
This article is available online at http://www.jlr.org Journal of Lipid Research  Volume 59, 2018        1081

Copyright © 2018 Chen and Yin. Published under exclusive license by The American 
Society for Biochemistry and Molecular Biology, Inc.

Atherosclerosis (AS), a major etiology of cardiovascular 
disease, is considered to be a chronic inflammatory dis-
ease characterized by excessive inflammatory cells, such as 
macrophages, accumulated in the arterial wall (1). As the 
main effector cells of the immune/inflammatory system, 
macrophages engulf lipids and produce various inflamma-
tory factors, thus participating in the progress of AS (1–3). 
Therefore, it is very important to clarify the mechanisms 
that regulate macrophage-related inflammatory response 
for the prevention of AS.

The report in the Journal of Lipid Research by Schneider 
et al. (4) shows that apolipoprotein A-I binding protein 
(AIBP), a secreted protein that avidly binds to apoA-I, the 
major component of HDL, plays a key role in regulating 
macrophage cholesterol efflux and inflammation in AS 
(5). Apoa1bp−/−Ldlr−/− mice fed a high-fat diet have shown 
exacerbated hypercholesterolemia, hypertriglyceridemia, 
and larger atherosclerotic lesions compared with Ldlr−/− 
mice. Conversely, overexpression or injection of AIBP re-
duced aortic inflammation and atherosclerotic plaques. In 
vitro, AIBP facilitated cholesterol efflux, the first step of 
reverse cholesterol transport, from cultured macrophages 
to HDL, reducing the cholesterol content in lipid rafts 
that inhibited the inflammatory responses to lipopolysac-
charide (LPS), suggesting the crucial role of cholesterol 
efflux on AIBP-mediated anti-inflammatory and immuno-
suppressive functions.

Previous research demonstrated that AIBP promoted 
ABCA1-mediated cholesterol efflux from endothelial cells 
and macrophages via interaction with apoA-I (6–8). In  
zebrafish and mice, AIBP regulated cholesterol levels in 
endothelial cells that control angiogenesis via depleting 
lipid raft content in the cell membrane, therefore inhibiting 
vascular endothelial growth factor receptor 2 and upregu-
lating Notch signaling (6, 8). Meanwhile, AIBP-mediated 
cholesterol efflux can also impair the lipid raft-containing 
Toll-like receptor 4 (TLR4), which has been shown to 
upregulate the MYD88-mediated activation of MAPK and 
NF-kB signaling as well as downstream inflammatory cyto-
kines (9, 10). In addition, AIBP has been found to pro-
mote the binding of apoA-I to ABCA1 in macrophages 

and prevent ABCA1 protein from COP9 signalosome 
subunit 2-mediated degradation so as to prevent foam 
cell formation (7).

Several studies have revealed that ABCA1 can directly 
function as an anti-inflammatory receptor for apoA-I to 
suppress inflammation independently of its cholesterol 
efflux activity (11,12). The interaction of apoA-I and ABCA1 
stimulated the JAK2/STAT3 signal pathway and tristetrap-
rolin-dependent posttranscriptional regulation of pro-
inflammatory cytokines mRNA decay (11). Knockout of 
ABCA1 in mice increases inflammatory cell infiltration 
in a number of tissues, including the vessel wall and 
peritoneal cavity, and blood circulation (13). These re-
sults suggest that secretory AIBP modulated the immune/
inflammatory response through regulating lipid transport 
and lipid raft-related receptor activity.

Interestingly, there may be more mechanisms to ex-
plain the action of AIBP on inflammation and AS. The 
APOA1BP gene that codes AIBP was renamed as the 
NADHX epimerase (NAXE) by the Human Gene Orga-
nization Gene Nomenclature Committee. As an epimerase 
in mitochondria, AIBP converts R-NADHX, R-epimers of 
nicotinamide adenine dinucleotide hydration (NADHX), 
to biologically useful S-NADHX that rapidly reconverted to 
nicotinamide adenine dinucleotide (NADH) (14). NADHX 
has been shown to inhibit several dehydrogenases (15), 
which is necessary for mitochondria oxidative phosphory-
lation (OXPHOS) (16). OXPHOS, the major function of 
mitochondria, has recently emerged as a central organelle 
that integrates cellular metabolism and inflammatory 
responses (17). Yu et al. (18) have recently found that 
OXPHOS is reduced in AS, promoting mitochondrial 
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dysfunction and necrotic core formation. The damaged 
mitochondria accumulated in macrophages results in the 
activation of the NLRP3 inflammasome and production of 
IL-1b (19). In addition, impaired mitochondrial OXPHOS 
has been found to prevent the repolarization of pro- 
inflammatory macrophages to anti-inflammatory macro-
phages (20). Recently, mutations of NAXE in children 
have been reported to result in acute-onset ataxia, cerebellar 
edema, spinal myelopathy, and skin lesions. Increased lactate 
in cerebrospinal fluid and R-NADHX in fibroblasts have 
been shown in these dieseases, indicating that NAXE is an 
unheeded target for controlling metabolism and the im-
mune/inflammation system (21).

These studies improve our understanding of the potent 
anti-inflammatory properties of extracellular and intracel-
lular AIBP (Fig. 1).Serum AIBP, mainly secreted from liver 
and kidney, inhibits inflammatory cytokine expression via 
TLR-4/ MyD88-mediated MAPK and NF-kB signaling as 
well as the ABCA1/JAK2/STAT3 pathway after binding 
with apoA-I. On the other hand, mitochondrial AIBP may 
function as an NADHX epimerase to prevent OXPHOS 
damage and mitochondrial dysfunction (Fig. 1). More-
over, lipid and energy metabolism may also be involved in 
the process of AIBP-mediated anti-inflammatory response, 
and this suggests that AIBP may be a novel therapeutic tar-
get for chronic metabolic inflammatory disease, such as AS.
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Fig.  1.  The primary mechanisms by which AIBP pro-
tects against macrophage inflammatory response. In 
one way, AIBP/apoA-I disrupts lipid raft membrane 
micro-domains and decreases LPS-induced TLR4 ac-
tivation via ABCA1-mediated cholesterol efflux, 
which activates MyD88-mediated NF-kB and MAPK 
signaling and then upregulates the expression of pro-
inflammatory cytokines. In another way, AIBP may 
promote the direct anti-inflammatory function in an 
ABCA1-dependent manner via activation of JAK2/
STAT3 signal pathway after interaction with apoA-I. 
In addition, AIBP can also function as an NADH 
epimerase involved in the reconversion of NADHX to 
NADH, which is critical for mitochondrial OXPHOS 
and plays a potential role in regulation of macro-
phage inflammation.
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