif of the third intracellular loop of
the SER-2 receptor contribute to its signaling potential in vivo. Our data
are consistent withmethylation of these arginines by PRMT-5 playing a
role in promoting SER-2 signaling.

C. elegans PRMT-5 promotes tyramine-mediated
inhibition of serotonin-stimulated pharyngeal pumping
Pharyngeal pumping is a cycle of contraction and relaxation of the
pharyngeal muscle that transports bacteria from the pharynx of the
worm into its intestine. Exogenous serotonin (5-HT) can stimulate
pharyngeal pumping by mimicking the presence of food, while the
addition of exogenous TA antagonizes 5-HT-stimulated pumping
(Horvitz et al. 1982). However, consistent with SER-2 expression in
pharyngeal muscles (Tsalik et al. 2003), TA does not inhibit 5-HT-
stimulated pumping in ser-2(lof) animals (Rex et al. 2004).

To determine if protein arginine methylation promotes
TA-mediated inhibition of 5-HT-stimulated pharyngeal pumping, we
first tested the effect of exogenous TA on animals lacking PRMT-5 func-
tion. Similar to the TA-induced immobilization experiments (Fig-
ure 2), prmt-5(lof) animals displayed an intermediate pharyngeal
pumping phenotype when compared to wild-type and ser-2(lof) an-
imals (Figure 3). prmt-5(lof) animals expressing the ser-2p::prmt-5
transgene to restore PRMT-5 function in ser-2-expressing cells showed
a pharyngeal pumping rate similar to wild-type animals in the presence
of 5-HT and TA, consistent with PRMT-5 regulating pharyngeal
pumping by acting in the same cells as SER-2. To assess the contribu-
tion of Arg245 and Arg247 to SER-2 function, we compared TA inhibi-
tion of 5-HT-stimulated pharyngeal pumping in ser-2(lof) animals
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expressing the ser-2p::ser-2(WT) vs. ser-2p::ser-2(R245A/R247A) trans-
gene. While ser-2(lof) animals expressing wild-type SER-2 displayed a
pumping rate similar towild-type animals, ser-2(lof) animals expressing
SER-2(R245A/R247A) were again similar to animals lacking PRMT-5
(Figure 3). Combined, these results suggest that PRMT-5 promotes
SER-2 signaling in pharyngeal cells, and that the two arginines in the
predictedmethylationmotif are important for SER-2 receptor signaling
in vivo.

Loss of PRMT-5 function leads to continued foraging
behavior in response to nose touch
Consistent with SER-2 expression in both the neurons and muscles of
the head that affect head movement (Tsalik et al. 2003; Rex et al. 2004;
Donnelly et al. 2013; Wilson et al. 2017), ser-2(lof) animals fail to
suppress foraging behavior while reversing in response to nose touch
(Rex et al. 2004). To determine if protein argininemethylation regulates
C. elegans foraging behavior, we first assessed the extent to which prmt-
5(lof) animals suppress foraging in response to nose touch. While only
16% of wild-type animals continued foraging while reversing, 51% of
prmt-5(lof) animals continued foraging as they reversed following nose

touch (Figure 4). By comparison, 60% of ser-2(lof) animals did not
suppress foraging while reversing. Restoration of PRMT-5 function
in ser-2-expressing cells of prmt-5(lof) animals (by expressing the
ser-2p::prmt-5 transgene) suppressed foraging to the extent seen in
wild-type animals. Furthermore, while expression of wild-type SER-2
in ser-2(lof) animals suppressed foraging to wild-type levels, ser-2(lof)
animals expressing SER-2(R245A/R247A) did not fully suppress forag-
ing, similar to prmt-5(lof) animals. Taken together, these data are con-
sistent with a role for arginine methylation promoting SER-2 signaling
to dampen foraging behavior in response to nose touch.

