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Abstract

Staphylococcus aureus causes a wide range of diseases that together embody a significant public 

health burden. Aided by metabolic flexibility and a large virulence repertoire, S. aureus has the 

remarkable ability to hematogenously disseminate and infect various tissues, including skin, lung, 

heart, and bone, among others. The hallmark lesions of invasive staphylococcal infections, 

abscesses, simultaneously denote the powerful innate immune responses to tissue invasion, as well 

as the ability of staphylococci to persist within these lesions. In this manuscript, we review the 

innate immune responses to S. aureus during infection of skin and bone, which serve as paradigms 

for soft tissue and bone disease, respectively.

Introduction

Staphylococcus aureus is a Gram-positive bacterium that colonizes approximately 30% of 

the population (1). Despite this relatively innocuous lifestyle, S. aureus is capable of 

breaching tissue barriers, circulating through the bloodstream, and infecting nearly every 

organ system in the body. S. aureus is the most common cause of bacterial skin and soft 
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tissue infections in the United States (2, 3). Other infection sites include but are not limited 

to bone, lung, kidney, and heart. A critical tenant in the battle against staphylococcal 

infections is to understand host risk factors, including those that parse out individuals 

capable of local control of infection, versus those that progress to invasive disease. A better 

understanding of the innate immune responses to S. aureus will also aid the development of 

new adjunctive therapies to ameliorate the morbidity of staphylococcal disease.

Historical perspectives on anti-staphylococcal immunity

In the early 1880’s, Dr. Alexander Ogston examined purulent material from patients with 

soft tissue infection, noting microscopic “masses or clusters, like the roe of a fish, to which I 

gave the name ‘staphylococcus’” (4, 5). Following Ogston’s landmark discovery, it is clear 

that S. aureus is the preeminent bacterial pathogen causing purulent infections. Although 

much is known regarding the architecture of staphylococcal abscesses and the cellular 

contributors to pyogenic immune responses (6), many questions remain unanswered. In the 

sections that follow, we review the key events underlying effective recognition and 

microbiologic control of S. aureus skin and bone infection.

Immune responses to S. aureus in the skin

Skin is a complex organ that performs vital functions including immune responses, hormone 

and vitamin production, and formation of a protective mechanical and chemical barrier (7). 

Skin is composed of an outer epidermis overlying an inner dermis, separated by a basement 

membrane. The physical and biochemical barriers are derived from the association of 

keratinocytes (KCs) with the products of sweat, lipid and antimicrobial peptides (AMP) (7). 

The epidermis is formed by KCs in different maturation stages, Langerhans cells (LC) and T 

cells. The dermis contains extracellular matrix (ECM) components such as connective 

tissues, collagen, and elastin fibers (8). The fibers provide a structural framework to host 

blood vessels, adipocytes, fibroblasts, skin-resident macrophages, dermal dendritic cells, 

mast cells, T and B lymphocytes, plasma cells and NK cells (8). As such, resident immune 

cells are abundant in skin, and these cells are all involved in the control of S. aureus 
infection by influencing different arms of the immune response (9, 10).

Key players involved in bacterial recognition and inflammatory response

KCs, together with the other resident immune cells in the skin, participate in the recognition 

and response to invading pathogens (10, 11). KCs are typically the first cells that encounter 

pathogens, and recognize pathogen associated molecular patterns (PAMPs) via different 

pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), nucleotide-binding 

oligomerization domain (NOD)-1 and −2, and the scavenger receptors CD36 and MARCO 

(10–12). Signaling through these receptors induces activation of transcription factors such as 

NFκB, AP1, and CREB to generate cytokines (IL-1α, IL-1β, IFN-γ, TNFα and IL-17A, 

IL-17F and IL-22), chemokines (CXCL1, CXCL2, CXCL9, CXCL10, CXCL11, CCL27, 

and CCL20) and antimicrobial effectors, such as antimicrobial peptides (AMPs) and 

inducible nitric oxide synthase (7, 12, 13) (Figure 1A; left).
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TLR1, −2, and- 6 recognizes the S. aureus cell wall components, specifically lipopeptides 

and peptidoglycan. These TLRs utilize the signaling adapter MyD88 to induce robust and 

efficient transcriptional programs that lead to inflammatory responses. TLR1, −2, and −6 are 

involved in many stages of S. aureus infection. Initially, TLR2 on KCs recognize bacteria to 

produce neutrophil chemoattractants and antimicrobial peptides, such as the cathelicidin 

LL-37 and defensins, which form pores in bacterial membranes (13). TLR2 is highly 

expressed on resident macrophages and recruited neutrophils and monocytes, which 

promptly respond to S. aureus and further stimulate cytokine production and phagocytosis. 

