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Abstract

Understanding and optimizing spacing of learning events is a central topic in basic research in 

learning and memory and has widespread and substantial implications for learning and instruction 

in real-world settings. Spacing memory retrievals across time improves memory relative to massed 

practice – the well-known spacing effect. Most spacing research has utilized fixed (predetermined) 

spacing schedules. Some findings indicate advantages of expanding spacing intervals over equal 

spacing (e.g., Landauer & Bjork, 1978); however, evidence is mixed (e.g., Karpicke & Roediger, 

2007). One potential account of differing findings is that spacing per se is not the primary 

determinant; rather learning may depend on interactions of spacing with an underlying variable of 

learning strength that varies for learners and items. If so, learning may be better optimized by 

adaptive schedules that change spacing in relation to a learner’s ongoing performance. In two 

studies, we investigated an adaptive spacing algorithm, Adaptive Response-Time-based 

Sequencing (ARTS; Mettler, Massey & Kellman, 2011) that uses response time along with 

accuracy in interactive learning to generate spacing. In Experiment 1, we compared adaptive 

scheduling with fixed schedules having either expanding or equal spacing. In Experiment 2, we 

compared adaptive scheduling to two fixed “yoked” schedules that were copied from adaptive 

participants; these equated average spacing and trial characteristics across conditions. In both 

experiments, adaptive scheduling outperformed fixed conditions at immediate and delayed tests of 

retention. No evidence was found for differences between expanding and equal spacing. The 

advantage of adaptive spacing in yoked conditions was primarily due to adaptation to individual 

items and learners. Adaptive spacing based on ongoing assessments of learning strength for 

individual items and learners yields greater learning gains than fixed schedules, a finding that 

helps to understand the spacing effect theoretically and has direct applications for enhancing 

learning in many domains.
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Among the most influential and consequential efforts in the science of learning in recent 

years have been studies of spacing in learning. Over a century of research on conditions of 

practice has determined that spacing, or distributing the study of learning material over time, 

improves long-term retention relative to massing or cramming the material in the short term 

(Dempster, 1989; Ebbinghaus, 1913; Glenberg, 1976; Rumelhart, 1967; Tsai, 1927). 

Spacing improves learning across a variety of materials and learning modes. Although item 

memorization has been most frequently studied, spacing effects have been shown for other 

types of learning, such as learning of perceptual classifications (Kornell & Bjork, 2008; 

Mettler & Kellman, 2014; Wahlheim, Dunlosky & Jacoby, 2011). Effects of spacing are 

robust, affecting long-term retention at multiple timescales of practice (Cepeda, Pashler, Vul, 

Wixted & Rohrer, 2006; Cepeda, Vul, Rohrer, Wixted & Pashler, 2008), and they are 

phylogenetically broad, extending beyond human cognition (Zhang et al., 2011).

Spacing has the potential to drive substantial improvements in learning for students in real 

educational settings (Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012; Mettler, Massey & 

Kellman, 2011), and it has been endorsed as a primary recommendation for organizing 

instruction in an Institute of Education Sciences-sponsored practice guide based on reviews 

of evidence by a national panel of experts (Pashler et al., 2007). However, the insights 

derived from both classic and recent work have largely failed to penetrate curriculum and 

instruction in either K-12 or higher education. The most common formats for organizing 

curriculum, such as “layer cake” sequences (e.g., studying biology, physics and chemistry in 

successive grades), massed practice (e.g., studying a given math topic, completing a set of 

similar problems for homework and then moving on to a new topic the next day), and spiral 

curricula (studying fractions every year in elementary and middle school math, with long 

gaps in between) use learning schedules that are associated with poor outcomes in terms of 

long-term durability of learning (Rohrer & Taylor, 2006; Snider, 2004). Instruction in many 

education and training settings typically fails to make the critical distinction between 

performance during or immediately after instruction and long-term retention and recall 

(Bjork & Bjork, 2011). Further, it fails to recognize that even adult learners have little 

insight into their own learning processes, typically overestimating the likelihood that they 

will remember something in the future and not recognizing which study methods improve 

retention and retrieval in the long run (Bjork, 1999; Bjork, Dunlosky, & Kornell, 2013; 

Kornell & Bjork, 2007). While knowledgeable teachers can to some degree make up for the 

metacognitive weaknesses of their students, it is logistically difficult for educators to 

customize schedules of practice for individual students and topics.

The advent of learning technologies that can track and implement learning schedules brings 

an entirely new set of tools to the enterprise—tools that can off-load from both students and 

instructors the difficult task of optimally pacing practice during learning. However, to fully 

realize their benefit, it is necessary for them to incorporate scientifically sound principles to 

guide schedules of practice to support learning over meaningful time spans. This paper 

explores which schedules of practice improve learning outcomes and investigates a novel 

hypothesis for why they might do so. The findings have important theoretical implications 

for understanding spacing in fixed and adaptive schedules and have direct potential 

application for the development of new learning resources and technologies across many 
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domains of learning, including K-12 and college education, medical and other professional 

education, and training in industry.

If spacing fosters greater learning, a natural question arises: Which spacing intervals are 

most useful? Further, if items are repeatedly presented, as is typical in real-world learning 

contexts, what characteristics of spacing across repeated presentations most improve 

learning? Answering these questions requires some understanding of the mechanisms that 

make spacing effective.

Why Is Spacing Effective?

A variety of explanations for spacing benefits in learning have been suggested; indeed, 

within and across various learning tasks, there may be a family of spacing phenomena and 

explanations for them (Mettler & Kellman, 2014; Glenberg, 1979).

Some proposed explanations for the spacing effect include encoding variability and deficient 

processing accounts. In encoding variability accounts, adding space between item 

presentations facilitates variability of the encoding context. That is, the conditions of 

practice are likely to be different at subsequent presentations of an item as more time elapses 

between presentations. Differences in context lead to an increase in the probability that 

memories are encoded in different ways, thus strengthening the memories that are formed 

(Glenberg, 1979). In deficient processing accounts, it is thought that learners do not process 

repeated instances of items when spacing intervals are too short. That is, when items are 

massed, or repeated rapidly in time, learners reduce the amount of attention given to 

subsequent presentations. Spacing, in contrast, encourages greater attention to repeated 

presentations of items, thus benefiting memory (Hintzman, 1974). A variant of this idea is 

that long term learning benefits from periodic retrievals from long term memory but not 

from recovering information that still resides in working memory (Baddeley, 1986). More 

recent accounts highlight the role of representations of prior practice, the memorability of 

initial presentations, or the ease of recognition of items in understanding spacing (e.g., 

Benjamin & Tullis, 2010; Delaney, Verkoeijen & Spirgel, 2010).

A strong candidate explanation for some of the major benefits of spaced practice in this 

context is that the value of a learning event differs depending on how well-learned an item 

is, i.e., an internal variable of learning strength. Learning strength will tend to decline over 

time, making successful retrieval more difficult as the time since the last presentation or 

retrieval increases, and as suggested by many studies of spacing, it is likely influenced by a 

number of other variables. The optimal time to practice an item is when retrieval is difficult 

but can still succeed. This retrieval effort hypothesis follows from the desirable difficulty 

framework of Bjork & Bjork (1992), and has been supported by a number of studies (Pyc & 

Rawson, 2009; Thios & D’Agostino, 1976; Johnston & Uhl, 1976). Results show that the 

difficulty of retrieval can be induced in a number of ways—for example, by interleaving 

difficult tasks between retrieval attempts (Bjork & Allen, 1970), changing the amount of 

memory interference that retrieval attempts encounter (Storm, Bjork & Storm, 2010), or 

manipulating the number of retrieval attempts that an item receives before a test (Pyc & 

Rawson, 2009). Retrieval effort can also be induced by stretching the spacing intervals over 
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which retrievals are attempted. The variety of variables shown in research to influence 

retrieval effort suggests that fluctuations of learning strength in a learning session arise from 

numerous and subtle influences that would be difficult to capture in an a priori model.

Fixed schedules incorporating expanding intervals of retrieval practice (Landauer & Bjork, 

1978; Cull, Shaughnessy & Zechmeister, 1996) may improve learning because the schedule 

of retrievals is congruent with changes in the strength of learning items in memory. In 

expanding practice, initial spacing intervals are short since learning strength is initially low, 

but spacing intervals gradually grow, under the expectation that information can be retrieved 

at longer delays. Further, the greatest benefits to learning strength will be gained from 

difficult retrievals at the largest possible delays—temporally close to, but not past, the point 

of forgetting. If the intervals are felicitously chosen, expanding the retrieval interval thus can 

ensure that retrievals remain difficult and widely spaced, improving long-term learning.

Despite intuitions that expanding retrieval practice is beneficial for learning, the evidence for 

benefits of expanding spacing relative to other spacing schedules, such as equal interval 

spaced presentation, is mixed (Karpicke & Roediger 2007, 2010). Karpicke & Roediger 

(2007) reported that equal interval practice is actually superior to expanding practice when 

measured at a delayed test, and further, that there were no differences in learning outcomes 

between equal or expanding schedules when the size of their initial spacing interval was 

equated. Other studies have demonstrated similar equivocal results. Karpicke & 

Bauernschmidt (2011) found no evidence for or against expanding interval practice in a 

study where learners were trained to an initial criterion of proficiency, similar to other 

research (Carpenter & DeLosh, 2005). Contrary to these results, Storm, Bjork and Storm 

(2010) have reported that memory was better for an expanding schedule of practice, but only 

when items that intervened during spacing were highly related to spaced items, suggesting 

that expanding intervals are most beneficial when the potential for forgetting is high.

Spacing Intervals and Learning Strength

From the standpoint of the retrieval effort hypothesis (or any perspective that relates spacing 

to changing learning strength), the mixed results of research testing fixed schedules of 

spacing are not surprising. Fixed spacing intervals may be poorly suited to variations in the 

learning strength of items for a given learner. Some items may, across learners, be more 

difficult to learn, but learning strengths for various items in the course of learning seem 

likely to reflect individual interactions of learners and items. Although a preset schedule of 

expanding spacing intervals across trials will tend to correlate with increasing learning 

strength for a typical item, the match may be far from perfect. Even if learning strength 

increases monotonically, preset intervals may expand too much or not enough. In some 

cases, learning strength may actually be a non-monotonic function of trials, depending on 

item difficulty and relations among items being learned. From the standpoint of the retrieval 

difficulty hypothesis, the use of predetermined intervals may be less effective than flexible 

spacing arrangements that match current learning strength to spacing intervals.
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Adaptive Schedules of Practice

Ideal schedules of spacing for each item would be based on learning strength at particular 

times for each individual learner. How might we get ongoing measures of learning strength 

during a learning session? Adaptive learning methods have been proposed that determine 

recurrence of learning items based on accuracy (Atkinson, 1972; Pavlik & Anderson, 2008; 

Mozer, Pashler, Cepeda, Lindsey & Vul, 2009). However, spacing based on accuracy alone 

does not distinguish between easier and more difficult retrievals. Adaptive systems that 

estimate learning parameters for different items by carrying out a prior study with the 

learning materials and a similar group of learners (Atkinson, 1972; Pavlik & Anderson, 

2008) may capture some of the variations in learning strength, but do so by relying on binary 

accuracy information alone. A more direct method of tracking learning strength might be 

possible using an ongoing indicator of learning strength—one that might vary for different 

learners, items, and their interactions. Such a system could adjust spacing schedules in 

response to the ongoing behavior of each learner.

The ARTS system.

Evidence indicates that response time (RT) is a useful indicator of retrieval difficulty, and 

thus of an item’s current learning strength (Pyc & Rawson 2009; Benjamin & Bjork, 1996; 

Karpicke & Bauernschmidt, 2011). This relationship offers a useful way of updating spacing 

to track underlying learning strength: Adaptive methods can use an individual’s accuracy 

and RT performance data for learning items to dynamically schedule spacing intervals. 

Mettler, Massey, and Kellman (2011) showed that a system that determines spacing 

dynamically based on each learner’s accuracy and speed in interactive learning trials (the 

Adaptive Response-Time-based Sequencing or ARTS system) produced highly efficient 

learning and compared favorably with a classic adaptive learning system (Atkinson, 1972).

Unlike other adaptive systems that compute a model of memory strength for individual items 

(Atkinson, 1972) or a model of memory improvement per unit of practice time (Pavlik & 

Anderson, 2008), the ARTS algorithm does not model learning strength so much as attempt 

to read it directly through reaction time measures. ARTS uses a priority score system, in 

which the priority for an item to reappear on each learning trial is computed dynamically as 

a function of accuracy, response time, and trials since the last presentation. Priority scores 

for items can increase at different rates, and the item with the highest priority is always 

selected for presentation on the next trial. Therefore, priority scores represent competition 

for presentation rather than a direct model of learning strength.

Because all items compete for presentation on any trial through their priority scores, the 

system concurrently implements adaptive spacing for all learning items. As learning strength 

increases, as reflected in performance, delay intervals automatically expand in this system. 

Errors in accuracy or increases in RT can also cause the delay interval to contract. Also, in 

some previous implementations, the system enforces mastery criteria based on both accuracy 

and speed. Since it is expected that benefits to memory should be greatest when retrieval is 

difficult but also correct, performance during learning in terms of accuracy should stay high. 

Combined with the goal of improving speed of learners’ responses, ARTS thus enforces 

efficient learning in terms of memory gain per unit time (as in Pavlik & Anderson, 2008).
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Comparing Fixed vs. Adaptive Spacing

In the current studies, we compared an adaptive scheduling algorithm, ARTS, to fixed 

schedules of practice. We focused on several questions. First, do adaptive schedules of 

practice outperform fixed schedules (of either the equal spacing or expanding spacing 

types)? We tested this in Experiment 1 by directly comparing fixed and adaptive schedules. 

Second, if adaptive schedules are better, how are these benefits attained? In particular, can 

we uncover evidence indicating whether it is adaptation to individual learners versus 

adaptation relating to particular learning items that confers more benefit? We tested this 

question in Experiment 2 using methods designed to distinguish between these influences.

We know of no previous work comparing adaptive schedules to fixed schedules. The 

research literature on fixed schedules of spacing and the literature on adaptive learning have 

been largely distinct. Substantial work has explored scheduling based on adaptive techniques 

(Mozer, et al., 2009; Pavlik & Anderson, 2008; Wozniak & Gorzelanczyk, 1994), and a 

separate large literature addresses issues related to the scheduling of a few fixed trials of 

practice; however no prior study has attempted to compare fixed and adaptive schedules to 

assess the comparative benefits of each.1

Carrying out experimental research comparing fixed spacing and adaptive schemes raises 

some interesting collateral issues. Studies of adaptive learning and typical studies of item 

memory tend to have different structures, related to different goals. Perhaps the most 

important difference for present purposes is whether learning sessions have fixed or variable 

duration. In some adaptive systems, including ARTS, learning proceeds, not for a fixed 

number of trials or presentations, but to criteria of mastery. An important benefit of adaptive, 

interactive learning when applied to real-world learning situations is that each component of 

learning (e.g., each item in fact learning or each category in perceptual learning; Mettler & 

Kellman, 2014) can be tracked in terms of an individual learner’s performance, with each 

learner guided to objective mastery criteria (in ARTS, both accuracy and speed of response 

criteria). Components that have been mastered may be dropped out (retired) from the 

learning set, and the course of learning ends when each component has been mastered.

In contrast, studies of predetermined equal vs. expanding spacing intervals have almost all 

used a fixed number of item presentations, often 3 or 4. This approach provides better 

experimental control for condition comparisons, although it seldom results in mastery of all 

of the learning material in any condition (see Rawson & Dunlosky, 2011 for criticism of the 

reliance on fixed amounts of practice in studies of the spacing effect).

In the experiments described here, we adopted experimental protocols that resemble prior 

studies of spacing intervals in memory; specifically, each condition involved 4 presentations 

of an item in all cases. This approach provided comparability to earlier spacing work and 

1Techniques do not always agree on the goals of learning. Some techniques aim primarily to reduce the amount of total time spent 
practicing items, thus targeting the learning of items most likely to benefit from extra practice in the long term, but at a sacrifice to 
items deemed too difficult to learn quickly (Pavlik & Anderson, 2008). Other studies fix total time but prescribe differing numbers of 
presentations and differing durations of practice at each repetition (Lindsey, Shroyer, Pashler, & Mozer, 2014). Few adaptive schedules 
attempt explicitly to maximize the duration of spacing delays to optimize learning for each item, and we know of no other techniques 
that rely on ongoing measures of response speed during learning.
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allowed direct comparison of accuracy gains in learning across conditions, without having to 

factor in variable numbers of trials for individual learners to reach mastery criteria. One 

drawback of this approach is that adaptive learning schemes may have most value when 

learning to criterion is used. In fact, prior work with the ARTS system (e.g., Mettler et al, 

2011; Mettler & Kellman, 2014) raises the question of whether the advantages of adaptive 

learning are even manifest in the first several presentations of an item. In forthcoming work, 

we take up the comparison of fixed and adaptive spacing schedules when learning to 

criterion is used (Mettler, 2014).

Experiment 1

To compare adaptive and fixed spacing schedules, we used a geography learning task. 

Participants learned 24 country names and locations on a map of Africa. Each item was 

presented 4 times and all items were presented in a single session. The primary experimental 

manipulation was the method of determining spacing intervals between the 4 presentations 

of each item. There were 3 different types of delay schedule: The adaptive group of 

participants received items using the ARTS adaptive algorithm (see below), which 

dynamically spaces item presentation intervals based on real-time performance data. 

Another group of participants received a fixed schedule of practice where half of their 

learning items were scheduled according to an equal schedule of practice (5–5–5 intervening 

items) and the other half of their items were scheduled according to an expanding schedule 

of practice (1–5–9 intervening items). These particular fixed intervals were chosen from 

those commonly used in the literature on spacing schedules.

In the learning session, every presentation consisted of a test trial on which a participant was 

shown a map of Africa with national boundaries drawn in but without names (see Figure 1). 

One country was highlighted and the participant was asked to pick the correct name from a 

list of 38 country names. Participants were given accuracy feedback and, in the case of an 

incorrect response, they were shown the correct answer. Participants were given a pretest 

before the learning session and an immediate posttest immediately after the learning session. 

The pre and posttests were identical to training trials except that there was no feedback given 

after a response. Each country was tested once in pretest and once in posttest. Finally, 

participants returned for a delayed posttest after one week. The delayed posttest was 

identical to the immediate posttest. The order of test items was randomized for each test. If 

adaptive scheduling produces better learning than fixed scheduling, we expected that 

participants would perform better on measures of recall at both immediate and delayed 

posttests.

Planned Analyses

The primary dependent measures were accuracy and response times (RTs) across items. In 

addition to these performance measures, the actual spacings generated by adaptive 

scheduling were compared to those chosen for fixed schedules. This experiment also served 

as a baseline for determining the individual item intervals for Experiment 2 (adaptive 

sequencing vs. fixed yoked schedules).
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Method

Participants.—Participants were 72 undergraduate psychology students who received 

course credit for completing the experiment. The stopping rule for data collection in both 

experiments was when there were at least 16 participants in each condition, allowing for 

more if in a week cycle of participant pool signups there were more than 16. We decided to 

run twice as many participants in the fixed condition due to the within subject design, for a 

total of 36 participants in each condition.

Materials.—The learning materials consisted of 24 African countries that participants were 

required to identify on a map of Africa. 14 additional countries were used as ‘filler’ items in 

order to space presentations appropriately, especially at the end of learning sessions (see 

note on filler items in ‘Filler items and jitter in fixed schedules’). All material was presented 

on a computer within a web-based application. Participants saw a 500 pixel by 800 pixel 

map of Africa on the left side of the screen and a two-column list of African countries 

alphabetically organized by column then row (Figure 1). Each list label was a software 

button that could be independently selected using a computer mouse.

Design.—There were two between-subject conditions, adaptive spacing and fixed spacing. 

There were two within-subject fixed spacing conditions, fixed-equal spacing and fixed-
expanding spacing. In the fixed spacing conditions, one random half of learning items were 

assigned to the fixed-equal condition and the other half were assigned to the fixed-expanding 
spacing condition.

Adaptive Response-Time-based Sequencing (ARTS).: The ARTS sequencing algorithm 

calculated a priority score for each learning item, where, on any subsequent trial, priority 

scores were compared across items to determine the likelihood of an item being presented 

on that trial. Details of the priority score calculation are given in Equation 1 (and below) and 

parameters are given in the appendix (Table A.1)2.

Pi = a Ni − D b 1 − αi Log RT i/r + αiW (1)

Priority P for item i was determined as a function of the number of trials since that item was 

last presented Ni, an enforced delay D (a constant, which was set to 1 in the experiments 

here), and the accuracy (αi) and response time (RTi) on the previous presentation of that 

item. Accuracy (αi) was a binary variable determined by the correctness of the user’s 

response: 0 if the question was answered correctly, 1 otherwise. This binary accuracy 

variable acted as a switch activating either the error part of the equation (for an incorrect 

answer) or the RT part of the equation (for a correct answer). The rationale was that RTs for 

incorrect answers were not considered informative for spacing. An incorrectly answered 

item was given a large priority increment (W) that typically ensured re-presentation after a 

delay of one trial. Correctly answered items were assigned a priority score that was a log 

2Parameters were borrowed from prior work and loosely tuned using pilot data, to better match the format of 4 total presentations, 
which differed from prior work where learning proceeded to mastery criteria.
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function of RT (where the logarithm was used to weight small differences among RTs more 

heavily for shorter RTs than for longer ones). Item presentation on a given trial was always 

decided by choosing the item with the largest priority score (P) in the set. In addition, the 

introduction of new items was controlled by the assignment of default priority scores to all 

items, allowing for the introduction of new items once previously introduced items became 

better learned and had lower priority scores than the default. Parameters a, b, r, were 

weighting constants: a controlled the rapidity with which priority accumulated as a function 

of elapsed trials; b and r modulated the relation between RTs and spacing intervals.

Although priority score equations using response time and accuracy can take many forms, 

the parameters here were fixed and identical in both Experiment 1 and 2, and were also 

similar to those used in previously published research on item learning (Mettler, Massey & 

Kellman, 2011) and perceptual category learning (Mettler & Kellman, 2014). It is important 

to note that priority scores generated by Equation 1 are related to but do not directly reflect 

learning strength. Priority scores indicate the degree to which items need practice and will 

differ from accuracy and RT based measures of learning strength in certain situations. For 

instance, priority scores for incorrect responses reflect the importance of re-presentation of 

missed items rather than estimates of their learning strength. In addition, priority scores can 

go beyond the information available in an individual response, such as incorporating the 

effects of trial feedback on estimates of learning strength.

Taken together, the elements of the priority score equation given here implement a number 

of principles of learning that have been derived in memory research, including rapid 

recurrence of missed items; but enforcing at least some delay in re-presenting an item, in 

order to make sure the answer does not still reside in working memory; and stretching the 

retention or recurrence interval as learning strength, indicated by accuracy and RT, increases.

Procedure.—In all sessions of the experiment, learning items were presented singly, in the 

form of test trials. Participants were shown a map of Africa featuring an outlined country 

and were asked to select, from a list of labels containing country names, the name that 

matched the highlighted country. Participants used the computer mouse to select from the 

list of names.

Participants attended two sessions, separated by one week. In the first session, participants 

initially took a pretest on all items, then completed a training phase, followed by an 

immediate posttest. The entire session took no more than one hour for each participant. 

Pretests contained all 38 target and filler items, presented in random order. During the 

pretest, participants were not given feedback. The pretest was followed by a learning phase 

that consisted of the same type of trial as the pretest, except that participants were given 

feedback after each response showing the correctness of their response as well as a label 

indicating the correct answer. The learning phase took up the majority of the first session of 

the experiment. After every ten trials in the learning phase, participants received block 

feedback indicating their average response accuracy and average response speed for the 

previous block of 10 trials and every previous block up to 10 prior blocks. After the learning 

phase, an immediate posttest was administered, identical to that given in the pretest. After 

the posttest participants were instructed to return in one week and were asked not to study or 
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reflect on the information learned. A delayed posttest, identical to the immediate posttest, 

was administered after one week. No feedback was given on either posttest.

Spacing conditions.—Participants were randomly assigned to fixed or adaptive 

scheduling conditions, with 36 participants in each condition. In the adaptive condition, all 

learning trials were adaptively sequenced according to the response-time-based ARTS 

algorithm. In the fixed condition, one random half of each participant’s items were 

scheduled according to an equal spacing scheme, and the other random half were scheduled 

according to an expanding spacing scheme. Thus, in the fixed condition, every participant 

received two within-subject conditions that manipulated fixed scheduling in either an 

expanding or equal spacing scheme. This interleaving of conditions was done primarily to 

avoid the problem of excessive filler items in the expanding spacing condition.

In the fixed spacing group, spacing intervals between presentations were pre-determined and 

constant. Items in the fixed-equal condition received spacing of 5 trials between items. Items 

in the fixed-expanding condition received first 1, then 5, then 9 trials between presentations 

of each item. For every participant in the fixed condition, the order of presentation was pre-

set so that every participant received the same number and order of fixed equal or expanding 

trials. Items in the fixed condition did not strictly alternate between equal and expanding 

schedules, but every attempt was made to balance the number of equal and fixed schedules 

across position in the entire learning phase, so as not to confound serial position with 

schedule type. Although the order of presentation of items in the fixed condition was fixed, 

the assignment of individual items to either of the two schedule types was randomized for 

each participant. In addition, the order of introduction of individual items was shuffled 

across possible positions in the pre-set schedule for each participant before the learning 

phase began.

For every participant in the adaptive condition, the total schedule order was dynamically 

decided during the learning session, and the order of introduction of new items was chosen 

randomly from the remaining items in a learning set for each participant.

In all conditions in Experiment 1, each learning item was presented a total of four times.

Filler items and jitter in fixed schedules.—There are two problems that arise when 

applying the same fixed schedule of practice to every item in a learning sesession. First, the 

structure of fixed spacing intervals does not allow continuous presentation of items without 

conflicts in the intended interval schedule for each item. Imagine 4 items (labeled A through 

D) each presented first with a 1-trial interval, then a 3-trial interval. The layout of this 

presentation sequence would appear as follows: A, B, A, B, C, D, [A or C?]. The 7th 

presentation indicates a conflict between the first and third item. These conflicts appear most 

frequently with fixed-expanding schedules, and less frequently with fixed-equal schedules or 

with adaptive schedules. One solution to this type of conflict is to allow for a degree of 

“jitter” in any given fixed schedule. We added jitter to fixed schedules using a simple rule: 

Each set of 3 spacing intervals between the four presentations of an item in the fixed 
condition was allowed to deviate from its pre-set interval (e.g., 1–5–9) by one position, 

smaller or larger, at any interval except the first. For example, 1–6–9, 1–5–9, 1–5–10 would 
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all be valid “jittered” versions of the 1–5–9 expanding interval. In addition to jitter, conflicts 

were reduced naturally as a result of mixing expanding and equal fixed schedules.

A second problem with interleaving fixed schedules is that there are inevitably gaps, or trials 

where no item is scheduled to be presented. Filler items can be used to support the 

interleaving of items with fixed schedules while preventing gaps, and also to maintain 

appropriate spacing intervals at the end of a learning session, when no target learning items 

remain in the set. Filler items in the current study consisted of presentations of 14 additional 

countries, randomly selected whenever filler items were needed. Filler items were necessary 

in the fixed conditions and the adaptive presentation conditions; in both cases the final few 

presentations of items occur at larger and larger spacing intervals, requiring filler items when 

no new target items are available.

By combining expanding and equal schedule presentations into the same session, and by 

applying jitter as well as adding filler items, we were able to design a single fixed session 

that used limited filler items. Thus, filler items were utilized primarily to fill expanding 

schedules at the end of training and their use was equated across both adaptive and fixed 
conditions.

Sequencing parameters.—The default adaptive sequencing parameters are described in 

the Appendix, Table A.1. In this study, the default parameters were used for the adaptive 

algorithm, with some modifications. It was found in pilot testing that our default parameters 

were less effective when applied to a learning session limited by a total number of 

presentations per item, rather than a learning session where learners continue until meeting a 

learning criterion. The following parameters were changed to better support the current type 

of study : “RT weight,” r = 3.0; “enforced delay,” D = 1.

Results

The primary results of Experiment 1 are shown in Figure 2, which shows mean accuracy 

across phase. The adaptive condition showed higher accuracy than both fixed spacing 

conditions in the learning phase and also at delayed posttest, where fixed-equal and fixed-
expanding conditions showed similar performance. In the immediate posttest, the adaptive 
condition produced higher performance than fixed-equal, with fixed-expanding scores 

intermediate between the other two conditions.

These observations were confirmed by the analyses. At pretest, adaptive accuracies were 

highest (M = 0.076, SD = 0.27), followed by fixed expanding (M = 0.051, SD = 0.22) and 

fixed equal (M = 0.042, SD = 0.20). Comparisons between conditions showed a significant 

difference for adaptive vs. fixed equal (t(70) = 2.19, p = .032), but not for adaptive vs. fixed 
expanding (t(70) = 1.54, p = .13), or fixed equal vs. fixed expanding (t(35) = 0.73, p = .47). 

These differences indicate some pretest differences in performance across groups, despite 

random assignment of participants to conditions. Overall mean pretest scores (M = 0.056, 

SD = 0.072) were significantly different from chance responding (one sample t test: t(107) = 

4.13, p < .01), suggesting that some participants possessed some prior knowledge of some 

countries. (Chance responding would have been 1 correct item out of 38, or .026.) Because it 

is not clear whether pretest scores reflected random variation or modest systematic 
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differences between conditions, we considered in the analyses below both posttest 

accuracies as well as change scores between pretest and posttests.

Accuracy.—Performance results were not analyzed using a standard one-way ANOVA due 

to the special combination of between- and within-subjects factors. (Only the adaptive vs. 

fixed comparisons were between subjects.) Three ANOVAs were used, one for each 

comparison of pairs of conditions, with test-phase as a within subjects factor.

A 2×2 mixed factor ANOVA with factors of adaptive vs. fixed-equal conditions and posttest 

phase (immediate vs. delayed) found a significant main effect of condition (F(1,70) = 4.63, p 

= .035, ηp
2 = .062), a main effect of test phase (F(1,70) = 110.56, p < .001, ηp

2 = .612) and no 

interaction of test phase and condition (F(1,70) = 1.06, p = .31, ηp
2 = .015). These results 

indicate significantly higher accuracies in the posttests for the adaptive condition vs. the 

fixed-equal condition. For adaptive vs. fixed-expanding conditions, a 2×2 mixed factor 

ANOVA on condition and test phase found no significant main effect of condition (F(1,70) = 

2.37, p = .13, ηp
2 = .033), a significant main effect of test phase (F(1,70) = 147.0, p < .001, ηp

2

= .677), and a significant condition by test phase interaction (F(1,70) = 5.1, p = .027, ηp
2 = .

068). For the two fixed conditions, a 2×2 condition by posttest phase repeated measures 

ANOVA found a marginal main effect of condition (F(1,70) = 3.13, p = .081, ηp
2 = .043), a 

main effect of test phase (F(1,35) = 126, p < .001, ηp
2 = .783), and no condition by test phase 

interaction (F(1,70) = 1.18, p = .28, ηp
2 = .017). A Bartlett’s test confirmed homogeneity of 

variance for accuracies at both posttests (immediate: p = .64, delayed: p = .31).

At immediate posttest, average accuracies were highest for the adaptive condition (M = 0.61, 

SD = 0.21), lower for the fixed-expanding condition (M = 0.58, SD = 0.23), and lowest for 

the fixed-equal condition (M = 0.52, SD = 0.24). Individual comparisons showed that 

accuracies did not differ significantly at immediate posttest between the adaptive and fixed 
conditions (adaptive vs. fixed-equal: t(70) = 1.63, p = .11; adaptive vs. fixed-expanding: 

t(70) = 0.55, p = .58). A paired t test showed that the two within-subject fixed conditions 

differed significantly (t(35) = 2.15, p = .039, Cohen’s d = 0.24).

At delayed posttest, accuracies were highest in the adaptive condition (M = 0.42, SD = 

0.20), and lower for the two fixed conditions: fixed-expanding (M = 0.31, SD = 0.19) and 

fixed-equal (M = 0.30, SD = 0.24). Individual comparisons showed average accuracies for 

the adaptive condition were significantly greater than both of the fixed spacing conditions 

(adaptive vs. fixed-expanding: t(70) = 2.41, p = .019, Cohen’s d = 0.56; adaptive vs. fixed-
equal: t(70) = 2.38, p = .02, Cohen’s d = 0.57). A paired t test showed that the fixed-
expanding and fixed-equal spacing means were not significantly different from each other 

(t(35) = 0.45, p = .65).

Change and gain scores.—Because there were detectable differences between 

conditions at pretest, we examined posttest results in terms of scores that looked at posttest 

accuracy in relation to pretest scores. We computed two types of change score for each 
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participant, which we labeled change scores and gain scores. Change scores were computed 

by subtracting average pretest accuracies from average posttest accuracies.

Immediate posttest change scores were computed by subtracting a participant’s average 

pretest accuracy from their average posttest accuracy, and delayed posttest change scores 

were computed by subtracting average pretest accuracy from average delayed posttest 

accuracy. Posttest and delayed posttest change scores are shown in Figure 3.

The ANOVAs conducted on change scores were parallel to those carried out for accuracy 

scores above. For adaptive vs. fixed-expanding, a 2×2 mixed factor ANOVA on condition 

and test phase found no main effect of condition (F(1,70) = 1.21, p = .28, ηp
2 = .017), a main 

effect of test phase (F(1,70) = 147.13, p < .001, ηp
2 = .678), and a significant condition by 

test phase interaction (F(1,70) = 5.03, p = .028, ηp
2 = .067). For adaptive vs. fixed-equal 

spacing, there was no significant main effect of condition (F(1,70) = 2.37, p = .13, ηp
2 = .

032), a main effect of test phase (F(1,70) = 110.68, p < .001, ηp
2 = .613), and no significant 

condition by test phase interaction (F(1,70) = 1.03, p = .31, ηp
2 = .015). For fixed-expanding 

vs. fixed-equal spacing, there was no main effect of condition (F(1,70) = 1.29, p = .26, ηp
2 = .

018), a main effect of test phase (F(1,35) = 126, p < .001, ηp
2 = .783), and no significant 

condition by test phase interaction (F(1,70) = 0.88, p = .35, ηp
2 = .012).

Individual comparisons at immediate test showed that change scores were similar for all 

schedules and did not differ significantly (adaptive vs. fixed-equal: t(70) = 1.03, p = .30, 

Cohen’s d = 0.02; adaptive vs. fixed-expanding: t(70) = 0.076, p = .94, Cohen’s d = 0.25; 

paired t test between fixed-equal and fixed-expanding conditions: t(35) = 1.58, p = .12, 

Cohen’s d = 0.22). At delayed-test, change scores appeared to be higher in the adaptive 
condition (M = 0.35, SD = 0.18) than in either the fixed-equal condition (M = 0.25, SD = 

0.24) or the fixed-expanding condition (M = 0.26, SD = 0.17). There was a significant 

difference between the adaptive and fixed-expanding condition (t(70) = 2.11, p = .04, 

Cohen’s d = 0.50) and a marginally significant difference between the adaptive and fixed-
equal condition (t(70) = 1.81, p = .07, Cohen’s d = 0.43). A paired t test between the two 

fixed conditions showed no significant difference (fixed-equal vs. fixed-expanding: t(35) = 

0.13, p = .90, Cohen’s d = 0.02).

In addition to change scores, we computed gain scores by subtracting pretest scores from 

posttest scores, but did not include items that were accurate at pretest but inaccurate at 

posttest. Gain scores were computed to address the possibility that differences in pretest 

scores were primarily due to chance. Gain scores showed similar results to change scores, 

with the following differences: an ANOVA found a marginally significant main effect of 

condition between adaptive and fixed-equal conditions (p=0.08) and t-tests at delayed 

posttest showed significant differences between adaptive and both fixed conditions (adaptive 
vs. fixed-equal, p=0.03; adaptive vs. fixed-expanding, p=0.02).
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Response times.—Average response times (RTs) are shown in Figure 4 for each 

condition and for three experimental phases: the learning phase, immediate posttest and 

delayed posttest. RT data only include RTs from trials that were answered correctly. Pretests 

are ignored owing to the few items that were answered correctly in that phase. Of most 

interest were RTs at training and at immediate and delayed posttests.

ANOVAs were not carried out on RTs, due to missing data for 4 participants who answered 

no items correctly at either immediate or delayed posttest3. During training, adaptive RTs 

were lowest (M = 4.04 sec, SD = 0.99) followed by fixed-equal (M = 4.59, SD = 1.34), then 

fixed-expanding (M = 4.61, SD = 1.4). Individual comparisons showed that the difference 

between the adaptive and the two fixed conditions was marginally significant (adaptive vs. 

fixed-expanding: t(70) = 1.97, p = .052, Cohen’s d = 0.47; adaptive vs. fixed-equal: t(70) = 

1.97, p = .053, Cohen’s d = 0.47), but a paired t test between the two fixed conditions 

showed no significant difference (t(35) = 0.11, p = .9, Cohen’s d = 0.012). At immediate 

posttest, t tests between conditions showed no significant difference between adaptive and 

the two fixed conditions (adaptive vs. fixed-expanding: t(69) = 0.07, p = .94, Cohen’s d = 

0.02; adaptive vs. fixed-equal: t(70) = 1.46, p = .15, Cohen’s d = 0.35) and a paired t test 

between the two fixed conditions showed no significant difference (t(34) = 1.39, p = .17, 

Cohen’s d = 0.43). At the delayed posttest there was a significant difference between the 

adaptive and fixed-expanding conditions (t(69) = 2.3, p = .02, Cohen’s d = 0.64), but other 

RTs were not significantly different from one another (adaptive vs. fixed-equal: t(66) = 1.31, 

p = .19, Cohen’s d = 0.36; fixed-equal vs. fixed-expanding: t(30) = 1.48, p = .15, Cohen’s d 
= 0.166). Comparing RTs across posttest phases, only the difference between the fixed-
expanding condition at posttest vs. delayed posttest was significant (t(33) = 2.8, p = .008; all 

other ps > .70).

We also examined the RTs at each presentation in learning across the three schedules. 

Response times during the learning phase are shown in Figure 5 by scheduling condition and 

presentation number.

Examination of response times revealed that conditions did not differ in response times at 

the first, third, or fourth presentation: only the two fixed conditions differed (fixed-equal vs. 

fixed-expanding: t(13) = 3, p = .01; all other t test ps > .05). Other conditions showed 

differences at the second presentation. There were significant differences between the 

adaptive and fixed conditions (adaptive vs. fixed-expanding: t(70) = 2.59, p = .01; adaptive 
vs. fixed-equal: t(69) = 3.64, p < .001) but not between the two fixed conditions (t(34) = 

1.06, p = .29, paired t test).

Analyses of average spacing intervals.—We define the spacing interval (or 

shorthand, interval) as the number of trials intervening between two presentations of the 

same learning item. Adaptive and fixed conditions differed in the size of spacing intervals 

for individual items during learning sessions. The mean spacing interval per learner was 

calculated by averaging the mean presentation interval for each item and averaging over all 

3We considered these data missing not at random (MNAR) (see Howell (2007)); however we conducted t tests in an effort to further 
explore the data.

Mettler et al. Page 14

J Exp Psychol Gen. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



items. In the fixed-equal and fixed-expanding conditions, the intervals chosen in the 

experiment (1–5–9 and 5–5–5) ensured that mean intervals were always 5 trials in length. 

Average adaptive schedule intervals were close in length but with some variance (M = 6.7, 

SD = 2.033)4. We also looked at the size of intervals conditional on whether the presentation 

before the interval was responded to correctly or not. The mean interval size by scheduling 

condition and conditional on response accuracy are shown in Figure 6. Although the mean 

adaptive interval size was similar to the mean interval size for fixed schedules, adaptive 

spacing intervals after incorrect responses were short (M = 1.01, SD = 0.09) owing to the 

enforced delay mechanism, and they were longer following correct responses (M = 10.88, 

SD = 6.50).

Finally, we examined the average spacing intervals at each presentation number for the 

adaptive condition. Because each item was presented 4 times, there were three spacing 

intervals. The mean sizes of the three intervals in the adaptive condition are shown in Figure 

7. The mean initial interval was the smallest (M = 1.62, SD = 0.71), the second interval 

largest (M = 10.95, SD = 4.46), and the third interval smaller than the second interval (M = 

7.52, SD = 2.20).

While it appears that the pattern of retrievals was not expanding, but expanding-then-

contracting, in fact, a line of best fit to these points still yields a positive slope. There were 

also 4 adaptive participants who showed strictly expanding profiles, positively increasing 

interval sizes at each presentation.