DISCUSSION
Our lab previously reported the first functional evidence that signaling
through GPCRs, specifically D2-like dopamine receptors (human D2
and C. elegans DOP-3), is regulated by protein arginine methylation
(Likhite et al. 2015). Herein, we provide evidence that a thirdGPCR, the
C. elegans SER-2 tyramine receptor, is also functionally regulated by
protein arginine methylation. We show that human PRMT5 methyl-
ates the third intracellular loop of the SER-2 receptor in vitro, and that
mutating the conserved arginines (Arg245/Arg247) of the putative

Figure 1 Human PRMT5 methylates the C. elegans SER-2 receptor in vitro. (A) Alignment showing conservation of the predicted arginine
methylation motifs of the human (D2) and C. elegans (DOP-3) D2-like dopamine receptors, along with the C. elegans SER-2 tyramine receptor.
Resides Arg245 and Arg247 of SER-2 are indicated and lie within a conserved RXR motif, in which X can be any amino acid residue. The entire third
intracellular loop of SER-2 is comprised of 133 amino acids (representing residues 239-371); only residues 239-269 of the third intracellular loop
are shown. The gray shading indicates the end of transmembrane domain five (TM V) of the receptors. (B) Representative blot for the in vitro
methylation assay. A wild-type and mutant recombinant fragment of the third intracellular loop of the C. elegans SER-2 receptor [amino acid
residues 240-269, flanked both amino- and carboxy- terminally with an S-tag to increase solubility, and fused to glutathione S-transferase (GST)]
were used in an in vitro methylation assay with active recombinant human PRMT5. There are no arginines within the S-tag. A GST-tagged portion
of SmB’ protein, a robust PRMT5 substrate (Goulet et al. 2007), served as the positive control and GST was used as the negative control. The
autoradiograph shows that the wild-type GST-SER-2240-269 fragment was methylated by PRMT5, while methylation of GST-SER-2240-269(R245A/
R247A) was significantly diminished (P # 0.0001). Gray arrowhead indicates the molecular weight position of GST in the autoradiograph, which
was not methylated. Anti-GST Western blotting of the polyvinylidene difluoride (PVDF) membrane was used to normalize values for equivalent
substrate loading. Figure panels were made from a single exposure of the membrane; lanes unrelated to this study were cut from the image. GST-
SmB’ does not appear on the Western because much less was used as substrate and loaded relative to the other lanes. Molecular mass markers
(kDa) are indicated on the right. (C) Quantification of the degree of methylation of the receptor fragments was based on densitometric analysis of
the autoradiographs. The degree of GST-SER-2240-269(R245A/R247A) methylation was 30% of that of the wild-type (WT) fragment. Error bar
represents the standard error of the mean (SEM) from three independent experiments. ���� P # 0.0001.
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methylation motif reduced this methylation (Figure 1). C. elegans
PRMT-5 also promotes SER-2 regulated behaviors in vivo, and chang-
ing the conserved arginines of SER-2 reduced its ability to regulate these
behaviors (Figures 2-4). This work, combined with our previous study
(Likhite et al. 2015), suggests that protein arginine methylation may
serve as an important regulatory means to modulate the activity of a
diversity of GPCRs.

Natural predators of wild C. elegans include nematophagous fungi
(Barron 1977) armed with constricting hyphal rings that can capture
worms (Thorn andBarron 1984). Mechanosensory stimulation of the
hyphal rings, such as by nematodes, triggers their constriction to facil-
itate prey capture (Schmidt et al. 2007). Therefore, it has been proposed
thatC. elegansmay elude capture by suppressing their headmovements
while reversing after they encounter these fungi, allowing them to
escape without triggering ring constriction. One of the main neuron
pairs involved in the suppression of head movements is the set of
tyraminergic RIM interneurons. Specifically, RIM-ablated animals fail
to suppress foraging behavior while reversing in response to light an-
terior touch, suggesting that TA release from the RIMs inhibits these
head oscillations (Alkema et al. 2005).

Nose touch is primarily sensed by the ASH polymodal nociceptive
sensory neurons (with a small contribution from the FLP and OLQ
sensory neurons) (Kaplan and Horvitz 1993). The RIM interneurons
appear to be part of a “disinhibitory” circuit that serves to tonically
dampen locomotor reversals (Piggott et al. 2011). In this model, when a
relatively weak stimulus (e.g., nose touch) is encountered, the ASH
nociceptors signal to the AIBs which, in turn, inhibit the RIMs
(Piggott et al. 2011). With the RIMs silenced, reversals are enabled
through a parallel stimulatory circuit (ASH to the AVA/AVD/AVE
command interneurons) (Piggott et al. 2011). It was proposed that,
in this scenario, the inhibition of RIM also allows for head oscillations
(foraging) while animals reverse in response to nose touch (Piggott
et al. 2011), which would be consistent with the behavioral observations
of Alkema et al. (2005).

However, it was reported that the RIMs can in fact be stimulated or
inhibited by AIB, depending on the strength of the sensory stimulus
delivered to theASH sensory neurons (Piggott et al. 2011). For example,
the ASHs also detect high osmolarity (Bargmann et al. 1990; Kaplan
andHorvitz 1993; Hart et al. 1999; Hilliard et al. 2005), which is a more
noxious stimulus than nose touch (Mellem et al. 2002). In response to

Figure 2 C. elegans lacking PRMT-5 are less susceptible to tyramine-induced immobilization. (A) prmt-5 loss-of-function animals display an
intermediate immobilization phenotype when compared to wild-type and ser-2(lof) animals (P # 0.001 when comparing prmt-5(lof) animals to
either ser-2(lof) or wild-type animals across time). Restoring WT SER-2 function (ser-2p::ser-2) fully rescued tyramine-induced immobilization (P .
0.2 when compared to wild-type animals across time). ser-2(lof) animals expressing SER-2(R245A/R247A) displayed a partial resistance to
tyramine-induced immobilization, similar to prmt-5(lof) animals (P . 0.8 across time). The percentage of mobile animals on 12 mM tyramine
plates at each time-point is shown. (B) The bar graph shows the percentage of animals that became immobilized on 12 mM tyramine plates at the
10 min endpoint displayed in panel A. Alleles used: prmt-5(gk357) and ser-2(pk1357). WT = the N2 wild-type strain. For rescue experiments, the
combined data of three independent transgenic lines and n $ 78 transgenic animals are shown. Error bars represent the standard error of
the mean (SEM). ���� P # 0.0001. n.s. = not significant.
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the stronger stimulus of osmotic shock delivered to ASH, AIB stimu-
lates RIM (Piggott et al. 2011). The presumed associated release of TA
from RIM then inhibits foraging while animals reverse in response to
high osmolarity (Piggott et al. 2011). We propose that nose touch
signaling through ASH can indeed inhibit foraging behavior, as first
reported by Rex et al. (2004) and repeated here (Figure 4), but that its
ability to do so is dependent upon whether the strength of the mecha-
nosensory stimulation is sufficient to elicit tyramine release from RIM.

Nuanced differences in the execution of the nose touch assay, including
the source and thickness of the hair presented as the obstacle for the
“nose-on” collision, influence the efficacy of the nose touch response
(D. M. Ferkey, unpublished observations) and likely lead to a difference
in signal strength through ASH. We suggest a model in which nose
touch is detected by ASH and, if it generates a strong enough signal that
AIB promotes tyramine release from RIM, it activates the SER-2 re-
ceptors found on C. elegans head muscles (Tsalik et al. 2003; Rex et al.

Figure 3 C. elegans PRMT-5 promotes TA inhibition of 5-HT-stimulated pharyngeal pumping. Animals were incubated in M9 buffer, 5-HT
(10 mM), or TA (2 mM) + 5-HT (10 mM). The number of pumps per 20 sec was counted. In the presence of 5-HT + TA, prmt-5(lof) animals
displayed an intermediate pharyngeal pumping phenotype when compared to wild-type and ser-2(lof) animals (P # 0.0001 when comparing
prmt-5(lof) animals to either ser-2(lof) or wild-type animals). prmt-5(lof) animals expressing ser-2p::prmt-5 showed a pharyngeal pumping rate
similar to wild-type animals (P . 0.5) in the presence of 5-HT and TA. Restoring WT SER-2 function [ser-2p::ser-2(WT)] fully rescued TA-mediated
inhibition of 5-HT stimulation (P . 0.07). ser-2(lof) animals expressing SER-2(R245A/R247A) displayed a partial TA-mediated inhibition, similar to
prmt-5(lof) animals (P . 0.6). The pumps per 20 sec is shown. Alleles used: prmt-5(gk357) and ser-2(pk1357). WT = the N2 wild-type strain. For
rescue experiments, the combined data of three independent transgenic lines and n $ 42 transgenic animals are shown. Error bars represent the
standard error of the mean (SEM). ���� P # 0.0001. n.s. = not significant.

Figure 4 C. elegans PRMT-5 suppresses foraging in response to nose touch. The presence or absence of foraging behavior following nose touch
was scored during the reversal response. prmt-5(lof) animals displayed an intermediate foraging phenotype when compared to wild-type and ser-
2(lof) animals (P# 0.01 when comparing prmt-5(lof) animals to either ser-2(lof) or wild-type animals). prmt-5(lof) animals expressing ser-2p::prmt-5
showed a foraging rate similar to wild-type animals (P . 0.8). Restoring wild-type SER-2 function [ser-2p::ser-2(WT)] in ser-2(lof) animals fully
rescued the suppression of foraging (P . 0.6 when compared to wild-type animals). ser-2(lof) animals expressing SER-2(R245A/R247A) displayed
an intermediate degree of foraging, similar to prmt-5(lof) animals (P. 0.2). No Foraging = inhibition of head movement while reversing; Foraging
= continuous head movement while reversing; No Response = no reversal upon nose touch. Alleles used: prmt-5(gk357) and ser-2(pk1357). WT =
the N2 wild-type strain. For rescue experiments, the combined data of three independent transgenic lines and n $ 45 transgenic animals (5 trials
per animal) are shown. Error bars represent the standard error of the mean (SEM). �� P # 0.01. n.s. = not significant.
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2004; Donnelly et al. 2013; Wilson et al. 2017) to inhibit foraging
behavior. This model would be consistent with a general need to inhibit
foraging while reversing as a survival mechanism, regardless of whether
that reversal was triggered by activation of ALM/AVM (anterior touch)
or ASH (nose touch or osmotic shock). In each case, activation of the
sensory neurons would trigger a reversal response meant to elude dan-
ger. Further supporting this model, we note the discrepancy between
labs for whether foraging is inhibited while animals reverse in response
to high osmolarity; Alkema et al. (2005) did not see suppression of
foraging in wild-type animals under their assay conditions, while
Piggott et al. (2011) did. Again, small differences in the set-up or
execution of the assay could affect the strength of the signal delivered
to the ASHs.

Tyramine receptors have been identified in numerous invertebrate
species, including fruit flies (Saudou et al. 1990), honeybees (Blenau
et al. 2000) and cockroaches (Blenau et al. 2017), suggesting that
tyramine’s role as a neurotransmitter extends beyond C. elegans. Like
SER-2, each of these receptors also has a putative methylation motif
within its third intracellular loop (Figure S1), suggesting that methylation
may regulate tyraminergic signaling across multiple phyla. Interestingly,
these tyramine receptors, along with the human D2 and C. elegans
DOP-3 receptors, all signal through Gai/o, which traditionally functions
to inhibit adenylyl cyclase and decrease cAMP production (Saudou et al.
1990; Malek et al. 1993; Voss et al. 1993; Vanden Broeck et al. 1995;
Blenau et al. 2000; Bofill-Cardona et al. 2000; Rex and Komuniecki 2002;
Neve et al. 2004; Likhite et al. 2015). One possibility is that arginine
methylation may preferentially modulate signaling through Gai/o-
coupled receptors. However, as only a limited number of receptors
have been examined to date, it is also possible that methylation regulates
G protein-coupled signaling broadly. Consistent with the latter, many of
the GPCRs identified by Likhite et al. (2015) to contain a putative meth-
ylation motif do not couple with Gai/o.

BLAST (Basic Local Alignment Search Tool) analysis identified the
serotonin 1A (5-HT1A) receptor as the closest human homolog of the
tyraminergic SER-2 receptor (Likhite et al. 2015). Similar to the in-
vertebrate TA receptors, the 5-HT1A receptor couples to Gai/o to me-
diate inhibitory neurotransmission (Barnes and Sharp 1999). The
5-HT1A receptor also has a putative methylation motif within its third
intracellular loop (Figure S1), suggesting that even though the receptor
binds a different biogenic amine, its regulation by methylation has
likely been conserved through evolution.

Although not examined here, the most recently reported SER-2-
regulated behavior is the formation and retrieval of imprinted olfactory
memories (Jin et al. 2016). Exposing juvenile C. elegans to pathogenic
bacteria early in their life leads to a long-lasting aversion of the bacteria,
with sensory neurons signaling to both AIB and the tyraminergic RIM
interneurons to form the imprinted olfactory memory (Jin et al. 2016).
The RIMs, which are necessary for memory formation, release tyra-
mine that signals through the SER-2 receptor expressed on the AIY
interneurons (Jin et al. 2016). The SER-2 receptor (and AIY interneu-
rons) is necessary for retrieval of the olfactory memory. However, an
additional tyraminergic GPCR, TYRA-2, is also required for imprinted
olfactory aversion (Jin et al. 2016). We have found that, like SER-2,
TYRA-2 contains a putative methylation motif in its third intracellular
loop (Figure S1), suggesting that methylation of these receptors may
contribute to the formation and/or retrieval of imprinted memories.
For example, the introduction of pathogenic bacteria may alter the
methylation status of these receptors, perhaps in a cell-specific manner.

The addition of a methyl group to an arginine residue removes a
hydrogenbonddonor anddecreases the electrostatic surface potential at
the residue, resulting in a change in size and hydrophobicity that can

affect its interaction with binding partners (Bedford and Clarke 2009).
Thus, protein arginine methylation plays a key role in regulating pro-
tein-protein interactions, and could regulate the activity of GPCRs by
modulating the binding (or activation) of G proteins or accessory reg-
ulator proteins that interact with the third intracellular loop. Previous
studies have also shown that argininemethylation can regulate the local
phosphorylation state of target proteins. For example, PRMT1 (a type
1 PRMT) -mediated methylation of FOXO transcription factors
(Yamagata et al. 2008; Takahashi et al. 2011) or BAD (BCL-2 antago-
nist of cell death) (Sakamaki et al. 2011) blocks their phosphorylation
by Akt (also known as protein kinase B). In these cases, the methylated
arginines lie within the phosphorylation motif. PRMT1-mediated ar-
gininemethylation of hnRNPK (heterogeneous nuclear ribonucleopro-
tein K) also blocks phosphorylation (by PKCd) of a nearby serine (Yang
et al. 2014). The predicted arginine methylation motif of the SER-2
receptor (Arg245 and Arg247) lies between two predicted sites of phos-
phorylation in the third intracellular loop (Ser243 and Thr250) (Gattiker
et al. 2002; Rex et al. 2004). Thus, another possibility is that SER-2
methylation by PRMT-5 could regulate the local phosphorylation state
of these residues to regulate receptor signaling. Finally, since GPCR
phosphorylation can lead to receptor desensitization and subsequent
downregulation (Moro et al. 1993; Ferguson 2001), methylation of
GPCRs could antagonize phosphorylation to regulate cell-surface ex-
pression of receptors.

The work described here provides evidence of a third GPCR that is
functionally regulated by arginine methylation. In humans, GPCRs are
the largest family of tractable drug targets (Overington et al. 2006;
Lagerström and Schiöth 2008) and are the target of over 30% of all
marketed pharmaceuticals (White 2005). Given the therapeutic success
associated with targeting enzymes that catalyze the post-translational
modification of proteins, such as histone deacetylases (Bose et al. 2014),
to treat disease, our findings may influence the development of inno-
vative approaches to modulate G protein-coupled signaling for thera-
peutic benefit. Notably, methylation appears to have a modulatory
effect on GPCR signaling, rather than being an absolute requirement
for signaling (Likhite et al. 2015) (Figures 2-4). Therefore, a new gen-
eration of treatments based on manipulating PRMT activity and/or
GPCR methylation status (mimicking, promoting or blocking) could
allow for finer control over the level of signaling than receptor agonists
or antagonists can provide.
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