Therefore, it is expected that TLR2 is critical for both systemic and localized S. aureus 
infection. Mice deficient in TLR1, −2, −6 and MyD88 are highly susceptible to S. aureus 
infection in intranasal and intravenous infection as evidenced by increased bacterial load, 

poor inflammatory response and enhanced mortality or morbidity in various models of 

disease (14–18). In skin, the role of TLR2 is controversial. This may be due to differences in 

virulence of bacterial strains, infectious dose, and measured endpoints. While Miller et al., 

have demonstrated that TLR2 is dispensable to control S. aureus infection (17), Hoebe et al., 

have shown that TLR2-/- mice are more susceptible to infection (19). The strain used in the 

Hoebe et al. manuscript (ALC2906) shows higher lesion sizes and dermonecrosis, while the 

Xen 8.1 parental strain 8325-4 is less virulent in vivo. Distinct bacterial strains express 

unique virulence factors and toxins that could underlie different TLR2 requirements. 

Furthermore, the infection inoculum varies between these studies (2.5×106 vs. 105 CFU). If 

TLR2 is required for fine-tuning the immune response, higher amounts of bacteria (as used 

by Miller et al.) could override the TLR2 requirement to induce an efficient response, while 

lower doses of the bacterial could require TLR2 to mount a robust immune response.

The intracellular PRRs NOD1 and NOD2 also detect bacterial peptidoglycan to induce 

inflammation, antimicrobial peptide production, and phagocytic effector functions. NOD2 

recognizes muramyl-dipeptide derived from S. aureus peptidoglycan. NOD2-deficient mice 

are highly susceptible to S. aureus skin and systemic infections when compared to WT 

counterparts (20–24). Finally, scavenger receptors CD36, SRBII and MARCO are required 

for optimal S. aureus skin host defense (25–27). Consequently, CD36-/- mice show 

increased bacterial loads and develop severe alpha-toxin-induced dermonecrosis (25).

Skin resident macrophages assist in the initial clearance of S. aureus and in conjunction 

with, e.g., perivascular macrophages, they regulate the recruitment of neutrophils and 

monocytes to the site of infection (28, 29). Dermal macrophages can phagocytose and kill S. 
aureus efficiently by producing reactive oxygen and nitrogen species, AMPs, and chelating 

proteins that starve bacteria of essential nutrients (9, 30). Furthermore, dermal macrophages 

secrete different chemoattractants that provide signals for neutrophil recruitment in a manner 

dependent on IL-1R and MyD88 (17). These cells are also involved in the clearance of dead 

cells at the site of infection, which is essential for resolution of disease (9, 30).

Once neutrophils arrive to the site of infection, they ingest S. aureus and attempt to control 

microbial growth by producing different antimicrobial effectors (see below) (9, 31, 32). 

Neutrophils are short-lived cells that readily undergo apoptosis and need to be cleared from 

the site of infection. However, S. aureus produces several toxins, such as alpha-toxin, γ-

hemolysin, Panton–Valentine leukocidin (PVL), and phenol soluble modulins (PSMs), that 
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can hasten neutrophil cell death by inducing necrosis and leading to release of the danger 

associated molecular patterns (DAMPs) (6, 9, 31, 33–36). DAMPs released during S. aureus 
infection include IL-33, IL-1α, HGMB1, calprotectin and ATP (37–39). How these different 

modes of cell death lead to differential outcomes during infection is an active area of study.

Skin LCs and dermal DCs “sample” their surroundings, capturing antigens before traveling 

to skin-draining lymph nodes (28, 40). We and others have shown that during S. aureus 
infection of skin, LCs ingest the bacteria, are activated by PAMPs, and then migrate to 

draining lymph nodes, where LCs elicit S. aureus-specific adaptive responses (41, 42). 

Although there are several distinct DC subsets in the skin, their roles in S. aureus skin 

infection are not well understood (28).

Effector mechanisms of bacterial control

S. aureus can be ingested using receptors that recognize both opsonized and non-opsonized 

bacteria (9, 33, 43). When coated with opsonins (e.g. C3b and IgG), S. aureus elicits various 

antimicrobial effector functions (44). Reactive oxygen species (ROS) (such as O2
−, H2O2 

and HOCl) are produced following phagocytosis through the actions of NADPH oxidase and 

myeloperoxidase, and can directly kill bacteria or facilitate further killing by other 

mechanisms (45, 46). Nitric oxide (NO) is a major reactive nitrogen species (RNS) that is 

produced from nitric oxide synthase and has antimicrobial and immunomodulatory activity 

(47). Both genetic deletion and pharmacologic inhibition of NO formation render mice 

highly susceptible to S. aureus infection (48, 49). However, high concentrations of NO can 

exert anti-inflammatory effects. High NO levels may therefore predispose to infection by 

inhibiting cell proliferation, inducing host cell death, and preventing phagocyte-induced 

TNFα production and antigen presentation. Furthermore, S. aureus utilizes NO to proliferate 

and precludes induction of the stress regulon via lactic acid fermentation (50, 51).

Neutrophils kill pathogens by degranulation of toxic components (52). Degranulation 

induces the secretion of specific granules containing AMPs, including LL37 (human) and 

cathelicidin-related antimicrobial peptide (CRAMP, mouse homolog), and defensins. 

Degranulation also releases azurocidin, cathepsins, lactoferrin, lysozymes, proteinase-3, and 

elastase (53, 54).

As an additional effector mechanism to control S. aureus infection, neutrophils secrete DNA 

rich structures, termed neutrophil extracellular traps (NETs). NETs are produced in a 

MyD88- and TLR2-dependent mechanism and are necessary for containing S. aureus in the 

skin to prevent bacteremia (55) (Figure 1A, middle). NETs limit the spread of pathogens, 

since they are rich in antimicrobial molecules such as AMPs, cathepsins, elastase, histones, 

and proteases (56). However, S. aureus can destroy NETs, and the degradation product 2'-

deoxy-adenosine induces apoptosis in macrophages which increases bacterial survival in the 

abscess (57).

Immune mechanisms of abscess formation

Abscesses are the hallmark inflammatory lesions during S. aureus infection, and function to 

restrain and eliminate the pathogen (6, 9, 58). The abscess core contains fibrin, viable and 
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necrotic neutrophils, tissue debris, and live bacteria. Abscess maturation is accompanied by 

formation of a fibrous capsule at the periphery; however, if the abscess is not tightly 

organized, systemic spread of infection may occur via the bloodstream (6, 9, 58). 

Interestingly, macrophages are localized to the periphery of the abscess in areas near the 

fibrous capsule, which may suggest a role in neutrophil chemotaxis toward and egress from 

the abscess (6, 9).

The immune mechanisms involved in abscess formation are beginning to be uncovered. Cho 

et al. have shown that neutrophil-derived IL-1β is required for S. aureus-induced abscess 

formation (59). Recently, Feuerstein et al. suggested that resident macrophages expressing 

MyD88 contribute to abscess maturation (14). Our unpublished data show that the lipid 

mediator leukotriene B4 (LTB4) is essential for neutrophil direction to the infectious focus, 

microbial killing, and fibrous capsule formation (manuscript under review). Furthermore, an 

ointment containing LTB4 increases S. aureus clearance and decreases lesion size. These 

findings correlate with neutrophil recruitment, abscess formation, ROS production, and 

IL-1β generation. Although there is much more to learn regarding the host-derived products 

that contribute to formation of abscess, a considerable amount of research has focused on the 

staphylococcal factors that promote survival within abscesses.

Among the S. aureus virulence factors involved in abscess formation, staphylocoagulase 

(Coa), von Willebrand factor binding protein (vWbp) and clumping factor A (ClfA) are all 

required for abscess formation. These proteins promote coagulation leading to fibrin 

generation and the formation of a pseudocapsule surrounding “staphylococcal abscess 

communities” within individual abscess lesions (6, 60).

Taken together, understanding the immune responses to S. aureus in skin, as well as host and 

bacterial mechanisms of abscess formation and survival, will aid in understanding the 

dynamics of staphylococcal pathogenesis and could lead to effective therapeutic strategies to 

prevent deeper infection (Figure 1A, right).

Immune responses to S. aureus during skeletal infection

Osteomyelitis as a paradigm for invasive staphylococcal infection

Beyond skin infections, S. aureus has a remarkable ability to invade and proliferate within 

nearly every organ system. Of the many tissues that S. aureus is capable of colonizing, bone 

is one of the most frequently infected, and unfortunately, one of the most debilitating 

manifestations of disease.

S. aureus is by far the most common cause of osteomyelitis (61, 62). Treatment regimens 

include prolonged antimicrobial therapy in conjunction with surgery to remove infected or 

devitalized bone. These surgical procedures are necessary given that S. aureus triggers 

profound bone destruction, which is accompanied by a loss of vascular architecture, and thus 

decrease delivery of antimicrobials to the site of infection. S. aureus is also the most 

common cause of septic arthritis, which can trigger subchondral bone destruction or even 

frank osteomyelitis if contiguous spread occurs (63, 64). Osteomyelitis is therefore 

paradigmatic for invasive staphylococcal infections that are recalcitrant to treatment and 
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carry considerable morbidity. In the following sections, we detail advances in our 

understanding of the innate immune responses to S. aureus infection of bone.

Bone as a target tissue for S. aureus infection

Bone is a complex tissue consisting of a mineralized organic matrix that is constantly 

remodeled by the coordinated actions of osteoblasts, bone-forming cells, and osteoclasts, 

bone-resorbing cells. While osteoblasts differentiate from mesenchymal stem cells, 

osteoclasts develop from monocytic progenitors, providing an inherent link between innate 

immunity and bone remodeling. S. aureus is capable of colonizing skeletal tissues following 

hematogenous dissemination, via direct inoculation following trauma, or by spread of a 

contiguous infection. Upon colonization of bone, S. aureus is capable of establishing chronic 

infection, often surviving within traditional abscess lesions in the bone marrow, or invading 

directly into damaged bone through the network of osteocytic canaliculi (65). In addition to 

invading into healthy bone tissue, S. aureus can also invade and adhere to pieces of 

devitalized bone known as ‘sequestra’, creating a niche for chronic infection (Figure 2) (65). 

The mechanisms utilized by staphylococci to persist within bone are an area of ongoing 

investigation and are outside the scope of this review (66–70). However, the events leading 

to detection of invading staphylococci by the immune system in bone are poorly understood 

in comparison to studies in skin. Moreover, innate immune responses to bacterial pathogens 

in bone lead to profound effects on bone remodeling, which in turn influence the outcome of 

infection (66, 71–75).

Osteoimmunology: Reciprocal interactions between the skeleton and the 

immune system

The intricate cellular interactions that lead to bone remodeling took many decades to 

delineate and are still an active area of research. In the late 1980’s, osteoblasts were linked 

to the regulation of osteoclastogenesis, even before the primary signals for 

osteoclastogenesis had been identified (76–78). M-CSF was identified as a critical factor 

supporting osteoclastogenesis, which was in keeping with the observation that osteoclasts 

arise from myeloid cells during co-culture experiments (79, 80). These early discoveries 

paved the way for the identification of a TNF-family cytokine, receptor activator of NFκB-

ligand (RANKL), as the canonical osteoclast differentiation factor (81, 82), as well as the 

discovery of a related inhibitory molecule known as osteoprotegrin (OPG) (83, 84). 

Osteoblast-lineage cells produce both RANKL and OPG to maintain the balance between 

bone formation and resorption (81, 82, 85).

The field of “osteoimmunology” emerged from decades of work dating back to the 1970s, in 

which the effects of various immune cell-derived factors and cytokines on bone homeostasis 

were examined (86, 87). TNFα, IL-1, and IL-6 favor bone resorption by promoting 

osteoclast differentiation and function. Indeed, IL-1 was initially described as “osteoclast 

activating factor” due to its effects on bone (88, 89). IL-1, IL-6, and TNFα trigger osteoblast 

lineage cells to upregulate RANKL (90), while IL-1 and TNFα can also act on osteoclasts to 

promote differentiation, survival, and bone resorbing activity (91–93). However, both TNFα 
and IL-1 can only affect osteoclast precursors that have first been primed with RANKL (94, 
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95). Interestingly, bone remodeling mediated by TNFα is in part driven by its ability to alter 

osteoblastic expression of IL-1 and the IL-1R (96). In addition to these cytokines, TH17 cells 

contribute to bone loss during arthritis, as IL-17 triggers RANKL production and 

osteoclastogenesis (97, 98). In contrast to IL-1, IL-6, TNFα, and IL-17, anti-inflammatory 

and TH2 cytokines are largely anti-osteoclastogenic. IL-10 can signal directly onto pre-

osteoclasts to suppress RANKL-induced transcription factors (99, 100). Similarly, IL-4 and 

IL-13 inhibit osteoblast proliferation, favor production of OPG, and decrease RANK 

expression on osteoclasts (101–104). Therefore, pro-inflammatory and anti-inflammatory 

cytokines have major impacts on osteoclastogenesis, with the major common mechanism 

being modulation of osteoblast-lineage RANKL production.

Bone cells as innate sensors of bacterial pathogens

S.aureus has an extraordinary virulence repertoire that facilitates binding to host tissues, 

subsequent tissue invasion, host cell death, and bacterial dissemination (105–108). Yet these 

virulence factors also serve as potent stimuli for activation of innate immune responses.

Staphylococcal adhesins allow binding to ECM components found in bone, including 

fibronectin and collagen (109). Select adhesins also promote endocytic uptake into non-

professional phagocytic cells such as osteoblasts (109, 110). Once internalized, S. aureus can 

escape into the cytoplasm by lysing the endosome (111–114). This close association with 

bone cells triggers immune responses, as osteoblasts, osteoclasts, and their precursor cells 

express a repertoire of PRRs (115–120).

Depending on the cell type, PRR ligation has variable outcomes. PRR stimulation prevents 

myeloid precursor cells from subsequently becoming osteoclasts, but enhances RANKL-

primed, pre-osteoclast differentiation (115). Additionally, osteoblast PRR activation leads to 

production of pro-osteoclastogenic cytokines, such as TNFα and RANKL, as well as other 

cytokines and AMPs (115, 121, 122). RANKL signaling on myeloid cells induces signaling 

cascades through TRAF6, NIK, IKK, p38, ERK, and JNK, activating non-canonical and 

canonical NFκB, AP-1, MITF, and NFATc1 transcription factors (123). These differentiation 

pathways overlap with immune-mediated signaling and provide potential for crosstalk 

downstream of immune activation. IL-1 cytokines also signal through TRAF6 to activate 

p38 MAPK, leading to enhanced osteoclastogenesis (96, 124). Taken together, the effect of 

TLR/IL-1R ligation on osteoclast differentiation is complex, but once cells are primed with 

RANKL, these stimuli appear to enhance osteoclastogenesis.

Specific PRRs on bone cells that sense S. aureus include TLR2 recognition of peptidoglycan 

and lipoteichoic acid (118, 125, 126), TLR9 endosomal recognition of bacterial DNA, and 

NOD-mediated recognition of cytoplasmic bacteria following escape from the endosome. 

Similar to the interactions with resident skin cells, S. aureus activates TLR2 on osteoblasts 

in vitro, leading to release of AMPs and cell death (121, 127). Once internalized, S. aureus 
in osteoblasts can be killed in the endosome through TLR9-mediated induction of oxidative 

stress, though not as robustly as professional phagocytes (128, 129). S. aureus also triggers 

expression of NOD2 by osteoblasts (130, 131), and cooperation between TLR2 and NOD2 

induces RANKL production (116, 117, 132). Finally, the NLRP3 inflammasome can be 

Brandt et al. Page 7

J Immunol. Author manuscript; available in PMC 2019 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activated by S. aureus peptidoglycan and bone particles in myeloid cells (133, 134). 

Consequently, recognition of S. aureus by multiple PRRs on bone cells induces a robust 

inflammatory response and alters bone remodeling (Figure 1B). S. aureus recognition by 

PRRs such as TLR2 and NOD2 allows for shared innate mechanisms between resident skin 

and bone cells, emphasizing the importance of response to general bacterial motifs.

Deconvolution of the innate immune responses to S. aureus osteomyelitis 

using animal models

Animal models of osteomyelitis can be used to define critical immune responses leading to 

inflammation and alterations in bone remodeling (66, 68, 70, 71, 135–139). In a murine 

model of post-traumatic S. aureus osteomyelitis, Yoshii et al. found high levels of IL-1, IL-6, 

and TNFα in bone early after infection, with TNFα remaining elevated for the 28-day 

course of infection (140). The chemokines CCL3, CXCL2, and CCL2 have also been 

detected at high levels during osteomyelitis, and importantly, CCL3 and CXCL2 can trigger 

osteoclastogenesis and enhance bone loss (141, 142).

Downstream of PRRs, signaling through MyD88 is critical for osteoclastogenesis enhanced 

by PAMPs and IL-1 (115, 143). Just as MyD88/IL-1R are important in neutrophil 

recruitment and S. aureus clearance in skin infection models (17), these signaling pathways 

are also crucial for bacterial control on implants in a post-arthroplasty model of infection 

(144). Furthermore, IL-1R–deficient mice were found to have a higher frequency and 

severity of septic arthritis in a systemic S. aureus model (145). The role of TLR2 in S. 
aureus infection is largely dependent on the model system employed and the target tissue 

examined (see above). TLR2 enhances bone resorption in response to injection of heat-killed 

S. aureus, but not a lipoprotein-deficient strain (146). This supports a mechanism whereby 

TLR2 senses systemic bacterial components and can mediate changes in bone homeostasis. 

These studies corroborate that MyD88-dependent PRRs and cytokines are critical for bone 

remodeling and control of S. aureus infection.

S. aureus secreted virulence factors induce bone cell death and contribute 

to the pathogenesis of osteomyelitis

S. aureus pathogenesis is partially dependent on secreted virulence factors, including 

cytolytic toxins and proteins that modify immune functions. In experimental models of 

osteomyelitis, several S. aureus proteins impact bone architecture and contribute to 

comorbidities such as sepsis. Abscess formation in the bone marrow and around devitalized 

bone leads to a hypoxic environment, which subsequently alters quorum sensing and toxin 

production (67). PSMs mediate approximately 30% of the cortical bone loss observed in a 

murine model of osteomyelitis, with direct cytolytic effects on osteoblasts (66, 67). Bone 

destruction can also be triggered by the superantigen TSST-1 and staphylococcal protein A 

(Spa), which both activate osteoclast signaling to enhance bone resorption (75, 147, 148). 

PVL enhances early bacterial survival in bone and promotes bacterial spread to nearby 

muscles and joints in a rabbit model of osteomyelitis (149). Furthermore, alpha-hemolysin 

(Hla) contributes to severe sepsis-related mortality following osteomyelitis in rabbits (150).
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In addition to their role in osteomyelitis, staphylococcal toxins significantly contribute to the 

pathogenesis of infection in other organ systems. For example, PSMs are small, amphipathic 

pore-forming toxins that are relatively promiscuous in their ability to induce toxicity among 

several cell types and species (67, 151). In the skin, PSMs stimulate keratinocytes to release 

proinflammatory cytokines (152). PVL contributes to staphylococcal skin disease by 

facilitating spread to neighboring muscle during skin infection (153). Taken together, these 

findings highlight the essential role of staphylococcal secreted virulence factors in disease 

pathogenesis, and highlight the broad tissue tropism of cytolytic toxins.

Limited but compelling evidence implicates the S. aureus toxin repertoire in disease severity 

during human infection. S. aureus strains expressing PVL are associated with more severe 

local disease and a greater systemic inflammatory response in children with osteomyelitis 

(154). Additionally, PVL has been shown to be mediate lysis of human myeloid cells, 

including osteoclasts, after binding the C5a receptor (147). Yet, the contribution of 

staphylococcal toxins regarding disease severity and pathogenesis varies based on the 

infection site and the repertoire of virulence factors expressed by the infecting S. aureus 
strains, which may not be fully assessed in experimental models.

Putting it all together: Staphylococcal immune response in humans

Individuals with diseases that impact innate immunity are at enhanced risk of staphylococcal 

infection. Genetic diseases that predispose individuals to S. aureus infections include 

chronic granulomatous disease (CGD) (155), deficiencies in MyD88 (156), IRAK-4 (157), 

TIRAP (158), and RAC2 (159), Wiskott-Aldrich Syndrome (159), leukocyte adhesion 

deficiency (160), severe congenital neutropenia (160), and allelic variants of cytokines 

IL-1α, IL-4, and IL-6 (161), among others. Increased risk of S. aureus infection has also 

been associated with co-morbidities such as diabetes (162, 163), malnutrition (164), bone 

marrow transplantation (165), and HIV infection (166). In general, these conditions are 

associated with extreme dysregulation of the immune response. While people with 

malnutrition (164, 167), newborns (168, 169) and bone-marrow transplant recipients (170) 

are functionally immunocompromised, subjects with uncontrolled diabetes (171–173), 

obesity (174, 175) and advancing age (176, 177) exhibit chronic low-grade inflammation 

and are also susceptible to infection. However, the common ground that favors S. aureus 
infection remains to be determined.

Remaining questions and future research

The innate immune response to S. aureus mediates infection outcomes and is dependent on 

host genetics and comorbidities, the tissue environment, and mechanisms of immune evasion 

by bacterial pathogens. Skin and bone cells participate in the induction of innate immunity 

and subsequent tissue remodeling events. Future research should therefore investigate how 

tissue resident cells instigate immune responses through the elaboration of cytokines, the 

recruitment of phagocytes, and the production of antimicrobial compounds. At the same 

time, these studies must address the consequences of immune activation on tissue 

homeostasis and remodeling, factors which play a large role in the morbidity of infectious 

diseases and the eventual recovery of a functional organ system. Specific questions remain 
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about the contribution of individual cell lineages to immunity in both skin and bone. 

Targeted inactivation of innate pathways in tissue resident cells using genetic tools such as 

CRISPR-Cas or Cre-lox technology will be necessary to study their contribution to anti-

staphylococcal immunity in vivo. Additional areas of future research include the redundancy 

or compensation between PRRs, crosstalk downstream of common PRR and tissue-specific 

signaling pathways, and mechanisms of adaptive immunity that limit morbidity from 

primary innate immunodeficiency. Furthermore, the cellular and species tropism of secreted 

S. aureus virulence factors is worthy of ongoing investigation (178). The contribution of 

individual toxins to disease pathogenesis is controversial when considering data from 

different animal models. For example, PVL activity is restricted to the human and rabbit C5a 

receptor, thus the effects of this toxin cannot be elucidated using murine models (179). 

Similarly, other staphylococcal bi-component toxins have species-specific interactions with 

receptors, therefore not all animal models are appropriate to measure toxin effects (178). 

While innate immune responses are the first line of defense to prevent dissemination of S. 
aureus, these early events influence subsequent adaptive responses. A thorough 

understanding of immune protection from staphylococcal disease will therefore only result 

from study of both arms of the immune system.

Conclusions

In conclusion, innate immunity to S. aureus infection is multi-faceted and tissue specific. 

Decades of research on staphylococcal pathogenesis have elucidated important roles for key 

PRRs such as TLR2 and NOD2, as well as for specific cytokine signaling pathways such as 

IL-1. The roles of tissue resident cells in these signaling processes are beginning to be 

explored, and will be facilitated by new mammalian genetic tools. Understanding how innate 

immune responses impact tissue homeostasis is a critical future direction, given that tissue 

pathology is a significant driver of morbidity, mortality, and treatment failure. New therapies 

aimed at boosting innate immunity or blocking immunoevasive factors produced by S. 
aureus hold considerable progress as adjunctive therapies for the treatment of invasive 

infection (180–182).
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Figure 1. Innate immune responses to S. aureus during skin and bone infection
(A) Left panel: S. aureus infects skin after breaching the epithelial layers. Keratinocytes and 

skin-resident macrophages produce inflammatory mediators that promote neutrophil 

responses. Middle panel: Neutrophils are recruited to the skin where they phagocytose 

bacteria, undergo degranulation, and produce extracellular traps that aid in bacterial killing. 

Right panel: S. aureus infection is contained by abscess formation. Live and dead 

neutrophils and bacteria are found within the abscess. The abscess becomes encapsulated 

with fibrous material and surrounded by macrophages. (B) Bone remodeling activities of 

osteoblasts and osteoclasts are altered following interactions between innate immune 
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receptors and S. aureus. In osteoblasts, TLR2 recognition of extracellular S. aureus leads to 

production of AMPs, TLR9 detection of bacterial CpG DNA in the endosome induces an 

antibacterial ROS response, and NOD2 sensing of cytoplasmic S. aureus occurs following 

escape from the endosome. The culmination of osteoblastic innate recognition results in 

production of pro-inflammatory cytokines, such as TNFα, IL-1, and IL-6. These cytokines 

allow osteoblasts to favor increased production of RANKL and decreased release of the 

RANKL inhibitory cytokine OPG. The increased RANKL:OPG ratio and pro-inflammatory 

cytokine production have a net effect to enhance osteoclast differentiation. However, OB 

activation and the effects of staphylococcal toxins may also result in osteoblast cell death 

through apoptosis and necrosis. RANKL production allows for enhanced differentiation of 

osteoclast precursors. Pro-inflammatory cytokines such as TNFα and IL-1 can signal 

directly onto osteoclast precursors to increase osteoclast survival and bone resorption 

activity. Osteoclast expression and ligation of TLR2 has been shown to allow for the further 

differentiation down the osteoclast lineage, however this occurs only in cells that have first 

been stimulated with RANKL. Whether or not S. aureus can invade osteoclasts or activate 

endosomal or cytoplasmic PRRs remains to be determined.
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Figure 2. S. aureus forms traditional abscesses in bone marrow, but also grow directly on and 
invade into, living and dead bone fragments
Murine femurs were extracted, fixed in neutral buffered formalin, and dehydrated in 70% 

ethanol. Following decalcification in 20% EDTA pH 7.4, femurs were processed and 

embedded in paraffin. Femurs infected with S. aureus (A) or mock-infected with PBS (B) 

were sectioned and stained with a modified hematoxylin and eosin (H&E) stain prior to 

imaging at 1× magnification. Different abscess morphologies, including a traditional abscess 

(white box “C”) in the bone marrow (C), and sequestra (white box “D”) along cortical bone 

fragments (D) were observed in the S. aureus infected femurs upon imaging at 10× 
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magnification. Arrowheads in C denote the boundaries of the abscess’ neutrophilic infiltrate. 

* denotes the staphylococcal abscess community surrounded by an eosinophilic 

pseudocapsule in the center of the abscess. # in D denotes a nonviable piece of cortical bone 

(sequestrum) with tightly adherent clusters of staphylococci (arrows) both on the surface of 

and within the sequestrum. (E–F) A second murine osteomyelitis sample was stained with 

both modified H&E (E) and tartrate-resistant acid phosphatase (mature osteoclast marker) 

(F) to demonstrate that S. aureus can also adhere to segments of living cortical bone 

(denoted by #), as osteoclasts (arrows) are visualized remodeling the same fragment of 

cortical bone. * denotes a large cluster of staphylococci directly adherent to the bone 

segment.
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