Discussion

As demonstrated by a variety of measures, an adaptive sequencing algorithm outperformed 

pre-determined schedules of practice. These patterns were clear in posttest accuracy as well 

as two derived measures of accuracy that discounted prior knowledge from measures of 

learning. Change scores were computed by subtracting pretest accuracy from posttest 

accuracy for each participant, and gain scores were computed by subtracting from posttest 

accuracy only those items that were known at both pretest and posttest. Both measures 

showed significant differences in learning across scheduling conditions. Change scores 

showed that learners experienced significantly greater learning in the adaptive condition than 

in the fixed-equal condition. Gain scores showed significantly stronger gains in the adaptive 
condition than in either of the fixed scheduling conditions. In addition, these improvements 

were present with medium to large effect sizes, and gains were retained across a 

considerable delay (1 week), suggesting that adaptive scheduling techniques produce greater 

and more durable learning.

In addition to learning gains measured by accuracy, there was a trend for greater fluency 

(faster responding) for participants who learned using an adaptive scheduling algorithm than 

for participants who learned using fixed-expanding schedules of practice. Our expectations 

for RT differences between conditions were consistent with these trends. Since ARTS 

generates larger spacing delays when responses are faster, it was hoped that responses would 

4Across items, in the fixed conditions there was also minor variation in spacing interval size due to the use of ‘jitter’ as described 
above in the Method section.

Mettler et al. Page 15

J Exp Psychol Gen. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



become faster, and thus spacing delays longer, over time. It appears that adaptive scheduling 

may produce better fluency, an important learning goal that relates not only to the durability 

of learning but the ability to use learned information or skills in complex tasks (Kellman & 

Garrigan, 2009).

These results are consistent with mechanisms that have been proposed to explain the benefits 

of spacing in learning. Retrieval difficulty, a major driver of spacing effects, may depend on 

underlying learning strength, an internal variable that is likely to vary from trial to trial, 

between individuals, and among learning items. Study-phase retrieval accounts of the 

spacing effect posit that retrieval difficulty depends on access to representations of prior 

practice, the memorability of initial presentations, or the ease of recognition of items (see 

Benjamin & Tullis, 2010; Delaney, Verkoeijen & Spirgel, 2010; or Johnston & Uhl, 1976). 

Given that the determinants of retrieval difficulty may be numerous, pre-determined 

intervals of spacing, even when based on elaborate cognitive models, are likely unable to 

consistently match the requirements of optimal practice. Fluctuations in learning strength, in 

the ability to access previous memory traces, or in the difficulty of item recognition or recall 

may preclude consistent, predictable levels of retrieval difficulty.

The ARTS system used here adds RT to accuracy as an ongoing measure of learning 

strength for each learning item, specific to each learner, at each point in learning at which 

the next spacing interval needs to be determined. Though RTs may have other determinants 

– such as lapses in attention – RTs are at least a reasonable proxy for learning strength; a 

connection supported by other research (Pyc & Rawson, 2009). Relative differences in RTs 

can reflect changes that occur in learning strength of individual items as learning progresses 

and can be used to optimize spacing for each item. The advantages of adaptive spacing in the 

current study further confirms that response times can serve as useful measures of learning 

strength (Benjamin & Bjork, 1996; Pyc & Rawson 2009; Karpicke & Bauernschmidt, 2011) 

and potentially of fluctuations in the characteristics of item retrieval during the study-phase, 

such as item recognition, or changes in context (Mozer et al., 2009; Raaijmakers, 2003). It is 

also possible that ARTS is sensitive to the combined effect of learning strength and study-

phase retrieval characteristics. More of these distinctions could be explored in future 

research.

These results are among the first to show that adaptive learning systems, specifically the 

ARTS system, are capable of producing learning gains under circumstances similar to that of 

standard memory studies. Learning with a preset, total number of presentations (3 or 4 in 

many memory studies) is not comparable to most real-world learning situations. It provides 

learners with few chances to retain knowledge, and usually results in learning gains that are 

far from what would be sufficient for real learners to achieve mastery in a real learning 

domain. We chose to study adaptive spacing under these conditions for reasons that have 

motivated their use by many researchers: experimental control and comparability to other 

studies. Doing so allows the present data to help bridge two research literatures—studies of 

spacing schedules on one hand and adaptive learning on the other. At the same time, it is 

possible that an adaptive system designed to individualize learning and bring each learner to 

objective mastery criteria for each item (e.g., Mettler, Massey, & Kellman, 2011; Mettler & 

Kellman, 2014) would not show its full effects under these conditions. Despite the limitation 
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of four total presentations per item, differences between adaptive and fixed conditions were 

evident in a learning session. In addition to demonstrable learning gains, differences 

persisted across a delay, speaking to the effectiveness of adaptive strategies to promote 

durable learning even without learning to criterion.

Connections with prior research.

Initial spacing intervals.: Unlike some prior research, we found evidence that initial 

intervals in a spacing schedule are not powerful enough to dictate long-term learning 

outcomes for any particular schedule. In our experiment, items in the adaptive condition 

received an “enforced delay” of one trial whenever items were answered incorrectly (c.f. 

Pavlik & Anderson, 2008, who used an enforced delay of two trials). Thus, the vast majority 

of initial intervals in the adaptive condition possessed a 1-trial spacing interval (due to most 

items being responded to incorrectly on the initial trial). This 1-trial delay was equivalent to 

the 1-trial delay in the fixed-expanding condition (where the delay applied to all items 

regardless of response). Nevertheless, performance at a delayed test was still greater in the 

adaptive condition than in the fixed-expanding condition. This differential degree of learning 

despite a rough equivalence of initial intervals suggests that short initial intervals do not 

convey as much power to learning as other features of spacing—specifically, the pattern of 

spacing intervals after the initial interval. While this result is contrary to the claims of some 

research (Karpicke & Roediger, 2007), we do not think it necessarily diminishes those prior 

researchers’ conclusions as applied to fixed schedules of practice. However, it is not clear 

whether those conclusions also apply to adaptive schedules of practice. Initial intervals of 

practice remain an important and potentially potent locus of scheduling consideration in 

many different scheduling schemes, including adaptive ones.

Expanding vs. equal spacing.: The fixed spacing intervals tested here did not show 

consistent learning advantages for expanding spaced practice over equal spaced practice. 

This finding is similar to some results in the spaced practice literature and different from 

others. However, the advantages of adaptive spacing shown here are consistent with the 

hypothesis that there is no simple, general answer to the question of whether fixed or 

expanding spacing is superior. Optimal spacing intervals may vary with learning items, 

overall difficulty of learning material, and learners. They may fluctuate differently for 

different learners for each specific item during the course of learning. Optimal spacing 

would seem to require adaptive systems that can assess learning strength in a specific and 

ongoing manner.

In this experiment, fixed schedules appeared to be somewhat equally suboptimal in their 

ability to respond to fluctuations in learning strength. Despite the similarity in learning 

outcomes across fixed schedules, we found that the patterns of spacing intervals generated in 

adaptive schedules tended to increase in size during learning (although spacing sometimes 

flattened out or contracted across later presentations). As we found a general trend toward 

expanding patterns in the adaptive condition, and as fixed-expanding schedules resulted in 

greater raw accuracy at immediate posttest, our results do not contradict the idea that 

expanding retrieval practice is often an effective arrangement for learning. We investigate 

this issue further in Experiment 2.
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Limitations of this experiment.: There are limitations in interpreting the current results. 

Spacing intervals were slightly longer on average in the adaptive case; perhaps greater 

spacing alone led to greater learning benefits in the adaptive condition. While possible, this 

theoretical concern points out the practical limitations of fixed spacing intervals and the 

advantages of adaptive schedules. Without prior knowledge of the ideal spacing, it is 

impossible to choose optimal intervals before the start of learning. Investigating the issue of 

whether average spacing intervals were responsible for the effects seen in Experiment 1 was 

one of the goals of Experiment 2, in which spacing interval sizes were equated across fixed 

and adaptive conditions.

Experiment 2: Adaptive Sequencing vs. Yoked-Adaptive Fixed Spacing

Experiment 1 provided clear evidence that adaptive sequencing produces better learning than 

some common fixed spacing schedules that have been shown to benefit learning in prior 

research. In Experiment 2, we attempted to determine the locus of learning effects in 

adaptive schedules. To do this, we compared adaptive schedules with new, specially devised 

fixed schedules that were matched to have patterns of spacing intervals similar to those 

generated by adaptive schedules.

What drives the benefits of adaptive scheduling? We have suggested that the power of 

adaptive intervals rests on adaptation to ongoing learning strength. If so, there are at least 

two possible sources of this advantage – adaptation to individual items and adaptation to 

individual learners. In order to assess each of these influences, we compared adaptive 

learning to two new kinds of fixed schedules. These fixed ‘yoked’ schedules had spacing 

intervals that were identical to those participants had generated using adaptive schedules in 

Experiment 1.

Yoking fixed schedules to adaptive schedules was accomplished in the following way: A 

participant in a “yoked” condition received the same schedule of spacing intervals that a 

prior participant in an adaptive condition had received. Yoked schedules were predetermined 

(fixed) and had no relation to participants’ ongoing pattern of performance during learning. 

One of the yoked conditions (the yoked-item condition) was designed to preserve spacing 

intervals that were found for individual items. In this condition, a learner received the same 

schedule of intervals that a prior adaptive participant had received. Each item was presented 

in the same order, and the pattern of intervals given to each item was retained. To give a 

concrete example, if a prior adaptive learner had received the country “Angola” with a 1–5–

15 series of intervals, with the first appearance of Angola occurring on trial 12, a yoked-item 
user would get Angola at the same point in their learning session with the same spacing 

intervals.

In the other yoked condition (the yoked-random condition), a learner received the same 

schedule of spacing intervals that a prior participant received, but items were shuffled across 

the pre-specified schedule of spacing intervals. If a prior adaptive learner had received 

Angola as described above, a yoked-random learner would receive the same series of 

spacing intervals (1–5–15), beginning with the same trial number for initial appearance, but 

for a different item (e.g., “Botswana”). 5
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The yoking manipulations served multiple purposes. First, if the advantages of adaptive 

learning found in Experiment 1 resulted merely from the distributions of spacing intervals 

that occurred in the adaptive condition, or interleaving or variability of retrieval contexts that 

occurred from adaptive spacing, we would expect that those advantages would be fully 

preserved in both yoked conditions. If, on the other hand, adaptive scheduling is responsive 

to learning strength for particular learners and items, simply duplicating the kinds of 

intervals produced by adaptive spacing for other users should not produce learning results at 

the level given by individualized adaptive learning. The yoked-random condition tests this 

possibility, as it uses spacing intervals characteristic of performance with the adaptive 

algorithm but not based on the current participant’s responses.

The yoked-item condition tests the possibility that beneficial spacing can be predicted to 

some degree, across learners, by variations in individual learning items. It is possible that the 

advantages evident with adaptive sequencing in Experiment 1 occurred because some items 

are in general more difficult than others, and the adaptive algorithm detected this from 

learners’ performance. If so, the “magic” of adaptive sequencing might reside in adjusting 

spacing to fit item difficulty. This possibility would have potential practical consequences: 

adaptive systems that track individual responses and adjust spacing dynamically might not 

be needed if item difficulties are similar across learners and can be somehow determined in 

advance. If, on the other hand, learning strengths differ as a function of interactions of 

individual learners and items, then we would expect that replicating the item spacings from 

previous participants would not be as effective as adaptive scheduling.

Method

Participants.—The participants were 48 undergraduate psychology students who received 

course credit for completing the experiment. The stopping rule for data collection was when 

there were at least 16 participants in each condition, allowing for more if in a week cycle of 

participant pool signups there were more than 16.

Materials.—The learning materials were identical to Experiment 1—that is, 24 African 

countries as well as filler items.

Design.—Experiment 2 retained the pretest, posttest, delayed posttest design of 

Experiment 1. There were three between-subject conditions (16 participants per condition): 

learning items were presented to participants in either an adaptive schedule (identical to 

Experiment 1), or in one of two “yoked” fixed schedules. Each participant in the fixed 

conditions was assigned a single adaptive yoked “target” participant, usually the participant 

who had last run in the adaptive condition. An adaptive participant was run first, followed by 

two fixed participants. Participants were thus effectively randomly assigned to condition. In 

every condition during the learning phase, each learning item was presented a total of four 

times.

5Another variation would involve averaging across all item delays for participants in an adaptive condition and yoking new 
participants’ delays to these averages. Of many possible variations along these lines we chose direct yoking because of the power it 
gave us in generating subconditions that examine aspects of item vs. learner differences in learning.
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Yoking conditions.—For participants in the adaptive condition, scheduling of item 

presentation was dynamically determined by the ARTS system, as in Experiment 1. For 

participants in both yoked conditions, items were presented on a fixed, pre-set schedule. 

Each participant’s schedule was based on a prior adaptive participant’s trial record. In the 

yoked-item condition, the trial record was simply copied, so that a new yoked participant 

received a duplicate version of the trial record of the prior adaptive participant including the 

order of introduction of items, the size of the spacing intervals delivered to items, and the 

number and schedule of filler items. In the yoked-random condition, the trial record of the 

previous adaptive participant was retained but the mapping of items to sets of spacing 

intervals was shuffled, so that new yoked participants received for each item the same 

sequence of spacing intervals that an earlier participant had generated adaptively, but the 

specific item was different. For example, if a prior participant in the adaptive scheduling 

condition received three spacing intervals of 2–4–10 for the item “Angola,” a participant in 

the yoked-item condition would get the same item, at the same point in the learning session 

with the same intervals; whereas a participant in the yoked-random condition would receive 

the same series of intervals but for a different item (e.g., “Botswana”). For both yoked 
conditions, then, every series of spacing intervals (e.g., 2–4–10) occupied the same serial 

position in the learning session as had been generated by a prior adaptive learner, but for the 

yoked-random group, items were shuffled across the pre-set series of intervals. The yoking 

design, as noted above, aimed to have each participant in a yoked condition copy a unique 

adaptive participant’s trial schedule. However due to instances of errors with participant 

login to the system, 4 participants in the yoked-random condition shared 2 yoked schedules, 

and 2 participants in the yoked-item condition shared the same yoked schedule.

Procedure.—The order of the pretest, learning phase, posttest and delayed posttests were 

identical to Experiment 1. Trial presentations were identical to Experiment 1.

Results

The primary results of Experiment 2 are shown in Figure 8, which depicts mean accuracy by 

condition in all phases of the experiment. The adaptive condition showed higher accuracy 

than both yoked conditions in the learning phase, immediate posttest, and delayed posttest. 

There appears to be a trend for the yoked-item condition to outperform the yoked-random 
condition in the learning phase and in both posttests.

These observations were confirmed by the analyses.

Pretest scores.—Mean accuracies did not differ significantly at prestest as shown by a a 

one-way ANOVA with condition as the between-subjects factor (F(2,45) = 1.23, p = .30, ηp
2

= .052). Mean pretest scores (M = 0.053, SD = 0.061) did differ significantly from chance 

responding (one sample t test: t(47) = 2.88, p < .01), suggesting that some participants 

possessed prior knowledge of some countries. As a result, we computed change and gain 

scores between pretest and posttest in addition to comparing average accuracies.

Posttest accuracy.—Accuracy data were analyzed by a 3×2 mixed factor ANOVA with 

condition (adaptive vs. yoked-random vs. yoked-item) as a between-subjects factor and test 
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phase (immediate vs. delayed posttest) as a within-subjects factor. There was a significant 

main effect of condition (F(2,45) = 3.3, p = .046, ηp
2  = .128), a significant main effect of test 

phase (F(1,45) = 77.09, p < .001, ηp
2  = .631), and no condition by test phase interaction 

(F(2,45) = 0.36, p = .7, ηp
2  = .016). A Bartlett’s test confirmed homogeneity of variance for 

accuracies at both posttests (immediate: p = .80, delayed: p = .19). At the immediate 

posttest, average accuracies were highest for the adaptive condition (M = 0.63, SD = 0.22), 

lower for the yoked-item condition (M = 0.49, SD = 0.19), and lowest for the yoked-random 
condition (M = 0.46, SD = 0.23). Comparing means at the immediate posttest, t tests showed 

average accuracies for the adaptive condition were significantly greater than the yoked-
random condition (t(30) = 2.24, p = .032, Cohen’s d = 0.80) and adaptive spacing marginally 

exceeded the yoked-item condition (t(30) = 1.94, p = .062, Cohen’s d = 0.69). The two 

yoked conditions did not differ significantly from one another (t(30) = 0.49, p = .63, 

Cohen’s d = 0.17). Accuracies at the delayed posttest were highest in the adaptive condition 

(M = 0.42, SD = 0.22), lower for the yoked-item condition (M = 0.326, SD = 0.144) and 

lowest for the yoked-random condition (M = 0.26, SD = 0.22). Similar to the immediate 

posttest, at the delayed posttest, average accuracies for the adaptive spacing condition were 

significantly greater than the yoked-random condition (t(30) = 2.09, p = .045, Cohen’s d = 

0.74), but did not significantly exceed the yoked-item condition (t(30) = 1.45, p = .16, 

Cohen’s d = 0.53). The two yoked conditions did not differ (t(30) = 1.03, p = .31, Cohen’s d 
= 0.37).

Change and gain scores.—Since there was measurable prior knowledge, we examined 

posttest results in terms of change scores computed between pretest and posttests. We 

computed the same two types of change scores as in Experiment 1: change scores and gain 

scores. Change scores were computed by subtracting average pretest accuracies from 

average posttest accuracies. Gain scores were computed by subtracting pretest scores from 

posttest scores, ignoring items that were accurate at pretest and inaccurate at posttest.

Immediate posttest change scores and delayed posttest change scores are shown Figure 9.

A 3×2 mixed factor ANOVA on condition and test phase revealed a significant main effect 

of condition (F(2,45) = 3.64, p = .034, ηp
2 = .139), a significant main effect of test phase 

(F(1,45) = 77.09, p < .001, ηp
2 = .631), and no condition by test phase interaction (F(2,45) = 

0.36, p = .7, ηp
2 = .016). Change scores at immediate posttest were highest in the adaptive 

condition (M = 0.57, SD = 0.20), lowest in the yoked-random condition (M = 0.42, SD = 

0.20) and nearly as low in the yoked-item condition (M = 0.42, SD = 0.18). Comparing 

means, t tests were significantly different between the adaptive and both of the two yoked 
conditions (adaptive vs. yoked-item: t(30) = 2.09, p = .045, Cohen’s d = 0.74; adaptive vs. 

yoked-random: t(30) = 2.14, p = .04, Cohen’s d = 0.76) but the two yoked conditions did not 

differ significantly (t(30) = 0.12, p = .91, Cohen’s d = 0.04). Delayed posttest change scores 

were lower but similar: average scores were highest in the adaptive condition (M = 0.35, SD 
= 0.17), lowest in the yoked-random condition (M = 0.22, SD = 0.17) and nearly as low in 

the yoked-item condition (M = 0.26, SD = 0.13). Comparing means, t tests showed 
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significant differences between the adaptive and the yoked-random conditions (t(30) = 2.23, 

p = .033, Cohen’s d = 0.78), and a marginally significant difference between adaptive and 

yoked-item (t(30) = 1.79, p = .08, Cohen’s d = 0.63). The difference between the two yoked 
conditions was not significant (t(30) = 0.71, p = .48, Cohen’s d = 0.25).

In addition to change scores, we also computed gain scores. Pretest scores were subtracted 

from posttest scores, excluding items that were accurate at both posttest and pretest. Gain 

score results were different from change score results in the following ways: the paired 

comparisons between adaptive and the two yoked conditions at immediate posttest were 

only marginally significant (adaptive vs. yoked-random: p=.057; adaptive vs. yoked-item: 

p=.058), and the paired comparison at delayed posttest between adaptive and yoked-item 
conditions was not significant (p=.12).

Response times.—Mean response times (RTs) are shown in Figure 10 for each condition 

and each experimental phase except pretests. (Pretest RTs are ignored owing to the few 

items that were answered correctly in that phase). RT data include only RTs from trials on 

which correct answers were given.

In the learning phase, a one-way ANOVA showed no significant differences between 

conditions (p > .18). A 3×2 ANOVA with scheduling condition and posttest phases as 

factors found no significant effect of condition (F(2,45) = 0.26, p = .77, ηp
2 = .011), no effect 

of test phase (F(1,45) = 1.12, p = .29, ηp
2 = .024), and no interaction of scheduling condition 

with posttest phase (F(2,45) = 0.03, p = .97, ηp
2 = .001). Individual comparisons showed that 

RTs at each phase were not significantly different from one another (all ps >.05). Comparing 

RTs across posttest phases, no conditions showed significantly different RTs across the two 

posttests (all ps >.05).

Analyses of spacing intervals.—Adaptive and yoked conditions differed only slightly 

in the size of spacing intervals delivered to individual items during the learning session. The 

mean spacing interval per learner was calculated by averaging the mean spacing intervals for 

every item for that learner and averaging over items. Mean adaptive spacing intervals were 

close in length to the adaptive condition in Experiment 1 (adaptive: M = 6.77, SD = 1.46, 

yoked-random: M = 6.81, SD = 1.40, yoked-item: M = 6.89, SD = 1.43). We also looked at 

the size of spacing intervals conditional on whether the presentation before the spacing 

interval was responded to correctly in order to distinguish the sizes of adaptive vs. enforced 

delay spacing intervals. Mean spacing intervals by presentation are shown in Figure 11.

As in Experiment 1, the conditional values revealed that adaptive spacing interval sizes were 

bimodal: larger for correct responses (M = 10.92, SD = 5.04) and smaller for incorrect ones 

(M = 1.0, SD = 0.0).

Finally we examined the average spacing interval at each presentation number for the 

adaptive condition to see if interval sizes corresponded to those generated in Experiment 1. 

Figure 12 shows mean sizes of spacing intervals in the adaptive condition as similar to Expt. 

1: mean initial interval was the smallest (M = 1.67, SD = 0.98), the second interval largest 
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(M = 10.42, SD = 2.12), and the third interval smaller than the second interval (M = 8.22, 

SD = 1.82).

Discussion

In Experiment 2 adaptive scheduling led to larger learning improvements than fixed 

schedules at both an immediate and delayed posttest. Adaptive schedules performed better 

despite the fact that the fixed schedules in this study possessed highly similar spacing 

intervals to adaptive schedules. These fixed schedules were “yoked” to mimic the spacing 

interval characteristics of schedules generated by an adaptive algorithm. In the yoked-item 
condition intervals were tuned to individual items: Participants received the exact schedule 

that a prior adaptive participant received, where spacing intervals associated with each item 

were exactly duplicated. In the yoked-random condition, intervals were not attached to 

individual items: participants received a prior adaptive schedule but items were introduced in 

a random order so that each item received the schedule of intervals appropriate for some 

different item. This schedule tested for effects of the distribution of spacing intervals overall, 

apart from specific effects of particular items.

Adaptive scheduling showed significantly greater learning as measured by change scores 

between pretest and posttest than both yoked conditions at an immediate posttest. Adaptive 

scheduling also significantly outperformed the yoked-random condition, both in terms of 

greater learning accuracy at both posttests, and in terms of change-scores and gain scores at 

a delayed test. There were several marginal effects of adaptive over both yoked-item and 

yoked-random conditions: gain scores were marginally better at immediate posttest, and 

accuracies were marginally better at delayed posttest for the adaptive condition than the 

yoked-item condition, and in all cases, yoked-item performance trended numerically lower 

than performance in the adaptive condition. Even the weakest statistical (marginally 

significant) comparisons between adaptive and the fixed conditions showed effect sizes 

from .57 to .70; these are considered medium to large effect sizes.

In no case, neither at immediate nor delayed posttest, nor for any measure of performance, 

did the two yoked conditions differ significantly from each another. The numerical 

advantage in the yoked-item condition over the yoked-random condition may suggest that 

tuning intervals to the spacing requirements of individual items could be of some value in 

generating a predetermined schedule. However, the present results suggest that such 

schedules perform more poorly than adaptive schedules, indicating that knowledge of item 

difficulty is not the primary driver of gains in adaptive scheduling.

These results echo and extend the results of Experiment 1. Learning is better when spacing 

intervals are a function of ongoing learner performance. The results support the hypothesis 

that optimizing spacing requires attunement to learning strength, which varies for learners 

and items in a dynamic way. Since there is no way to predict the pattern of learning strength 

changes for items for a new learner, adaptive spacing offers the only avenue toward 

optimizing spacing intervals for sets of items across a learning session.
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General Discussion

The spacing effect is a powerful driver of human learning. It is also a major focus of 

research, with 7250 entries appearing on Google Scholar and 4010 entries between 2005 and 

2015. A significant portion of work on this effect has been aimed at determining what 

spacing schedules promote the best learning. Most of that work, and most explicit 

implementations of spacing in learning applications, have utilized fixed arrangements of 

spacing intervals.

The present work provides evidence that fixed intervals of spacing, in general, cannot be 

optimal. Experiment 1 showed that adaptive spacing based on ongoing assessment of 

learning strength for individual items and learners outperforms typical fixed spacing 

schedules. Experiment 2 probed more deeply the reasons for the advantages of adaptive 

spacing. Even when overall properties of spacing distributions were matched across adaptive 
and yoked fixed conditions, the adaptive condition produced better learning outcomes. This 

experiment also revealed that the advantages of adaptive spacing cannot be captured in a 

fixed, predetermined schedule based on data about the differential difficulty of various 

learning items: The yoked-item condition of Experiment 2 preserved spacing characteristics 

for individual items that adaptive learners had produced. These did indeed vary somewhat 

across items, but replicating those differences with new learners did not produce learning 

outcomes comparable to those obtained with an adaptive system that used response times to 

track learning strength for particular learners and items.

These results cohere with an emerging account of spacing effects. Although spacing likely 

benefits learning for multiple reasons, the explanation that may be most relevant for 

determining the optimal recurrence interval for a learning item (or category; see Mettler & 

Kellman, 2014) involves the importance of retrieval difficulty and its relation to learning 

strength. A new learning trial confers optimal benefit for learning a given item when that 

item can be retrieved with greatest difficulty but has not yet been forgotten (Pyc & Rawson, 

2009; Bjork & Bjork, 1992). The difficulty of retrieving an item will generally increase with 

trials or time elapsed since its last presentation, due to decay in learning strength, 

interference from intervening learning trials, or presentation of confusable items. The 

specific relations between these variables and difficulty are likely mediated by learning 

strength. Not all effects of intervening trials and items reduce learning strength; some 

influences that may increase learning strength are reminders or cues that may be provided by 

other items, or presentation of other items or feedback that help differentiate items. Also 

intervening items that are unrelated to learning items probably have less effect on learning 

strength than items closely related to learning items (Storm, Bjork & Storm, 2010). 

Fluctuations in effort or arousal could influence learning strength in either direction. All of 

these influences reduce the effectiveness of predetermined schedules relative to adaptive 

systems that gauge learning strength in an ongoing manner.

The present data indicate that use of response times together with accuracy in adaptive 

learning, as in the ARTS system used here, allows dynamic assessment of ongoing learning 

strength. ARTS outperformed typical fixed spacing schemes often employed in the literature 

on the spacing effect. Although the assessment and mastery features of ARTS are designed 

Mettler et al. Page 24

J Exp Psychol Gen. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to guide learners to mastery criteria, implying that the time to mastery will vary for different 

learners, here we omitted the mastery features and tested ARTS under conditions typically 

used in spacing experiments. In both experiments, items were presented a limited number of 

times. It was possible that the benefits of ARTS would not be apparent with only 4 

presentations; continuing adaptive learning to mastery would have likely led to differing 

numbers of presentations for each item, higher levels of performance, and may have been 

particularly valuable for retention after a delay. However, despite imposing on the adaptive 

system the limitations of a small, equal set of presentations for each item, adaptively 

scheduling the spacing proved more beneficial than presenting items with fixed schedules. 

The benefit of adaptive scheduling over fixed schedules was substantial, with medium to 

large effect sizes that persisted across a 1-week delay. In no condition and at no test were 

fixed schedules found to perform better than adaptive schedules.

Theoretical Implications

Results from studies of adaptive scheduling offer a window onto theoretical debates about 

the optimal schedule of practice in learning and memory, specifically, debates about equal or 

expanding spacing (Karpicke & Roediger, 2007; Landauer & Bjork, 1978; Storm, Bjork, & 

Storm, 2010; Carpenter & Delosh, 2005) and research investigating the locus of learning 

effects in spaced practice (Karpicke & Bauernschmidt, 2011; Pashler, Zarow, & Triplett, 

2003). We comment on each in turn.

Is expanding practice optimal for retention?—A major controversy in the spacing 

literature has been whether fixed schedules of equal intervals or schedules of expanding 

spacing intervals produce better learning. Expanding retrieval practice is sometimes thought 

to be the most effective distributed scheduling technique (Landauer & Bjork, 1978; 

Pimsleur, 1967; Storm, Bjork, & Storm, 2010); however other evidence indicates there is no 

difference between expanding and equal schedules of practice (Karpicke & Bauernschmidt, 

2011) or even that equal interval practice is superior to expanding practice (Karpicke & 

Roediger, 2007; Logan & Balota, 2008) or superior at a delay (Cull, 2000).

Our results have several implications for this issue. First, as we suggested above, there will 

not be a single, general answer to the question of the best fixed schedule. Variations in 

published results using varied material, conditions of learning, and learners can be explained 

by effects of these variables on retrieval difficulty as mediated by learning strength (c.f. 

Storm, Bjork & Storm, 2010). That said, our results with adaptive learning do offer some 

support for expanding schedules in the learning domain we studied. Our retrospective 

analyses of the patterns of spacing intervals generated in adaptive conditions showed that 

these tended to be expanding. We also found some evidence that long-term performance 

correlates with expanding trial spacing rather than equal or contracting spacing. When 

spacing intervals expanded for an item, as measured by successively increasing interval sizes 

across presentations, delayed posttest scores for those items were greater. (See Supplemental 

Materials, Figure 3). While not causal, the evidence is indicative of an advantage for 

expanding schedules of spaced practice. It should be noted that, although expanding spacing 

was often the actual spacing outcome of adaptive scheduling, not all participants or items 

experienced expanding spacing intervals. In fact, while the trend across presentations in the 
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adaptive condition was on the whole expanding, only a few participants experienced strictly 

expanding spacing for all learning items across all presentations. These findings further 

confirm the operation of influences on learning strength that are not predictable in advance 

by predetermined schedules having either equal or expanding spacing intervals.

Further debate between choices of optimal fixed spacing schedules is likely to remain 

equivocal. When spacing is decided in advance of dynamic assessment of learner 

performance, retrievals may fail due to exceedingly long delays, or initial retrievals may be 

too easy and fail to add much to learning strength. Karpicke and Roediger (2007) 

commented: “Considering the widespread belief in the utility of expanding retrieval, it is 

surprising that there is not a larger base of research with consistent evidence showing 

expanding retrieval practice to be the superior spaced practice technique for improving long-

term retention.” We would argue instead that the lack of consistent evidence for any fixed 

spacing scheme is unsurprising, given that fixed schedules lack the flexibility to match 

spacing parameters to specific materials, items and learners across a variety of situations.

What makes spacing beneficial?—Our experiments also reflect on hypothesized 

drivers of spacing advantages – for example, characteristics of spacing interval size such as 

absolute delay length (Karpicke & Baeurnschmidt, 2011). If generic characteristics of 

absolute spacing intervals were crucial, we would have expected equivalent performance in 

two conditions that received the same pattern and size of delays. In fact, a different outcome 

occurred: Even when schedule characteristics were equated, learning suffered in comparison 

to a condition where spacing intervals did adapt to individual learners’ interactions with 

items. The primary reason to alter spacing intervals during practice is to match the 

characteristics of ongoing learning strength, not to meet particular delay characteristics or 

criteria of spacing schedules in the abstract. Because ARTS can measure learning strength as 

learning progresses, it can optimize learning events to a degree that fixed spacing schedules 

cannot match, no matter the specific delay characteristics of the fixed intervals.

This point applies to considerations regarding initial and later intervals of practice. Evidence 

suggests that optimizing initial retrievals when learning strength is low for poorer learners or 

for difficult material can improve learning (Cull, Shaughnessy & Zechmeister, 1996). It has 

also been suggested that after appropriate initial intervals, later intervals have very little 

effect on learning (Karpicke & Roediger, 2010). In our results, differences in learning 

emerged from manipulations of spacing intervals even when schedules were matched on 

their initial intervals (Experiment 2). Specifically, when spacing intervals were adaptive, 

learning benefits can accrue despite matches with fixed spacing conditions in the size of the 

initial spacing interval. The results suggest that appropriately adjusting spacing throughout 

learning—not just at the beginning—is an important and effective way to generate learning 

gains.

Comparison with other adaptive systems.—The present results suggest that these 

benefits of adaptively arranged spacing might be relatively easy to realize in real-world 

learning settings and improve upon techniques used in other adaptive systems. The ARTS 

system was able to extract useful assessments of ongoing learning strength while in use by 

learners. Extraction of response time data along with accuracy is relatively simple and 
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unobtrusive. Adaptive systems have commonly required prior studies with particular 

learning content and similar participants to obtain model parameters (Atkinson, 1972; Pavlik 

& Anderson, 2008), or attempt to find optimal scheduling without relying on prior studies, 

but do not adapt to ongoing changes in learning strength (Khajah, Lindsey, & Mozer, 2014). 

In real-world learning settings, it would often be impractical to run a prior experiment with 

similar learners and the same learning material. There are advantages to an adaptive learning 

system that does not require such prerequisites. Moreover, some results of the current studies 

indicate there are limits to the efficiencies attainable using data obtained from other learners; 

optimal spacing may require personalized, ongoing attunement to each learner’s 

performance during learning.

In addition to efficiencies in implementation, ARTS’s use of reaction time measures in 

addition to accuracy provides a potentially more accurate assessment of learning strength 

than other systems. Prior adaptive systems have relied primarily on accuracy alone, in some 

cases informed by theoretical models about how learning strength might grow or decay 

(Pavlik & Anderson, 2005). These represent important efforts, but such efforts are unlikely 

to reflect the individual nuances of an individual’s learning through a learning session, inter-

item interactions in learning sessions, or the individual interactions of learners and items. 

Although ARTS was not directly compared with adaptive systems in the current research, 

some evidence indicates that use of ongoing reaction time data provides a better measure of 

learning strength and thus translates to greater learning performance and delayed retention 

than other systems (see Mettler, Massey & Kellman, 2011).

Bridging Studies of Fixed and Adaptive Spacing.—The present work compared an 

adaptive learning system with the fixed schedules of spacing typically studied in the memory 

literature. To our knowledge, this has not been done in any previous work. In bridging two 

research literatures that have been largely separate, the present work, and future work of this 

kind, has substantial potential to clarify major issues in understanding learning in general 

and spacing in particular. First and foremost, as described above, comparing fixed and 

adaptive schedules offers a window into the mechanisms of spacing. The present results help 

illuminate prior findings and disagreements in the fixed spacing literature, as well as the 

advantages of adaptive spacing. They converge on an understanding of much of the value of 

spacing in terms of three ideas: the retrieval difficulty hypothesis, the connection between 

retrieval difficulty and learning strength, and the value of up-to-the-moment assessment of 

learning strength from accuracy combined with response times. This emerging 

understanding may clarify a number of issues in the field, such as why theories that attempt 

to explain why and which fixed schedules are effective appear to be in conflict with the 

scheduling outcomes of some adaptive schemes (for example, adaptive schedules tend to be 

contracting rather than expanding in Pavlik & Anderson, 2008; see Lindsey, et al., 2009). 

Secondly, comparisons between fixed and adaptive spacing would appear to be important 

threshold tests for adaptive systems. An adaptive schedule should be more effective than 

fixed schedules, else the theoretical assumptions and the practical implications of that 

adaptive model are suspect. In addition, connecting these lines of research may be relevant 

to other features of learning systems. Adaptive schedules often use learning to mastery 

criteria, an important element in many real-world settings. In the studies here, we used a 
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fixed number of presentations for items, but further comparisons of adaptive and fixed 

presentations might be useful where the number of presentations is not set in advance and 

mastery criteria are employed. In general, unifying these research areas may connect each 

with the theoretical tools and insights of the other. In particular, the current research suggests 

an important conclusion: that predetermined (fixed) schedules cannot be optimal, as they do 

not adjust to ongoing fluctuations in learning strength – involving individual items, learners, 

and times in a learning session – and thus cannot determine the best spacing in terms of 

retrieval effort and successful retrieval.

Practical Applications.—The techniques discussed here have important implications and 

relevance in many domains including theories of optimal educational practice, the cognitive 

science of learning, and the psychological understanding of learning and memory processes. 

The techniques developed here have already been applied to real world learning problems 

such as mathematics learning (Mettler, Massey & Kellman, 2011) and extend to perceptual 

or category learning (Mettler & Kellman, 2014), such as the training of expertise in 

perceptual learning in domains like aviation and a number of medical learning domains, 

such as echocardiography, radiology, dermatology and pathology (Krasne, Hillman, 

Kellman, & Drake, 2013; Krasne, Rimoin, Altieri, Craft & Kellman, 2015; Thai, Krasne & 

Kellman, 2015). It is important to note that there will likely be some differences when 

laboratory studies such as those in this paper are generalized to large scale, real-world 

educational domains. However, the techniques described in this paper have already been 

successfully deployed in large scale studies, with longterm consequences for learning. In 

work applying the adaptive learning system described here to perceptual category learning in 

medical domains, for example, learning gains in a Histopathology perceptual adaptive 

learning module (PALM) were substantially preserved in delayed posttests given 6–7 weeks 

later (Krasne et al, 2013); in a Dermatology PALM, advantages for students who completed 

the module over those who did not were clearly evident in delayed tests given a year later 

(Krasne et al, 2015), and in an Echocardiography PALM, 3rd-year medical students who 

invested about 45 minutes per day for two days to complete the module outperformed 

second year emergency medicine residents, for whom ECG interpretation is a centrally 

important skill, with the learning gains for the PALM group being substantially preserved in 

delayed posttest given a year later (Neiman, Stevens, Kellman & Krasne, submitted). 

Adaptive systems based on ongoing assessment of learning strength can likely enhance 

learning in any domain where spacing and scheduling are important moderators of long-term 

learning strength. As such, they are likely to be valuable tools in many future applications of 

learning technology.
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Appendix

Appendix Table 1

Parameters for the adaptive sequencing algorithm in Experiments 1 and 2.

Parameter Value

a – Counter weight 0.1

b – Default weight 1.1

r – RT weight 3.0

W – Incorrect priority increment 20

D – Delay constant 1
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Figure 1. 
Example of trial format used in learning and assessment phases of the experiments. Each 

trial displayed a map of Africa with a target country highlighted, and a list of response 

choices on the right side of screen.
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Figure 2. 
Mean proportion correct by experiment phase across 3 scheduling conditions in Experiment 

1. Error bars show +/− 1 standard error of the mean.
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Figure 3. 
Mean change in accuracy from pretest to posttests across 3 scheduling conditions in 

Experiment 1. Left panel shows difference between immediate posttest and pretest. Right 

panel shows difference between delayed posttest and pretest. Error bars show +/− 1 standard 

error of the mean.
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Figure 4. 
Mean response times (in seconds) at each test phase across 3 scheduling conditions in 

Experiment 1. Response times are from correctly answered trials only. Error bars show +/− 1 

standard error of the mean.
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Figure 5. 
Mean response times (in seconds) at each presentation (1–4) during learning, across the 3 

scheduling conditions in Experiment 1. Response times are from correctly answered trials 

only. Error bars show +/− 1 standard error of the mean.
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Figure 6. 
Mean spacing interval (in trials) across 3 scheduling conditions in Experiment 1 conditional 

on whether the trial preceding the interval was answered correctly or not. Error bars show +/

− 1 standard error of the mean.
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Figure 7. 
Mean spacing interval size (in trials) across 3 spacing intervals in the adaptive scheduling 

condition in Experiment 1. Error bars show +/− 1 standard error of the mean.
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Figure 8. 
Mean proportion correct by phase across the 3 scheduling conditions in Experiment 2. Error 

bars show +/− 1 standard error of the mean.

Mettler et al. Page 39

J Exp Psychol Gen. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Mean change score at immediate and delayed posttests in Experiment 2. Error bars show +/

− 1 standard error of the mean.
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Figure 10. 
Mean response time (in seconds) at learning and test phases across 3 scheduling conditions 

in Experiment 2. Response times are from correctly answered trials only. Error bars show +/

− 1 standard error of the mean.

Mettler et al. Page 41

J Exp Psychol Gen. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
Mean spacing interval size (in trials) across 3 scheduling conditions in Experiment 2 

conditional on whether the trial preceding the interval was answered correctly or not. Error 

bars show +/− 1 standard error of the mean.
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Figure 12. 
Exp 2. Mean spacing interval size (in trials) across 3 intervals in the adaptive scheduling 

condition of Experiment 2. Error bars show +/− 1 standard error of the mean.
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