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ABSTRACT It remains challenging to boost statistical power of genome-wide association studies (GWASs) to identify more risk variants
or loci that can account for “missing heritability.” Furthermore, since most identified variants are not in gene-coding regions, a
biological interpretation of their function is largely lacking. On the other hand, recent biotechnological advances have made it feasible
to experimentally measure the three-dimensional organization of the genome, including enhancer–promoter interactions in high
resolutions. Due to the well-known critical roles of enhancer–promoter interactions in regulating gene expression programs, such
data have been applied to link GWAS risk variants to their putative target genes, gaining insights into underlying biological mecha-
nisms. However, their direct use in GWAS association testing is yet to be exploited. Here we propose integrating enhancer–promoter
interactions into GWAS association analysis to both boost statistical power and enhance interpretability. We demonstrate that through
an application to two large-scale schizophrenia (SCZ) GWAS summary data sets, the proposed method could identify some novel SCZ-
associated genes and pathways (containing no significant SNPs). For example, after the Bonferroni correction, for the larger SCZ data
set with 36,989 cases and 113,075 controls, our method applied to the gene body and enhancer regions identified 27 novel genes and
11 novel KEGG pathways to be significant, all missed by the transcriptome-wide association study (TWAS) approach. We conclude that
our proposed method is potentially useful and is complementary to TWAS and other standard gene- and pathway-based methods.
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SCHIZOPHRENIA (SCZ) is a chronic and severe mental
disorder, affecting 1% of the general population world-

wide, characterized by cognitive impairment and increased
mortality (Sullivan et al. 2012). Previous studies have dem-
onstrated the high heritability of SCZ (Sullivan et al. 2012).
Although .100 loci have been identified from some recent
large genome-wide association studies (GWASs), the identi-
fied genetic variants can explain only a small proportion of
the heritability (Sullivan et al. 2012; Ripke et al. 2013, 2014;
Li et al. 2017). This phenomenon is common for other GWASs
on other complex traits and diseases (Manolio et al. 2009;
Welter et al. 2013). Furthermore, themajority of the identified

risk variants are located outside gene-coding regions
(Maurano et al. 2012), making it difficult to interpret the
underlying biological mechanisms such as their target genes.
Presumably, many risk variants are in regulatory regions, influ-
encing the function of their target genes that are either nearby
or distal (Corradin et al. 2014; Smemo et al. 2014). An alter-
native to the most popular single SNP-based analysis is gene-
based testing (Pan 2009;Wu et al. 2011; Pan et al. 2014;Wang
et al. 2017), in which a gene-coding region is extended up to
several kilobase pairs to hopefully cover some regulatory ele-
ments, e.g., promoter regions. However, the distance between
a target gene and its regulatory elements can be as far as 2 or
3 Mb (Krivega and Dean 2012), while a too large extension of
a gene region to be tested may include too many nonassoci-
ated SNPs, leading to not only low statistical power but also
difficulties in result interpretation. For example, an identified
gene–trait association may be due to a far away causal SNP,
whichmay not have any biological function linked to the iden-
tified significant gene.
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Anewapproach is to use expression quantitative trait locus
(eQTL) data to select and then weight gene expression-
associated SNPs (i.e., eSNPs) in a largely expanded gene region
(e.g., up to 1 Mb) in transcriptome-wide association studies
(TWASs) (Gamazon et al. 2015; Gusev et al. 2016). However,
there are still some shortcomings in TWASs. For example, due
to linkage disequilibrium (LD) or reverse-causal effects, an
eSNP of a gene may not necessarily have a direct biological
function on the gene. In addition, due to low power in detect-
ing trans-effects, TWAS cannot include far away regulatory
regions of a gene (Wainberg et al. 2017). Furthermore, the
effects of eSNPs or eQTL on target transcript levels could be
too modest to be detected or estimated accurately (Corradin
et al. 2014). On the other hand, it is known that GWAS risk
loci are enriched in enhancers (Hawkins et al. 2013; Glodzik
et al. 2017), implicating their regulatory roles in disease eti-
ology. Through the overall three-dimensional structure of
chromatin, distal enhancers can be brought into close prox-
imity of promoters, leading to transcriptional regulation of the
linked genes (Ong and Corces 2014). Recent biotechnological
advances based on Chromatin Conformation Capture (3C),
such as Hi-C (Van Berkum et al. 2010), ChIA-PET (Li et al.
2012), and promoter capture Hi-C (Javierre et al. 2016), have
made it feasible to experimentally measure (Dryden et al.
2014; Burren et al. 2017) or computationally predict (Cao
et al. 2017) nearby or distal enhancer–promoter interactions.
Such data have been used to link GWAS risk loci to their target
genes, thus gaining insights into the genetic basis of complex
diseases (Dryden et al. 2014; Martin et al. 2015; Mishra and
Hawkins 2017). In particular, it has been discovered
(Mumbach et al. 2017) that for 684 autoimmune disease-
associated variants studied and their 2597 target genes, only
14% of the target genes were the nearest gene to the disease-
associated variant, which has been often incorrectly taken as
the putative one in GWASs. Importantly, such data also offer
a new opportunity to be directly used in gene-based associa-
tion testing for GWASs: when testing on a gene, in addition to
its coding and promoter regions, we can also include its en-
hancer regions. For simplicity, throughout this paper, we refer
to a DNA fragment interacting with a promoter as an en-
hancer. Finally, since an enhancer may be associated with
multiple target genes while the target genes are often func-
tionally related (Corradin et al. 2014), a pathway analysis of
a set of some functionally related genes may be more power-
ful than gene-based testing if the individual gene–trait asso-
ciations are weak, as widely applied in practice without
enhancer–promoter interaction information (Jia et al. 2010;
Wang et al. 2010, 2011; Schaid et al. 2012; Huang et al.
2016). Our method is applicable to pathway analysis, albeit
different from existing approaches by including the en-
hancers, in addition to the gene bodies and possibly pro-
moters of the genes in a pathway.

In this paper, we propose a simple but powerful analysis
strategy to integrate enhancer–promoter interactions with
GWAS summary results to identify novel trait-associated
genes and pathways; it can not only boost statistical power

for new discoveries by focusing on enhancer regions enriched
with risk variants, but also enhance interpretability of new
discoveries by linking risk variants to their putative target
genes. To further explain the missing heritability and better
understand the mechanism of SCZ, we applied our proposed
methods to perform gene- and pathway-based analyses to
identify SCZ-associated genes and pathways.

Methods

Data

Although .100 loci have been identified from some recent
large GWASs, the identified genetic variants can explain only
a small proportion of the heritability (Sullivan et al. 2012;
Ripke et al. 2013, 2014; Li et al. 2017), and most of these loci
reside in relatively uncharacterized noncoding regions of the
genome (Ripke et al. 2014). To further explain the missing
heritability and better understand the underlyingmechanism
of SCZ, we performed gene- and pathway-based analyses to
identify SCZ-associated genes and pathways by reanalyzing
two SCZ GWAS summary data sets: a meta-analyzed SCZ
GWAS data set with 8832 cases and 12,067 controls, denoted
as SCZ1 (Ripke et al. 2013); and amore recent and larger one
with 36,989 cases and 113,075 controls, denoted as SCZ2
(Ripke et al. 2014).

Although enhancer–promoter interactions are generally
believed to be tissue-specific (Andersson et al. 2014), due
to the lack of data and shared enhancer–promoter interactions
across multiple tissues and cell types, we expect and thus dem-
onstrate that enhancer–promoter interaction data from other
tissues might still be useful. For simplicity, we call any DNA
fragment interacting with a promoter as an enhancer. Here we
mainly used two publicly available data sets to determine the
enhancers for each target gene based on its enhancer–
promoter interactions: (i) experimentally measured from
the MCF-7 cell line by genome-wide Chromatin Interaction
Analysis with Paired-End-Tag sequencing (ChIA-PET) (Li
et al. 2012), denoted as MCF7 in the following; and (ii) com-
putationally predicted for the brain hippocampus region
based on the ENCODE and Roadmap Epigenomic data (Cao
et al. 2017), denoted as Hippo. Given our example applica-
tion to SCZ and the relatedness of hippocampus to the neu-
ropathology and pathophysiology of SCZ (Harrison 2004),
we chose the predicted enhancer–promoter interactions for
the hippocampus (Cao et al. 2017). In addition, we consid-
ered two publicly available Hi-C libraries from midgestation
developing human cerebral cortex from two zones to deter-
mine the enhancers for each target gene (Won et al. 2016):
(i) the cortical and subcortical plate, consisting primarily of
postmitotic neurons, denoted as CP in the following; and (ii)
the germinal zone, containing primarily mitotically active
neural progenitors, denoted as GZ in the following.

We defined multiple SNP sets for each gene to be tested as
the following. First, we obtained the genomic coordinates of
the SNPs and genes based on the human reference genome
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hg19. Second, we defined two promoter regions of a gene by
extending 500 bp (Andersson et al. 2014) upstream (from its
TSS) or downstream (from its TES) of the gene. Note that,
although a promoter region is generally located upstream of a
gene, a gene might have several proximal promoter regions
scattered around introns and TES (Goñi et al. 2007). Hence,
we extended 500 bp both upstream TSS and downstream
TES of each gene to include some possible cis-acting regula-
tory regions. Third, an enhancer region of a (target) genewas
defined as one interactingwith its promoter region (based on a
data source of enhancer–promoter interactions). Note that,
depending on the source of the data sets, such as MCF7 or
Hippo, the defined enhancer regions for each target gene
might be different. