Calcineurin Regulatory Subunit Calcium-Binding Domains Differentially Contribute to Calcineurin Signaling in Saccharomyces cerevisiae

Sean Connolly,* Devona Quasi-Woode,* Laura Waldron,⁺ Christian Eberly,* Kerri Waters,* Eric M. Muller,⁺ and Tami J. Kingsbury^{*,1}

*Department of Physiology, Center for Regenerative Medicine and Stem Cell Biology and the Marlene and Stewart Greenbaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and [†]Department of Biology, Iona College, New Rochelle, New York 10801

ORCID ID: 0000-0003-3095-3788 (T.J.K.)

ABSTRACT The protein phosphatase calcineurin is central to Ca^{2+} signaling pathways from yeast to humans. Full activation of calcineurin requires Ca^{2+} binding to the regulatory subunit CNB, comprised of four Ca^{2+} -binding EF hand domains, and recruitment of Ca^{2+} -calmodulin. Here we report the consequences of disrupting Ca^{2+} binding to individual Cnb1 EF hand domains on calcineurin function in *Saccharomyces cerevisiae*. Calcineurin activity was monitored via quantitation of the calcineurin-dependent reporter gene, *CDRE*-lacZ, and calcineurin-dependent growth under conditions of environmental stress. Mutation of EF2 dramatically reduced *CDRE*-lacZ expression and failed to support calcineurin-dependent growth. In contrast, Ca^{2+} binding to EF4 was largely dispensable for calcineurin function. Mutation of EF1 and EF3 exerted intermediate phenotypes. Reduced activity of EF1, EF2, or EF3 mutant calcineurin was also observed in yeast lacking functional calmodulin and could not be rescued by expression of a truncated catalytic subunit lacking the C-terminal autoinhibitory domain either alone or in conjunction with the calmodulin binding and autoinhibitory segment domains. Ca^{2+} binding to EF1, EF2, or EF3 reduced Ca^{2+} responsiveness of calcineurin, but increased the sensitivity of calcineurin to immunophilin-immunosuppressant inhibition. Mutation of EF2 also increased the susceptibility of calcineurin to hydrogen peroxide inactivation. Our observations indicate that distinct Cnb1 EF hand domains differentially affect calcineurin function *in vivo*, and that EF4 is not essential despite conservation across taxa.

KEYWORDS calcineurin; calcium signaling; phosphatase; EF hand domain; Crz1

CALCINEURIN (formerly protein phosphatase 2B, now PPP3C) is a ubiquitously expressed Ca²⁺-regulated serine/threonine protein phosphatase first isolated from the bovine brain, where it accounts for 1% of the total protein content (Klee *et al.* 1988). Calcineurin activation by intracellular Ca²⁺ signals orchestrates cell responses to developmental cues, environmental stimuli, and intracellular stress to affect

Copyright © 2018 by the Genetics Society of America

doi: https://doi.org/10.1534/genetics.118.300911

cell proliferation, differentiation, and death (Shibasaki and McKeon 1995; Wang *et al.* 1999; Kahl and Means 2003; Zayzafoon 2006). Studies in diverse model organisms have shown that calcineurin regulates fundamental cell processes to control development, behavior, life span, and adaptive responses (Saneyoshi *et al.* 2002; Nishiyama *et al.* 2007; Dwivedi *et al.* 2009; Mair *et al.* 2011; Nakai *et al.* 2011; Lee *et al.* 2013; Kujawski *et al.* 2014; Deng *et al.* 2015). Calcineurin is also essential for the life cycle, host cell invasion, and virulence of human pathogens, including *Plasmodium falciparum, Toxoplasma gondii, Cryptococcus neoformans, Aspergillus fumigatus,* the causative agents of malaria, toxoplasmosis, and cryptococcus cal meningitis, and invasive aspergillosis, respectively (Odom *et al.* 1997; Cruz *et al.* 2001; Juvvadi *et al.* 2013; Paul *et al.* 2015; Philip and Waters 2015; Chow *et al.* 2017).

Manuscript received March 13, 2018; accepted for publication May 2, 2018; published Early Online May 7, 2018.

Supplemental material available at Figshare: https://doi.org/10.25386/genetics. 6229040.

¹Corresponding author: Department of Physiology, Center for Regenerative Medicine and Stem Cell Biology and the Marlene and Stewart Greenbaum Cancer Center, University of Maryland School of Medicine, Rm. S103C HSF II, 20 Penn St., Baltimore, MD 21201. E-mail: tkingsbury@som.umaryland.edu

In mammals, calcineurin activation of transcription factor EB (TFEB) in response to lysosomal Ca²⁺ signals regulates autophagy initiated by oxidative stress or nutrient deprivation (Medina et al. 2015; Tong and Song 2015; Zhang et al. 2016; Tseng et al. 2017). Calcineurin activation of nuclear factor of activated T cells transcription (NFAT) factors promotes development and function of the immune, cardiovascular, nervous, and musculoskeletal systems (Crabtree and Olson 2002; Horsley and Pavlath 2002; Schulz and Yutzey 2004; Wu et al. 2007; Nguyen and Di Giovanni 2008; Musson et al. 2012; Patel et al. 2015; Peiris and Keating 2018). Alterations in calcineurin activity contribute to human diseases such as cardiac hypertrophy (Bueno et al. 2002; Wilkins and Molkentin 2004), cancer (Buchholz and Ellenrieder 2007; Peuker et al. 2016; Wang et al. 2017), neurodegeneration (Mukherjee et al. 2010; Mukherjee and Soto 2011; Ou et al. 2012; Luo et al. 2014; Aufschnaiter et al. 2017; Shah et al. 2017), and mental illness (Manji et al. 2003; Mathieu et al. 2008; Forero et al. 2016). Calcineurin inhibitors FK506 (tacrolimus) and cyclosporin A are widely used clinically to prevent allograft rejection in transplant patients and treat inflammatory skin diseases (Musson et al. 2012; Azzi et al. 2013; Nygaard et al. 2017).

Intracellular Ca²⁺ transients exhibit distinct spatial and temporal patterns, the amplitude, frequency, and duration of which are integrated by calcineurin to shape cellular responses (Dolmetsch et al. 1997; Berridge et al. 2003). Multiple mechanisms coordinately modulate calcineurin signaling in cells (Musson and Smit 2011). The requirement for two distinct EF hand Ca²⁺-binding proteins, CNB and calmodulin, to activate calcineurin enables the activation and inactivation of calcineurin within the narrow window of intracellular Ca2+ concentrations. Interactions with additional cellular factors such as the immunophilins FKBP12 and cyclophilin A (Cardenas et al. 1994), Bcl-2 (Shibasaki et al. 1997; Erin et al. 2003), superoxide dismutase 1 (Wang et al. 1996; Agbas et al. 2007), heat shock proteins (Someren et al. 1999; Imai and Yahara 2000), RCANs (Kingsbury and Cunningham 2000; Rothermel et al. 2003; Hilioti et al. 2004), CIB1 (Heineke et al. 2010), KIF1BB (Li et al. 2016a), and AKAP79 (Li et al. 2011) impose additional layer of regulation via modulating phosphatase activity, conformation, localization, and ability to interact with either calmodulin or substrates. Post-translational modifications of calcineurin, including CNA phosphorylation, which can regulate calcineurin activity in vitro, presumably tune calcineurin function in vivo (Hashimoto and Soderling 1989; Martensen et al. 1989; Calalb et al. 1990; Juvvadi et al. 2013). CNB myristylation, conserved from yeast to humans, reduces Ca²⁺ responsiveness of calcineurin in yeast (Connolly and Kingsbury 2012). Reversible substrate docking and substrate competition further shape calcineurin signaling in cells (Roy et al. 2007; Roy and Cyert 2009; Li et al. 2011).

Calcineurin is highly conserved across taxa. Calcineurin is a heterodimer consisting of a \sim 60 kDa catalytic subunit (CNA) and a smaller \sim 19 kDa regulatory subunit (CNB), comprised of four EF hand Ca²⁺-binding domains (Klee *et al.* 1998)

(hereafter EF1, EF2, EF3, or EF4). In vitro analysis of recombinant mammalian calcineurin revealed that EF1 and EF2 have a lower affinity for Ca²⁺ than EF3 and EF4, suggesting Ca²⁺ binding to EF1 and EF2 mediates responsiveness to changes in intracellular Ca²⁺ (Feng and Stemmer 2001). EF3 and EF4 are predicted to constitutively bind Ca²⁺ within cells, consistent with a structural role for these sites. Maximal stimulation of calcineurin phosphatase activity requires Ca²⁺, CNB, and Ca²⁺/calmodulin (Klee et al. 1998). Ca²⁺ binding to EF1 and EF2 induces conformational changes in CNB that trigger conformational changes in CNA, leading to partial phosphatase activity. Binding of Ca²⁺/calmodulin to CNA results in full enzyme activation via displacing the autoinhibitory segment (AIS) from the LxVP docking pocket and the C-terminal autoinhibitory domain (AID) from the catalytic site (Wang et al. 2008; Li et al. 2016b).

To begin to understand the requirements for calcineurin activation in vivo, we took advantage of the budding yeast Saccharomyces cerevisiae, in which CNB is encoded by a single gene (CNB1). Two CNA encoding genes are present: CNA1 and CNA2 (Cyert et al. 1991). Calcineurin is not essential in S. cerevisiae, except under conditions of environmental or cellular stress (Iida et al. 1990, 1994; Cyert et al. 1991; Cyert and Thorner 1992; Moser et al. 1996; Fischer et al. 1997; Paidhungat and Garrett 1997; Withee et al. 1997; Cyert 2003). Here, we investigated the consequences of introducing mutations into the Ca²⁺-binding domains of Cnb1 to elucidate the requirement for specific EF hand domains in promoting calcineurin function in yeast. Our results demonstrate that EF4 is largely dispensable for calcineurin activity in response to intracellular Ca²⁺ signals, as previously reported for mammalian calcineurin in vitro (Feng and Stemmer 1999, 2001). In contrast, EF1, EF2, and EF3 each contribute to calcineurin activation, even in the absence of the bipartite CNA autoinhibitory elements and calmodulin binding. Our findings reveal an additional function of Ca²⁺ binding to CNB in the activation of calcineurin in vivo, beyond calmodulin recruitment: AIS and AID displacement.

Materials and Methods

Yeast culture

All yeast strains used in this study were derived from W303-1A (Table 1). Yeast strains were grown at 30° in standard rich media (YPD) or synthetic media (SD) (Clontech or Sigma, St. Louis, MO). Agar, amino acids and salts were purchased from Difco and Sigma. YPD medium was buffered to pH 5.5 by addition of 0.5 M succinic acid for experiments requiring the addition of extracellular CaCl₂. Yeast culture and transformations were conducted using standard techniques (Sherman 1991; Gietz *et al.* 1995).

Cloning and mutagenesis

QuikChange site-directed mutagenesis (Stratagene, La Jolla, CA) was conducted according to manufacturer's instructions in pYDZ3 (Zhu *et al.* 1995). For EF1, EF2, and EF4

Table 1	Yeast strains	used in	this study
---------	---------------	---------	------------

Yeast strain	Relevant genotype	Source
K603	MAT a cnb1::LEU2	Cunningham and Fink (1994)
TKY102	MAT a cnb1::LEU2 cna1 Δ	This study
	cna2::HIS3	
K687	MATa cnb1::LEU2 cmd1-3	Cunningham laboratory
K650	MAT a cnb1 vcx1	Cunningham laboratory
DMY22	MAT a cnb1 crz1 pmc1	Cunningham laboratory

mutagenesis, the GAT encoding aspartic acid was mutated to GCT, to encode alanine. For EF3, GAC was mutated to GCC to convert the aspartic acid to alanine. *CNB1* alleles were cloned into pRS313 (Sikorski and Hieter 1989) (centromere (CEN)) or pYO323 (Qadota *et al.* 1992) (2 μ m), using *Bam*HI-*Xho*I. Genomic DNA corresponding to *CNA1* was PCR amplified (forward: AGGATCCGTCTTCGTCAACAATTGGTTC; reverse: ACTCGAGCATTGGTTACAAGTCCCTAAC) and cloned into pRS314 *Bam*HI-*Xho*1. Truncated alleles were generated by PCR with CNA1 forward primer combined with either reverse GGACTGAAGGTTTGAATGAAACGCAACTGTGATAAATCTCA (Cna1 Δ AID) or GCGATATTAGAAGATGAAACCCAACTGTGAAGTTAGAAGATGAAACCCAACTGTGATAAATCTCA (CNA1 Δ CBD). All constructs were verified by DNA sequencing (Supplemental Material, Table S1).

Ion tolerance assays

Ion tolerance assays were performed as previously described (Cunningham and Fink 1996), with minor modifications. *cnb1* Δ yeast strains transformed with CEN-based *CNB1* alleles were precultured in SD-HIS medium. Ion tolerance assays were conducted in YPD supplemented with a range of NaCl, LiCl, or MnCl₂ concentrations. YPD (pH 5.5) medium was used for CaCl₂ assays to maintain salt solubility. Yeast were grown as 0.18 ml cultures in 96-well, flat-bottomed dishes in a 30° incubator without shaking for 36–48 hr. The OD₆₀₀ was measured using a BioTek µQuant platereader.

β-Galactosidase assays

Yeast cultures were grown overnight in SD dropout media (-HIS -URA for $cnb1\Delta$ yeast or -HIS -URA -LEU -TRP for $cna1\Delta$ $cna2\Delta$ $cnb1\Delta$ yeast). Yeast strains were pelleted and resuspended in YPD (pH 5.5) before inoculation into media supplemented with CaCl₂, FK506, cyclosporine A (CsA), α -factor (Genscript), or H₂O₂ as indicated. For α -factor experiments yeast were diluted to 0.2 OD. Cells were incubated at 30° with shaking for 4 hr (3 hr for experiments with α -factor). After incubation, 0.9 ml of yeast was harvested by centrifugation and resuspended into 720 µl of Z buffer (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCl, 1 mM MgSO₄, 50 mM β -mercaptoethanol, pH 7.0) + 0.0075% SDS. Cells were lysed by addition of 50 μ l of chloroform and vortexing for 10 sec. Reactions were initiated by addition of 180 μ l of ONPG (4 mg/ml in Z buffer) and terminated by the addition of 450 μl 1 M Na₂CO₃. β-Galactosidase activity was quantitated by measuring the OD_{600} of the yeast culture used for the assay and the OD_{420} of the reaction product.

 β -Galactosidase activity was calculated as follows: (1000 \times OD₄₂₀)/OD₆₀₀ \times time (min) \times volume (ml) = units of β -galactosidase activity.

Protein analysis

Yeast were grown overnight in SD-HIS media, diluted into YPD, and grown an additional 4 hr before harvesting for protein. Cells were pelleted and washed once in PBS. Cell pellets were lysed with lithium acetate and NaOH as previously described (Zhang et al. 2011), except that 1 M LiOAc was used. Pellets were resuspended in 2× Laemmli buffer, boiled for 5 min, and cleared by centrifugation before separation by PAGE using Novex Wedgewell 16% Tris-Glycine gels run in $1 \times$ SDS Tris-Glycine buffer (Invitrogen, Carlsbad, CA). When indicated, protein lysates were for incubated for 10 min with either 1 mM CaCl₂ or 2 mM EGTA before gel loading. Western blotting was conducted using anti-Cnb1 (Zhu et al. 1995) at 1:5000 in TBS-Tween as primary antibody and HRP-conjugated anti-rabbit at 1:10,000 as secondary antibody (Jackson ImmunoResearch Laboratories). Anti-PGK at 1:2000 (Invitrogen) was used as a loading control.

Data availability

All yeast strains used in this study are available upon request. Table S1 contains list of plasmids utilized in this study. All plasmids generated in this study will be deposited at Addgene for distribution. Data necessary to confirm findings of this article are present within article, figures, and tables. Supplemental material available at Figshare: https://doi.org/10.25386/genetics.6229040.

Results

Generation of CNB1 mutant alleles

The Ca²⁺-binding regulatory subunit calcineurin B is encoded by a single gene CNB1 in S. cerevisiae (Cyert and Thorner 1992). To investigate the contribution of specific Cnb1 EF hand domains to calcineurin function (Figure 1A), we generated a series of CNB1 alleles expressed from lowcopy CEN-based vectors in which an individual EF hand domain harbored a single amino acid mutation designed to disrupt Ca²⁺ binding. EF hand domains are comprised of two α -helices separated by a short loop that binds Ca²⁺. Within the Ca^{2+} -binding loop, amino acids 1, 3 5, 7, 9, and 12 (X, Y, Z, -Y, -X, and -Z, respectively) coordinate Ca²⁺ (Nakayama and Kretsinger 1994). Using site-directed mutagenesis, the aspartic acid located at position X was mutated to alanine (Figure 1B) in EF1, EF2, EF3, or EF4. EGTA depletion of Ca²⁺ from EF3 and EF4, but not EF1 or EF2, reduces the electrophoretic mobility of mammalian CNB in high-percentage SDS-PAGE (Feng and Stemmer 1999). We observed that treatment of yeast cell lysates treated with EGTA similarly reduced Cnb1 electrophoretic mobility in high-percentage SDS-PAGE (Figure 1C). In the presence of Ca^{2+} , multiple species of Cnb1 were observed in high-percentage gels. Treatment with EGTA resulted in the loss of the faster

Figure 1 Site-directed mutagenesis of yeast calcineurin B EF hand domains. (A) Schematic of Cnb1. (B) Sequence of the four EF hand domains of Cnb1. The Ca²⁺-binding loop is denoted in bold lettering. Amino acids that bind Ca²⁺ are enlarged. The aspartate residue (D) mutated to alanine in each EF hand is indicated by an arrow. (C) Electrophoretic mobility of Cnb1 mutant proteins. Protein lysates from *cnb1*Δ yeast expressing the wild type (WT), Cnb1 EF hand mutants *vs.* empty vector (EV) were treated with 1 mM CaCl2 or 2 mM EGTA before SDS-PAGE and Western blot analysis using anti-Cnb1 antibody (Zhu *et al.* 1995).

migrating species. In the presence of Ca^{2+} , Cnb1 harboring mutations in either EF3 (Cnb1mutEF3) or EF4 (Cnb1mutEF4) lacked the faster migrating species, consistent with the D/A mutations disrupting Ca²⁺ binding. In contrast, the mobility of Cnb1mutEF1 and Cnb1mutEF2 was comparable to the fast migrating species observed for wild-type Cnb1, suggesting that mutation of EF1 or EF2 neither altered Cnb1 mobility nor disrupted Ca²⁺ binding to EF3 or EF4.

Disruption of EF1, EF2, and EF3 reduces calcineurin function: Calcineurin mediates yeast responses to Ca²⁺ signals triggered by extracellular stimuli and intracellular stress. Intracellular Ca²⁺ signals stimulate calcineurin, which dephosphorylates the transcription factor Crz1. Crz1 then translocates to the nucleus to mediate calcineurin-dependent changes in gene expression (Cyert 2003; Thewes 2014). Calcineurin activity can be readily quantitated by measuring the expression of the calcineurin-dependent reporter gene CDRElacZ (calcineurin-dependent response element), composed of four copies of the Crz1-binding site (Stathopoulos and Cyert 1997). In the absence of calcineurin, CDRE-lacZ expression is not stimulated by Ca²⁺ signaling. Wild-type vs. mutant CNB1 alleles were transformed into $cnb1\Delta$ yeast (Y203) harboring the CDRE-lacZ reporter gene. Yeast transformed with empty vector were used as negative controls. To stimulate Ca²⁺ signaling, yeast were treated with 100 mM extracellular CaCl₂ for 4 hr before harvesting for quantitative ortho-nitrophenylbeta-galactoside (ONPG) assays to measure β-galactosidase activity. Yeast expressing wild-type Cnb1 exhibited a robust activation of CDRE-lacZ activity in response to 100 mM CaCl₂

(Figure 2A). Yeast expressing Cnb1mutEF4 were most similar, with \sim 80% of the stimulated CDRE-lacZ activity observed in yeast expressing wild-type Cnb1. In contrast, yeast expressing Cnb1mutEF2 had CDRE-lacZ activity levels similar to yeast transformed with empty vector. Yeast expressing Cnb1mutEF1 and Cnb1mutEF3 exhibited intermediate levels of CDRE-lacZ activity. Overexpression of Cnb1 mutants from high-copy 2 µm expression constructs (Figure S1) was unable to rescue the reduced CDRE-lacZ activity levels observed upon mutation of EF1, EF2, or EF3 (Figure 2A). In addition, increased expression of wild-type Cnb1 did not significantly increase CDRE-lacZ levels following stimulation with 100 mM CaCl₂, indicating Cnb1 is not limiting for Crz1 activation. A similar pattern of CDRE-lacZ activity was observed in yeast lacking the calcineurin-dependent vacuolar Ca²⁺ transporters Vcx1 and Pmc1, indicating that reduced ability of calcineurin to stimulate Crz1 was not dependent on altered function of these transporters (Figure 1, B and C), although transporter deletion enhanced our ability to detect Cnb1mutEF2-dependent CDRE-lacZ activity above background levels, presumably due to increased cytosolic Ca²⁺ levels (Cunningham and Fink 1994; Cui et al. 2009).

Mutation of EF1, EF2, or EF3 reduces Ca²⁺ responsiveness of calcineurin: Our observation that the absence of Vcx1 enhanced our ability to detect Cnb1mutEF2 activity above background suggested that mutant Cnb1 had reduced Ca²⁺ responsiveness. We therefore assayed CDRE-lacZ activity across a range of extracellular CaCl₂ from 0 to 100 mM to determine the relative Ca²⁺ sensitivity of the EF hand mutants. Assays were conducted in the $cnb1\Delta vcx1\Delta$ (Y250) background, where we could consistently detect Ca²⁺ stimulated Cnb1mutEF2-dependent CDRE-lacZ activity, albeit at very low levels (\sim 5% wild type). Differences in the ability of Ca²⁺ to activate the mutant calcineurin would be observed as a shift in the Ca²⁺ dose-response curve. For each mutant, the CDRE-lacZ activity measured at 100 mM CaCl₂ was set to 100% activity, and CDRE-lacZ activity at the remaining CaCl₂ concentrations was plotted as a percentage of the activity at 100 mM CaCl₂. As shown in Figure 2D, calcineurin comprised of Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 required higher levels of Ca²⁺ for stimulation of CDRE-lacZ expression than wild-type Cnb1 or Cnb1mutEF4. Thus, the Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 mutants have reduced sensitivity to elevated intracellular Ca²⁺.

EF1, EF2, and EF3 mutants disrupt calcineurin responses to physiologic stimuli

Calcineurin mediates yeast responses to environmental stimuli, including extracellular stress and mating pheromone. Calcineurin activation of Crz1 is required for yeast to grow in the presence of increasing levels of extracellular Mn^{2+} , Li⁺, and Na⁺. We therefore tested the ability of *cnb1* Δ yeast (Y203) transformed with wild-type *vs.* mutant *CNB1* alleles to grow in the presence of high levels of MnCl₂, LiCl, or NaCl (Figure 3, A–C). *cnb1* Δ yeast transformed with wild-type

Figure 2 Cnb1 EF hand mutants reduce calcineurinstimulated reporter gene expression. (A-C) The CDRE-lacZ reporter gene was introduced into $cnb1\Delta$ (A), $cnb1\Delta vcx1\Delta$ (B), or $cnb1\Delta pmc1\Delta vcx1\Delta$ (C) yeast expressing either wild-type or mutant Cnb1, expressed from low-copy centromere-based plasmids (CEN) or high-copy 2 µm plasmids (2 µm). $\beta\text{-}\textsc{Galactosidase}$ activity was quantitated after 4 hr stimulation in YPD (pH 5.5) supplemented with 100 mM CaCl₂. Data are normalized to the activity measured in yeast transformed with empty vector in the absence of stimulation. (D) CDRE-lacZ activity was measured following 4 hr stimulation at 0, 10, 25, 50, and 100 mM added extracellular CaCl₂ in $cnb1\Delta$ $vcx1\Delta$ yeast. For each Cnb1 mutant construct, the CDRE-lacZ activity at each CaCl₂ concentration is plotted as a percentage of the activity obtained at 100 mM CaCl₂ (100%). For all assays, data plotted are the average of four independent yeast transformants \pm SD.

CNB1 or empty vector were used as positive and negative controls, respectively. Yeast expressing Cnb1mutEF4 exhibited a similar level of ion resistant growth as yeast expressing wild-type Cnb1 in the presence of Mn^{2+} , Li⁺, and Na⁺. In contrast, yeast expressing Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 exhibited reduced ion tolerance, becoming growth inhibited at lower concentrations of extracellular MnCl₂, LiCl, or NaCl than yeast expressing wild-type Cnb1. In each case, Cnb1mutEF2 expressing yeast were the most sensitive to growth inhibition. In the presence of NaCl, Cnb1mutEF2 expressing yeast were indistinguishable from *cnb1* Δ yeast transformed with empty vector. These results demonstrate that EF1, EF2, and EF3 are required for calcineurin activity in response to environmental stress due to high levels of Mn²⁺, Li⁺, and Na⁺.

We next tested whether Cnb1 mutants exhibited reduced calcineurin activity in response to mating pheromone. Haploid yeast cells of opposite mating type sense each other through plasma membrane receptors, grow toward each other, and ultimately fuse at the tips of extended cytoplasmic projections. Exposure of a mating type haploid yeast to α -factor mating pheromone triggers Ca²⁺ signals and calcineurin-mediated stimulation of Crz1 (Matheos et al. 1997; Stathopoulos and Cyert 1997). Wild-type vs. mutant CNB1 alleles were transformed into a *cnb1* Δ (Y203) yeast harboring the *CDRE*-lacZ reporter gene. Yeast transformed with empty vector were used as negative controls. Ca²⁺ signals were induced by treating yeast with α -factor mating pheromone for 3 hr before harvesting for quantitative ONPG assays to measure β -galactosidase activity. Yeast expressing either wild-type Cnb1 or Cnb1mutEF4 stimulated CDRE-lacZ expression \sim 19-fold in response to α -factor (Figure 3D). In contrast, yeast expressing Cnb1mutEF2 were similar to yeast transformed with empty vector. Yeast expressing Cnb1mutEF1 and Cnb1mutEF3 had an intermediate response, exhibiting ~fivefold stimulation of CDRE-lacZ activity following α -factor treatment. As observed following stimulation with high

CaCl₂, overexpression of wild-type Cnb1 or Cnb1mutEF4 from high-copy 2 μ m vectors did not increase *CDRE*-lacZ activity, and overexpression of Cnb1EF1, Cnb1mutEF2, or Cnb1mutEF3 did not rescue *CDRE*-lacZ activity.

EF1, EF2, and EF3 function beyond autoinhibitory domain displacement

The carboxyl terminal domain of CNA contains an AID that binds to the active site of calcineurin. Ca²⁺ binding to CNB increases the interaction of calcineurin with Ca²⁺/ calmodulin, which leads to displacement of the AID during phosphatase activation (Yang and Klee 2000) (Figure 4A). Deletion of the Cna1 AID (Cna1- Δ AID) generates a constitutively active calcineurin that can be robustly stimulated by Ca^{2+} signaling (Figure 4C). We tested whether deletion of the AID could restore calcineurin activity in Cnb1 mutants. $cnb1\Delta$ $cna1\Delta$ $cna2\Delta$ (TKY102) yeast harboring the CDRE-lacZ reporter gene and expressing Cna1- Δ AID were transformed with wild-type vs. mutant CNB1 alleles. Calcineurin stimulation of CDRE-lacZ activity was tested following 4 hr in the presence of 100 mM extracellular CaCl₂ before harvesting for ONPG assays. In the absence of stimulation, only yeast expressing wild-type Cnb1 or Cnb1mutEF4 exhibited the expected increase in basal *CDRE*-lacZ activity (Figure 4C). As observed in the presence of wild-type endogenous Cna1 and Cna2, Cnb1mutEF1, Cnb1mutEF2, and Cnb1mutEF3 exhibited reduced CDRE-lacZ activity compared to Cnb1mutEF4 and wild-type Cnb1. Thus, the reduced calcineurin activity observed upon mutation of either EF1, EF2, or EF3 is not solely due to a defect in displacement of the AID in response to Cnb1 Ca²⁺ binding.

Mutation of EF1, EF2, or EF3 impairs calmodulinindependent calcineurin function

Full activation of calcineurin requires Ca^{2+} binding to Cnb1 and recruitment of Ca^{2+} /calmodulin. In the absence of the

Figure 3 Mutation of EF1, EF2, and EF3 reduces calcineurin responses to physiologic stimuli. (A-C) Wild-type Cnb1, Cnb1mutEF1, Cnb1mutEF2, Cnb1mutEF3, or Cnb1mutEF4 were expressed in $cnb1\Delta$ yeast to assess the ability of the mutants to promote ion-resistant growth. Yeast strains were grown in YPD supplemented with increasing concentrations of MnCl₂ (A), LiCl (B), or NaCl (C). Following incubation for 2 days at 30°, the optical density of cultures was measured at 600 nm and plotted as a function of ion concentration. Data plotted are the average of four independent yeast transformants ± SE. (D) CDRE-lacZ activity was measured following 3 hr stimulation with 20 μ M α -factor in a *cnb1* Δ yeast. Cnb1 was expressed from either low-copy centromere-based plasmids (CEN) or high-copy 2 μ m plasmids (2 μ m). For all assays, data plotted are the average of four independent yeast transformants \pm SD.

Ca²⁺/calmodulin interaction, Crz1 activation in response to Ca²⁺ signals is dramatically reduced. To determine whether Cnb1 EF hand mutants alter calmodulin-independent calcineurin activity in cells, *cnb1*\Delta *cmd1-3* (K687) yeast harboring the *CDRE-lacZ* reporter were transformed with wild-type *vs.* mutant *CNB1* alleles. *cmd1-3* yeast express calmodulin that cannot bind to Ca²⁺ and fails to stimulate calcineurin activity (Geiser *et al.* 1991). Stimulation of *cmd1-3* yeast expressing wild-type Cnb1 with 100 mM extracellular CaCl₂ for 4 hr resulted in less than fourfold stimulation of *CDRE-lacZ* expression (Figure 4D). Cnb1EFmut4 resulted in twofold stimulation in *CDRE-lacZ* activity following Ca²⁺ stimulation in *cmd1-3* background, whereas Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 were unable to stimulate *CDRE-lacZ* expression in the absence of Ca²⁺/calmodulin.

Calmodulin-independent calcineurin function was further tested in *cnb1* Δ *cna1* Δ *cna2* Δ (TKY102) yeast expressing Cna1 protein truncated before the calmodulin-binding domain (Cna1- Δ CBD). Truncation of the catalytic subunit upstream of the calmodulin-binding domain also eliminates the AIS and the AID of Cna1, resulting in a constitutively active enzyme that can be further stimulated by Ca²⁺ binding to Cnb1. Stimulation of yeast expressing Cna1- Δ CBD with either wild-type Cnb1 or Cnb1mutEF4 by addition of 100 mM CaCl₂ to the media resulted in similar levels of *CDRE*-lacZ activity (Figure 4E). Yeast expressing Cnb1mutEF1 or Cnb1mutEF3 had lower levels of both basal and stimulated *CDRE*-lacZ activity, consistent with impaired calmodulin-independent calcineurin function. Yeast expressing Cnb1mutEF2 resembled the empty vector negative control in the presence and absence of stimulation.

Cnb1 mutants increase sensitivity to immunosuppressant inhibition

Calcineurin is the target of the immunosuppressants FK506 and CsA. Interaction of calcineurin with immunophilin drug

complexes has previously been shown to require Ca²⁺ and CNB (Li and Handschumacher 1993; Milan et al. 1994). We therefore tested the ability of FK506 and CsA to inhibit calcineurin activity in yeast expressing the Cnb1 EF mutants. Yeast were stimulated with 100 mM CaCl₂ in the presence or absence of increasing doses of FK506 or CsA for 4 hr before harvesting to assay CDRE-lacZ activity. As shown in Figure 5, yeast expressing Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 were more sensitive to inhibition by FK506 (Figure 5A) and CsA (Figure 5B) than yeast expressing wild-type Cnb1. Cnb1mutEF4 expressing yeast resembled wild type in the presence of FK506, but exhibited a small increase in sensitivity to inhibition by CsA. Estimation of the concentration of drug at which CDRE-lacZ stimulation was reduced by 50%, suggested that Cnb1mutEF1, Cnb1mutEF2 and Cnb1mutEF3 expressing yeast were 2.7-, 6.4-, and 4.0-fold more sensitive to FK506 inhibition than wild-type Cnb1 expressing yeast, respectively. In the presence of CsA, EF1, EF2, EF3, and EF4 mutant calcineurin was 3.0, 13, 4.5, and 1.8 times as sensitive as wild-type calcineurin, respectively.

Cnb1 mutants exhibit increased sensitivity to inactivation by oxidative stress

Calcineurin activity is sensitive to oxidative inactivation (Wang *et al.* 1996; Namgaladze *et al.* 2002; Musson and Smit 2011). Since the reduced activity we observe in the EF mutants could reflect increased inactivation, we investigated the sensitivity of calcineurin to hydrogen peroxide in yeast expressing wild-type *vs.* mutant Cnb1. *Cnb1* Δ *vcx1* Δ yeast harboring the indicated *CNB1* alleles and the *CDRE*-lacZ reporter gene were stimulated with 100 mM CaCl₂ for 4 hr in either the absence or presence of 2 mM H₂O₂ before harvesting for ONPG assays. H₂O₂ had no effect on the levels of *CDRE*-lacZ β -galactosidase activity in the absence of added exogenous CaCl₂ (data not shown). In the presence of

Figure 4 Removal of Cna1 autoinhibitory domains or calmodulin interaction does not bypass the requirement for Cnb1 EF1, EF2, or EF3. (A) Cartoon model of calcineurin activation by Ca²⁺ and calmodulin. (B) Schematic of wild type (WT) and Cna1 truncations. (C–E) *cnb1* Δ *cna1* Δ *cna2* Δ yeast harboring the *CDRE*-lacZ reporter expressing either Cna1- Δ AlD (C), *cnb1* Δ *cmd1*-3 (D), or Cna1- Δ CBD (E) were transformed with WT vs. mutant Cnb1 constructs. Each strain was grown to log phase and exposed for 4 hr to 100 mM CaCl₂ in YPD medium (pH 5.5) before β -galactosidase activity measurement. Error bars represent the SD of four independent transformants. BBH, CNB binding helix.

100 mM CaCl₂, calcineurin composed of wild-type Cnb1 or Cnb1mutEF4 was inhibited only 10–15% by inclusion of H₂O₂ in the media (Figure 6). In contrast, yeast expressing Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 were inhibited ~45, 72, and 35%, respectively, by the presence of H₂O₂. Thus, mutation of EF1, EF2, or EF3 increased the sensitivity of calcineurin to inhibition by H₂O₂, with mutation of EF2 being the most dramatically affected. Although our data reveal that EF1, EF2, and EF3 mutant calcineurin are more sensitive to oxidative stress, we were unable to reverse reduced activity of mutants by inclusion of reduced glutathione in the media (S Connolly and TJ Kingsbury unpublished data), suggesting that increased oxidation of calcineurin in the absence of induced oxidative stress does not account for the reduced activity observed in these mutants.

Cnb1 EF1, EF2, and EF3 mutants impair Crz1-independent calcineurin function

To determine whether the reduced function of Cnb1mutEF1, Cnb1mutEF2, or Cnb1mutEF3 calcineurin extends to additional phosphatase substrates, we tested the ability of the Cnb1 mutants to inhibit the Ca²⁺/H⁺ exchanger, Vcx1. In wild-type yeast, the vacuolar ATPase Pmc1 maintains Ca²⁺ homeostasis and enables growth in the presence of high extracellular CaCl₂. In the absence of Pmc1, disrupting calcineurin function increases Ca²⁺ tolerance due to loss of calcineurin-mediated inhibition of Vcx1 (Cunningham and Fink 1996). Calcineurin inhibition of Vcx1 is independent of Crz1. To test the ability of Cnb1 EF hand mutants to inhibit Vcx1 activity, *cnb1 pmc1* Δ *crz1* Δ (Figure 7) were transformed with wild-type *vs.* mutant Cnb1 expression constructs and growth quantitated after 2 days culture in the presence of increasing concentrations of CaCl₂. Yeast expressing either Cnb1mutEF1 or Cnb1mutEF2 exhibited increased Ca²⁺-resistant growth similar to that observed in yeast lacking Cnb1, suggesting an impaired ability to inhibit Vcx1. Cnb1mutEF3 displayed an intermediate level of Ca²⁺-resistant growth, while Cnb1mutEF4 resembled yeast expressing wild-type Cnb1. These results show that the reduced activity of EF1, EF2, or EF3 mutant Cnb1 calcineurin is not limited to a single physiologic substrate.

Discussion

CNB interaction with CNA is essential for calcineurin activation *in vitro* and function *in vivo* (Cyert and Thorner 1992; Nakamura *et al.* 1993; Kawamura and Su 1995; Tokoyoda *et al.* 2000). Yeast in which the *CNB1* has been disrupted exhibit calcineurin-deficient phenotypes such as failure to recover from mating pheromone and ion sensitivity (Cyert 2003). To begin to understand the requirements for Ca²⁺ binding to CNB in promoting calcineurin function *in vivo*, we investigated the functional consequences of individually mutating each of the Ca²⁺-binding domains of Cnb1. Here we show that mutation of Cnb1 Ca²⁺-binding domains EF1, EF2, and EF3 reduces calcineurin function in yeast. Using a

Figure 5 EF hand mutants increase calcineurin immunophilin-immunosuppressant sensitivity. The ability of immunosuppressants to inhibit calcineurindependent stimulation of *CDRE*-lacZ activity was assayed across a range of (A) FK506 (nM) or (B) CsA (μ M) concentrations as indicated. *cnb1* Δ *vcx1* Δ yeast expressing wild-type (WT) or mutant cnb1 were stimulated for 4 hr in YPD supplemented with 100 mM CaCl₂ in the presence or absence of FK506 or CsA. Ca²⁺-stimulated *CDRE*-lacZ activity measured in the absence of immunosuppressant drugs for each strain containing a *cnb1* construct was set to 100%, and the β-galactosidase activity observed in the presence of drugs was plotted as a corresponding percentage. Data plotted represent the average of four independent yeast transformants ± SD.

calcineurin-dependent reporter gene, we show that mutation of EF1, EF2, or EF3 decreased total calcineurin activity, with mutation of EF2 exhibiting the most dramatic reduction in response to Ca²⁺ signaling stimulated by either high extracellular Ca²⁺ levels or α -factor stimulation. Consistent with reduced calcineurin stimulation of Crz1 activity, Cnb1 EF1, EF2, and EF3 mutants exhibited reduced calcineurin-mediated ion-tolerant growth, which is primarily but not exclusively mediated by Crz1. Thus, multiple distinct sources of Ca²⁺ signaling each revealed reduced calcineurin function upon mutation of EF1, EF2, or EF3. Mutation of EF1, EF2, or EF3 also impaired the ability of calcineurin to inhibit the vacuolar Ca²⁺/H⁺ exchanger Vcx1, a Crz1-independent calcineurin function, demonstrating that the observed defect in calcineurin was not specific to Crz1 substrate. In contrast, EF4 was found to be largely dispensable for calcineurin function in wild-type yeast. Our findings are consistent with previous *in vitro* analysis of recombinant mammalian calcineurin (Feng and Stemmer 1999, 2001) despite the dynamic complexity of intracellular Ca^{2+} signals, which are in part shaped by calcineurin-dependent processes, and additional calcineurin regulatory interactions presumably occurring within the context of a cell. To our knowledge, our data are the first demonstration of the functional role of EF1, EF2, and EF3 in conferring calcineurin responsiveness to changes in intracellular Ca^{2+} levels.

Consistent with impaired calcineurin function observed with Cnb1 EF1, EF2, or EF3 mutants, we found reduced sensitivity to activation across a range of Ca²⁺ signals, indicating that these EF hand domains determine calcineurin responsiveness to increases in intracellular Ca2+. The reduced Ca2+ sensitivity of Cnb1 EF1 and EF2 mutant calcineurin is consistent with their proposed role in binding Ca²⁺ in response to intracellular Ca²⁺ transients based on their lower affinity for Ca²⁺ in vitro (Feng and Stemmer 1999, 2001; Yang and Klee 2000; Gallagher et al. 2001). In contrast, EF3 and EF4 are higher affinity Ca2+-binding sites predicted to be constitutively bound to Ca^{2+} in cells. The reduced Ca^{2+} sensitivity of Cnb1 EF3 mutant calcineurin reveals an essential role for EF3 in mediating calcineurin responses to changes in intracellular Ca²⁺. It is unclear how reduced Ca²⁺ affinity of EF3 causes reduced Ca²⁺ sensitivity of calcineurin, although it is possible that mutation of EF3 lowers the affinity of EF1 or EF2 for Ca²⁺ due to communication between the sites (Gallagher et al. 2001). Mutation of EF4 did not alter phosphatase Ca^{2+} sensitivity.

Full activation of calcineurin during Ca²⁺ signaling requires both Ca²⁺ binding to Cnb1 and the recruitment of Ca²⁺/calmodulin (Klee et al. 1998). In the inactive state, the CBD interacts with the CNB binding helix and the AID acts as a pseudosubstrate blocking the catalytic site. Recent crystal structure of the full-length β -isoform of mammalian CNA has revealed an additional inhibitory domain, called the autoinhibitory segment (AIS), located at the carboxy terminus of the CBD, which interacts with a hydrophobic domain previously shown to mediate substrate and immunophilin interaction (Li et al. 2016b). Existence of an additional AID was previously implicated from CNA mutant analysis (Perrino et al. 1995; Wang et al. 2008). In vitro functional analysis further suggested that AID and AIS cooperate to inhibit calcineurin and suggested an updated model for calcineurin activation (Li et al. 2016b). In this model, Ca2+ binding to CNB EF1 and EF2 induces a conformational change in CNB, which leads to movement of a large domain of CNA and subsequent stimulation of basal activity. Recruitment of Ca²⁺/calmodulin causes dissociation of AIS from the substrate docking domain and displacement of the AID from the catalytic site, likely via a reorientation rather than displacement, allowing full enzyme activation.

The reduced *in vitro* activity of recombinant mammalian calcineurin comprised of mutant EF1, EF2, or EF3 CNB also reduced calcineurin activity in the absence of calmodulin. Using the *cmd1-3* mutant yeast background, which expresses

Figure 6 Ca²⁺-binding domains modulate the hydrogen peroxide sensitivity of calcineurin. The *CDRE*-lacZ plasmid was transformed into *cnb1* Δ *vcx1* Δ yeast expressing either wild-type (WT) or mutant cnb1 as indicated. β -Galactosidase assays were conducted after 4 hr stimulation of yeast strains in YPD (pH 5.5) supplemented with 100 mM CaCl₂ in the presence or absence of 2 mM H₂O₂. Data are plotted as the percentage Ca²⁺-stimulated activity observed in the presence of H²O₂ relative to activity observed in cultures lacking H₂O₂. Data plotted are the average of four independent yeast transformants ± SD.

a form of calmodulin that cannot bind Ca²⁺ and therefore does not stimulate calcineurin (Moser et al. 1996), we found that EF1, EF2, or EF3 Cnb1 mutant calcineurin failed to stimulate calmodulin-independent calcineurin activity. Since binding of Ca²⁺/calmodulin is necessary to displace AID and AIS (Li et al. 2016b), we further tested whether removal of the Cna1 C-terminal regulatory CBD, AIS or AID could bypass the requirement for EF1, EF2, or EF3. Removal of the Cna1 AID alone or in combination with the CBD and AIS was not able to restore wild-type levels of calcineurin activity. Further, Cna1 truncation to additionally remove the CBD and AIS (Cna1- Δ CBD) revealed that mutation of EF1, EF2, or EF3 impairs transmission of an activation signal from Cnb1 to Cna1 that is independent of conformational changes involving the CBD, AIS, or AIDs of Cna1. Although our findings suggest an additional role, they do not rule out the possibility that reduced calmodulin interaction or ineffective displacement of the bipartite Cna1 AIDs contribute to the reduced activity of Cnb1 EF1, EF2, or EF3 mutant calcineurin in the context of full-length Cna1 and functional calmodulin. Indeed, mutation of EF2 has previously been reported to reduce the interaction of recombinant mammalian calcineurin with $Ca^{2+}/calmodulin$ in vitro (Feng and Stemmer 2001).

Interaction of calcineurin with immunophilin-immunosuppressant complexes requires Ca^{2+} and CNB (Cardenas *et al.* 1994; Milan *et al.* 1994; Rodríguez *et al.* 2009). Cnb EF1, EF2, and EF3 mutant calcineurin had increased sensitivity to inhibition by immunophilin-immunosuppressant complexes despite their reduced activity and Ca^{2+} responsiveness. These findings suggest that mutation of specific EF hands alters the conformation of calcineurin leading to enhanced

Figure 7 Cnb1 mutants impede calcineurin-mediated inhibition of the vacuolar H⁺/Ca²⁺ exchanger Vcx1. *cnb1* Δ *pmc1* Δ *crz1* Δ yeast expressing wild-type (WT) vs. mutant Cnb1 were grown for 2 days in YPD (pH 5.5) in the presence of the increasing concentrations of extracellular CaCl₂ at 30°. Optical density (OD₆₀₀) was measured for each culture and plotted as four individual transformants ± SD.

interaction with immunophilin-immunosuppressant complexes. Since these complexes share an overlapping binding site with substrates (Rodríguez *et al.* 2009), our observations suggest that substrate interactions may be altered in EF1, EF2, and EF3 Cnb1 mutants, contributing to either reduced binding or ineffective dephosphorylation due to inappropriate positioning of phosphorylated residues with respect to the catalytic site. Altered conformation and increased accessibility of the active site is also suggested by the increased sensitivity of EF1, EF2, and EF3 mutant calcineurin to oxidative inactivation. *In vitro* analysis of mammalian CNB has demonstrated that Ca^{2+} binding to CNB reduces the Michaelis-Menten constant (K_m) for substrate binding (Perrino *et al.* 1995).

In summary, our findings reveal striking conservation in the roles of Cnb1 EF hand domains in regulating calcineurin function between yeast *in vivo* and mammalian calcineurin *in vitro*, and extend those findings to reveal that EF1, EF2, and EF3 stimulate phosphatase activity independent of known conformational changes induced upon Ca²⁺ binding that lead to calmodulin binding and relief of bipartite auto-inhibition mediated by C-terminus of CNA. Further analysis of these mutants may shed light on how CNB stimulates calcineurin activity following Ca²⁺ binding within the context of interacting cellular factors that may function to shape calcineurin activity downstream of Ca²⁺ signaling, or development of novel strategies to inhibit calcineurin activity in cells.

Acknowledgments

We thank Kyle Cunningham at Johns Hopkins University for yeast strains, Martha Cyert at Stanford University for the *CDRE*-lacZ expression plasmid, Joseph Heitman at Duke University for pYDZ3 and anti-Cnb1 antibody, and Stephen

Liggett at University of South Florida for use of equipment. S.C. and T.J.K. were supported by University of Maryland Department of Physiology funding and National Institutes of Health grants NS058464 and Eunice Kennedy Shriver National Institute of Child Health and Human Development/ Office of Research on Women's Health/National Institute of Diabetes and Digestive and Kidney Diseases (K12 HD 43489). Project funding was also provided by University of Maryland School of Medicine Marlene and Stewart Greenebaum Cancer Center Developing Shared Service Pilot grant (National Cancer Institute P30CA134274-02S2). L.W. and E.M.M. were supported by an American Express endowed fund to the Iona College Honors Program.

Literature Cited

- Agbas, A., D. Hui, X. Wang, V. Tek, A. Zaidi *et al.*, 2007 Activation of brain calcineurin (Cn) by Cu-Zn superoxide dismutase (SOD1) depends on direct SOD1-Cn protein interactions occurring in vitro and in vivo. Biochem. J. 405: 51–59. https://doi. org/10.1042/BJ20061202
- Aufschnaiter, A., V. Kohler, and S. Buttner, 2017 Taking out the garbage: cathepsin D and calcineurin in neurodegeneration. Neural Regen. Res. 12: 1776–1779. https://doi.org/10.4103/ 1673-5374.219031
- Azzi, J. R., M. H. Sayegh, and S. G. Mallat, 2013 Calcineurin inhibitors: 40 years later, can't live without. J. Immunol. 191: 5785–5791. https://doi.org/10.4049/jimmunol.1390055
- Berridge, M. J., M. D. Bootman, and H. L. Roderick, 2003 Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4: 517–529. https://doi.org/10.1038/nrm1155
- Buchholz, M., and V. Ellenrieder, 2007 An emerging role for Ca2+/calcineurin/NFAT signaling in cancerogenesis. Cell Cycle 6: 16–19. https://doi.org/10.4161/cc.6.1.3650
- Bueno, O. F., E. van Rooij, J. D. Molkentin, P. A. Doevendans, and L. J. De Windt, 2002 Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc. Res. 53: 806–821. https://doi.org/10.1016/S0008-6363(01)00493-X
- Calalb, M. B., R. L. Kincaid, and T. R. Soderling, 1990 Phosphorylation of calcineurin: effect on calmodulin binding. Biochem. Biophys. Res. Commun. 172: 551–556. https://doi.org/10.1016/0006-291X (90)90708-U
- Cardenas, M. E., C. Hemenway, R. S. Muir, R. Ye, D. Fiorentino *et al.*, 1994 Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J. 13: 5944–5957.
- Chow, E. W., S. A. Clancey, R. B. Billmyre, A. F. Averette, J. A. Granek et al., 2017 Elucidation of the calcineurin-Crz1 stress response transcriptional network in the human fungal pathogen *Cryptococcus neoformans*. PLoS Genet. 13: e1006667. https:// doi.org/10.1371/journal.pgen.1006667
- Connolly, S., and T. Kingsbury, 2012 Regulatory subunit myristoylation antagonizes calcineurin phosphatase activation in yeast. J. Biol. Chem. 287: 39361–39368. https://doi.org/10.1074/jbc. M112.366617
- Crabtree, G. R., and E. N. Olson, 2002 NFAT signaling: choreographing the social lives of cells. Cell 109: S67–S79. https://doi. org/10.1016/S0092-8674(02)00699-2
- Cruz, M. C., D. S. Fox, and J. Heitman, 2001 Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. EMBO J. 20: 1020–1032. https:// doi.org/10.1093/emboj/20.5.1020
- Cui, J., J. A. Kaandorp, O. O. Ositelu, V. Beaudry, A. Knight *et al.*, 2009 Simulating calcium influx and free calcium concentrations

in yeast. Cell Calcium 45: 123–132. https://doi.org/10.1016/j. ceca.2008.07.005

- Cunningham, K. W., and G. R. Fink, 1994 Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124: 351–363. https://doi.org/10.1083/jcb.124.3.351
- Cunningham, K. W., and G. R. Fink, 1996 Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ AT-Pases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2226– 2237. https://doi.org/10.1128/MCB.16.5.2226
- Cyert, M. S., 2003 Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311: 1143–1150. https://doi.org/10.1016/S0006-291X(03)01552-3
- Cyert, M. S., and J. Thorner, 1992 Regulatory subunit (CNB1 gene product) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol. Cell. Biol. 12: 3460–3469. https://doi.org/10.1128/MCB.12.8.3460
- Cyert, M. S., R. Kunisawa, D. Kaim, and J. Thorner, 1991 Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. Proc. Natl. Acad. Sci. USA 88: 7376–7380 [corrigenda: Proc. Natl. Acad. Sci. USA 89: 4220 (1992)]. https://doi.org/ 10.1073/pnas.88.16.7376
- Deng, H., A. A. Gerencser, and H. Jasper, 2015 Signal integration by Ca(2+) regulates intestinal stem-cell activity. Nature 528: 212–217. https://doi.org/10.1038/nature16170
- Dolmetsch, R. E., R. S. Lewis, C. C. Goodnow, and J. I. Healy, 1997 Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386: 855– 858. https://doi.org/10.1038/386855a0
- Dwivedi, M., H. O. Song, and J. Ahnn, 2009 Autophagy genes mediate the effect of calcineurin on life span in C. elegans. Autophagy 5: 604–607. https://doi.org/10.4161/auto.5.5.8157
- Erin, N., S. K. Bronson, and M. L. Billingsley, 2003 Calcium-dependent interaction of calcineurin with Bcl-2 in neuronal tissue. Neuroscience 117: 541–555. https://doi.org/10.1016/S0306-4522(02)00933-8
- Feng, B., and P. M. Stemmer, 1999 Interactions of calcineurin A, calcineurin B, and Ca2+. Biochemistry 38: 12481–12489. https://doi.org/10.1021/bi990492w
- Feng, B., and P. M. Stemmer, 2001 Ca2+ binding site 2 in calcineurin-B modulates calmodulin-dependent calcineurin phosphatase activity. Biochemistry 40: 8808–8814. https://doi.org/ 10.1021/bi0025161
- Fischer, M., N. Schnell, J. Chattaway, P. Davies, G. Dixon et al., 1997 The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett. 419: 259–262. https:// doi.org/10.1016/S0014-5793(97)01466-X
- Forero, D. A., L. Herteleer, S. De Zutter, K. F. Norrback, L. G. Nilsson et al., 2016 A network of synaptic genes associated with schizophrenia and bipolar disorder. Schizophr. Res. 172: 68– 74. https://doi.org/10.1016/j.schres.2016.02.012
- Gallagher, S. C., Z. H. Gao, S. Li, R. B. Dyer, J. Trewhella *et al.*, 2001 There is communication between all four Ca(2+)-bindings sites of calcineurin B. Biochemistry 40: 12094–12102. https://doi. org/10.1021/bi0025060
- Geiser, J. R., D. van Tuinen, S. E. Brockerhoff, M. M. Neff, and T. N. Davis, 1991 Can calmodulin function without binding calcium? Cell 65: 949–959. https://doi.org/10.1016/0092-8674(91)90547-C
- Gietz, R. D., R. H. Schiestl, A. R. Willems, and R. A. Woods, 1995 Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360. https:// doi.org/10.1002/yea.320110408
- Hashimoto, Y., and T. R. Soderling, 1989 Regulation of calcineurin by phosphorylation. Identification of the regulatory site

phosphorylated by Ca2+/calmodulin-dependent protein kinase II and protein kinase C. J. Biol. Chem. 264: 16524–16529.

- Heineke, J., M. Auger-Messier, R. N. Correll, J. Xu, M. J. Benard *et al.*,
 2010 CIB1 is a regulator of pathological cardiac hypertrophy.
 Nat. Med. 16: 872–879. https://doi.org/10.1038/nm.2181
- Hilioti, Z., D. A. Gallagher, S. T. Low-Nam, P. Ramaswamy, P. Gajer et al., 2004 GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev. 18: 35–47. https://doi. org/10.1101/gad.1159204
- Horsley, V., and G. K. Pavlath, 2002 NFAT: ubiquitous regulator of cell differentiation and adaptation. J. Cell Biol. 156: 771–774. https://doi.org/10.1083/jcb.200111073
- Iida, H., Y. Yagawa, and Y. Anraku, 1990 Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J. Biol. Chem. 265: 13391–13399.
- Iida, H., H. Nakamura, T. Ono, M. S. Okumura, and Y. Anraku, 1994 MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol. Cell. Biol. 14: 8259–8271. https://doi.org/10.1128/ MCB.14.12.8259
- Imai, J., and I. Yahara, 2000 Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol. Cell. Biol. 20: 9262–9270. https://doi.org/10.1128/MCB.20.24.9262-9270.2000
- Juvvadi, P. R., C. Gehrke, J. R. Fortwendel, F. Lamoth, E. J. Soderblom et al., 2013 Phosphorylation of Calcineurin at a novel serineproline rich region orchestrates hyphal growth and virulence in *Aspergillus fumigatus*. PLoS Pathog. 9: e1003564. https://doi.org/ 10.1371/journal.ppat.1003564
- Kahl, C. R., and A. R. Means, 2003 Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24: 719–736. https://doi.org/10.1210/er.2003-0008
- Kawamura, A., and M. S. Su, 1995 Interaction of FKBP12–FK506 with calcineurin A at the B subunit-binding domain. J. Biol. Chem. 270: 15463–15466. https://doi.org/10.1074/jbc.270.26.15463
- Kingsbury, T. J., and K. W. Cunningham, 2000 A conserved family of calcineurin regulators. Genes Dev. 14: 1595–1604.
- Klee, C. B., G. F. Draetta, and M. J. Hubbard, 1988 Calcineurin. Adv. Enzymol. Relat. Areas Mol. Biol. 61: 149–200.
- Klee, C. B., H. Ren, and X. Wang, 1998 Regulation of the calmodulinstimulated protein phosphatase, calcineurin. J. Biol. Chem. 273: 13367–13370. https://doi.org/10.1074/jbc.273.22.13367
- Kujawski, S., W. Lin, F. Kitte, M. Bormel, S. Fuchs et al., 2014 Calcineurin regulates coordinated outgrowth of zebrafish regenerating fins. Dev. Cell 28: 573–587. https://doi.org/ 10.1016/j.devcel.2014.01.019
- Lee, J. I., S. Mukherjee, K. H. Yoon, M. Dwivedi, and J. Bandyopadhyay, 2013 The multiple faces of calcineurin signaling in *Caenorhabditis elegans*: development, behaviour and aging. J. Biosci. 38: 417–431. https://doi.org/10.1007/s12038-013-9319-6
- Li, H., A. Rao, and P. G. Hogan, 2011 Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 21: 91– 103. https://doi.org/10.1016/j.tcb.2010.09.011
- Li, S., S. M. Fell, O. Surova, E. Smedler, K. Wallis *et al.*, 2016a The 1p36 tumor suppressor KIF 1Bbeta is required for calcineurin activation, controlling mitochondrial fission and apoptosis. Dev. Cell 36: 164–178. https://doi.org/10.1016/j.devcel.2015.12.029
- Li, S. J., J. Wang, L. Ma, C. Lu, J. Wang et al., 2016b Cooperative autoinhibition and multi-level activation mechanisms of calcineurin. Cell Res. 26: 336–349. https://doi.org/10.1038/cr.2016.14
- Li, W., and R. E. Handschumacher, 1993 Specific interaction of the cyclophilin-cyclosporin complex with the B subunit of calcineurin. J. Biol. Chem. 268: 14040–14044.
- Luo, J., L. Sun, X. Lin, G. Liu, J. Yu et al., 2014 A calcineurin- and NFAT-dependent pathway is involved in alpha-synucleininduced degeneration of midbrain dopaminergic neurons.

Hum. Mol. Genet. 23: 6567–6574. https://doi.org/10.1093/ hmg/ddu377

- Mair, W., I. Morantte, A. P. Rodrigues, G. Manning, M. Montminy et al., 2011 Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470: 404– 408. https://doi.org/10.1038/nature09706
- Manji, H. K., I. I. Gottesman, and T. D. Gould, 2003 Signal transduction and genes-to-behaviors pathways in psychiatric diseases. Sci. STKE 2003: pe49. https://doi.org/10.1126/stke.2003.207.pe49
- Martensen, T. M., B. M. Martin, and R. L. Kincaid, 1989 Identification of the site on calcineurin phosphorylated by Ca2+/CaM-dependent kinase II: modification of the CaM-binding domain. Biochemistry 28: 9243–9247. https://doi.org/10.1021/bi00450a002
- Matheos, D. P., T. J. Kingsbury, U. S. Ahsan, and K. W. Cunningham, 1997 Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in *Saccharomyces cerevisiae*. Genes Dev. 11: 3445–3458. https://doi.org/10.1101/ gad.11.24.3445
- Mathieu, F., S. Miot, B. Etain, M. A. El Khoury, F. Chevalier *et al.*, 2008 Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav. Brain Funct. 4: 2. https://doi.org/10.1186/1744-9081-4-2
- Medina, D. L., S. Di Paola, I. Peluso, A. Armani, D. De Stefani et al., 2015 Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17: 288–299. https://doi.org/ 10.1038/ncb3114
- Milan, D., J. Griffith, M. Su, E. R. Price, and F. McKeon, 1994 The latch region of calcineurin B is involved in both immunosuppressantimmunophilin complex docking and phosphatase activation. Cell 79: 437–447. https://doi.org/10.1016/0092-8674(94)90253-4
- Moser, M. J., J. R. Geiser, and T. N. Davis, 1996 Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol. Cell. Biol. 16: 4824–4831. https://doi.org/10.1128/ MCB.16.9.4824
- Mukherjee, A., and C. Soto, 2011 Role of calcineurin in neurodegeneration produced by misfolded proteins and endoplasmic reticulum stress. Curr. Opin. Cell Biol. 23: 223–230. https://doi. org/10.1016/j.ceb.2010.12.006
- Mukherjee, A., D. Morales-Scheihing, D. Gonzalez-Romero, K. Green, G. Taglialatela *et al.*, 2010 Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathog. 6: e1001138. https://doi.org/10.1371/journal. ppat.1001138
- Musson, R. E., and N. P. Smit, 2011 Regulatory mechanisms of calcineurin phosphatase activity. Curr. Med. Chem. 18: 301– 315. https://doi.org/10.2174/092986711794088407
- Musson, R. E., C. M. Cobbaert, and N. P. Smit, 2012 Molecular diagnostics of calcineurin-related pathologies. Clin. Chem. 58: 511–522. https://doi.org/10.1373/clinchem.2011.167296
- Nakai, Y., J. Horiuchi, M. Tsuda, S. Takeo, S. Akahori et al., 2011 Calcineurin and its regulator sra/DSCR1 are essential for sleep in Drosophila. J. Neurosci. 31: 12759–12766. https:// doi.org/10.1523/JNEUROSCI.1337-11.2011
- Nakamura, T., Y. Liu, D. Hirata, H. Namba, S. Harada *et al.*, 1993 Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12: 4063–4071.
- Nakayama, S., and R. H. Kretsinger, 1994 Evolution of the EF-hand family of proteins. Annu. Rev. Biophys. Biomol. Struct. 23: 473–507. https://doi.org/10.1146/annurev.bb.23.060194.002353
- Namgaladze, D., H. W. Hofer, and V. Ullrich, 2002 Redox control of calcineurin by targeting the binuclear Fe(2+)-Zn(2+) center at the enzyme active site. J. Biol. Chem. 277: 5962–5969. https://doi.org/10.1074/jbc.M111268200

- Nguyen, T., and S. Di Giovanni, 2008 NFAT signaling in neural development and axon growth. Int. J. Dev. Neurosci. 26: 141–145. https://doi.org/10.1016/j.ijdevneu.2007.10.004
- Nishiyama, T., N. Yoshizaki, T. Kishimoto, and K. Ohsumi, 2007 Transient activation of calcineurin is essential to initiate embryonic development in *Xenopus laevis*. Nature 449: 341– 345. https://doi.org/10.1038/nature06136
- Nygaard, U., M. Deleuran, and C. Vestergaard, 2017 Emerging treatment options in atopic dermatitis: topical therapies. Dermatology 233: 333–343. https://doi.org/10.1159/000484407
- Odom, A., S. Muir, E. Lim, D. L. Toffaletti, J. Perfect et al., 1997 Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16: 2576–2589. https://doi.org/10.1093/ emboj/16.10.2576
- Paidhungat, M., and S. Garrett, 1997 A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromonestimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell. Biol. 17: 6339–6347. https://doi.org/ 10.1128/MCB.17.11.6339
- Patel, A., N. Yamashita, M. Ascano, D. Bodmer, E. Boehm et al., 2015 RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat. Commun. 6: 10119. https://doi.org/10.1038/ ncomms10119
- Paul, A. S., S. Saha, K. Engelberg, R. H. Jiang, B. I. Coleman *et al.*, 2015 Parasite calcineurin regulates host cell recognition and attachment by apicomplexans. Cell Host Microbe 18: 49–60. https://doi.org/10.1016/j.chom.2015.06.003
- Peiris, H., and D. J. Keating, 2018 The neuronal and endocrine roles of RCAN1 in health and disease. Clin. Exp. Pharmacol. Physiol. 45: 377–383. https://doi.org/10.1111/1440-1681.12884
- Perrino, B. A., L. Y. Ng, and T. R. Soderling, 1995 Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain. J. Biol. Chem. 270: 7012. https://doi.org/10.1074/jbc.270.1.340
- Peuker, K., S. Muff, J. Wang, S. Kunzel, E. Bosse *et al.*, 2016 Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat. Med. 22: 506–515. https:// doi.org/10.1038/nm.4072
- Philip, N., and A. P. Waters, 2015 Conditional degradation of plasmodium calcineurin reveals functions in parasite colonization of both host and vector. Cell Host Microbe 18: 122–131. https://doi.org/10.1016/j.chom.2015.05.018
- Qadota, H., I. Ishii, A. Fujiyama, Y. Ohya, and Y. Anraku, 1992 RHO gene products, putative small GTP-binding proteins, are important for activation of the CAL1/CDC43 gene product, a protein geranylgeranyltransferase in Saccharomyces cerevisiae. Yeast 8: 735–741. https://doi.org/10.1002/yea.320080906
- Qu, J., R. Matsouaka, R. A. Betensky, B. T. Hyman, and C. L. Grosskreutz, 2012 Calcineurin activation causes retinal ganglion cell degeneration. Mol. Vis. 18: 2828–2838.
- Rodríguez, A., J. Roy, S. Martínez-Martínez, M. D. López-Maderuelo, P. Niño-Moreno *et al.*, 2009 A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants. Mol. Cell 33: 616–626. https://doi.org/10.1016/ j.molcel.2009.01.030
- Rothermel, B. A., R. B. Vega, and R. S. Williams, 2003 The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc. Med. 13: 15–21. https://doi.org/ 10.1016/S1050-1738(02)00188-3
- Roy, J., and M. S. Cyert, 2009 Cracking the phosphatase code: docking interactions determine substrate specificity. Sci. Signal. 2: re9. https://doi.org/10.1126/scisignal.2100re9
- Roy, J., H. Li, P. G. Hogan, and M. S. Cyert, 2007 A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Mol. Cell 25: 889–901. https:// doi.org/10.1016/j.molcel.2007.02.014

- Saneyoshi, T., S. Kume, Y. Amasaki, and K. Mikoshiba, 2002 The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417: 295–299. https:// doi.org/10.1038/417295a
- Schulz, R. A., and K. E. Yutzey, 2004 Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev. Biol. 266: 1–16. https://doi.org/10.1016/j.ydbio. 2003.10.008
- Shah, S. Z., T. Hussain, D. Zhao, and L. Yang, 2017 A central role for calcineurin in protein misfolding neurodegenerative diseases. Cell. Mol. Life Sci. 74: 1061–1074. https://doi.org/ 10.1007/s00018-016-2379-7
- Sherman, F., 1991 Getting started with yeast. Methods Enzymol. 194: 3–21. https://doi.org/10.1016/0076-6879(91)94004-V
- Shibasaki, F., and F. McKeon, 1995 Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. J. Cell Biol. 131: 735–743. https://doi.org/10.1083/jcb.131.3.735
- Shibasaki, F., E. Kondo, T. Akagi, and F. McKeon, 1997 Suppression of signalling through transcription factor NF-AT by interactions between calcineurin and Bcl-2. Nature 386: 728–731. https://doi. org/10.1038/386728a0
- Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
- Someren, J. S., L. E. Faber, J. D. Klein, and J. A. Tumlin, 1999 Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms. Biochem. Biophys. Res. Commun. 260: 619–625. https://doi.org/10.1006/bbrc.1999.0800
- Stathopoulos, A. M., and M. S. Cyert, 1997 Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11: 3432–3444. https://doi.org/10.1101/gad.11.24.3432
- Thewes, S., 2014 Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryot. Cell 13: 694–705. https://doi.org/10.1128/EC.00038-14
- Tokoyoda, K., Y. Takemoto, T. Nakayama, T. Arai, and M. Kubo, 2000 Synergism between the calmodulin-binding and autoinhibitory domains on calcineurin is essential for the induction of their phosphatase activity. J. Biol. Chem. 275: 11728–11734. https://doi.org/10.1074/jbc.275.16.11728
- Tong, Y., and F. Song, 2015 Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation. Autophagy 11: 1192–1195. https://doi.org/10.1080/ 15548627.2015.1054594
- Tseng, H. H. L., C. T. Vong, Y. W. Kwan, S. M. Lee, and M. P. M. Hoi, 2017 Lysosomal Ca(2+) signaling regulates high glucosemediated interleukin-1beta secretion via transcription factor EB in human monocytic cells. Front. Immunol. 8: 1161. https://doi. org/10.3389/fimmu.2017.01161
- Wang, H., Y. Du, B. Xiang, W. Lin, X. Li *et al.*, 2008 A renewed model of CNA regulation involving its C-terminal regulatory domain and CaM. Biochemistry 47: 4461–4468. https://doi. org/10.1021/bi702539e
- Wang, H. G., N. Pathan, I. M. Ethell, S. Krajewski, Y. Yamaguchi et al., 1999 Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284: 339–343. https://doi. org/10.1126/science.284.5412.339
- Wang, X., V. C. Culotta, and C. B. Klee, 1996 Superoxide dismutase protects calcineurin from inactivation. Nature 383: 434– 437. https://doi.org/10.1038/383434a0
- Wang, X., X. Peng, X. Zhang, H. Xu, C. Lu *et al.*, 2017 The emerging roles of CIB1 in cancer. Cell. Physiol. Biochem. 43: 1413– 1424. https://doi.org/10.1159/000481873
- Wilkins, B. J., and J. D. Molkentin, 2004 Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun. 322: 1178–1191. https://doi.org/ 10.1016/j.bbrc.2004.07.121

- Withee, J. L., J. Mulholland, R. Jeng, and M. S. Cyert, 1997 An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol. Biol. Cell 8: 263–277. https://doi.org/ 10.1091/mbc.8.2.263
- Wu, H., A. Peisley, I. A. Graef, and G. R. Crabtree, 2007 NFAT signaling and the invention of vertebrates. Trends Cell Biol. 17: 251–260. https://doi.org/10.1016/j.tcb.2007.04.006
- Yang, S. A., and C. B. Klee, 2000 Low affinity Ca2+-binding sites of calcineurin B mediate conformational changes in calcineurin A. Biochemistry 39: 16147–16154. https://doi.org/10.1021/bi001321q
- Zayzafoon, M., 2006 Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 97: 56–70. https://doi.org/10.1002/jcb.20675
- Zhang, T., J. Lei, H. Yang, K. Xu, R. Wang et al., 2011 An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 28: 795–798. https://doi.org/10.1002/ yea.1905
- Zhang, X., L. Yu, and H. Xu, 2016 Lysosome calcium in ROS regulation of autophagy. Autophagy 12: 1954–1955. https://doi. org/10.1080/15548627.2016.1212787
- Zhu, D., M. E. Cardenas, and J. Heitman, 1995 Myristoylation of calcineurin B is not required for function or interaction with immunophilin-immunosuppressant complexes in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 270: 24831–24838. https:// doi.org/10.1074/jbc.270.42.24831

Communicating editor: A. Mitchell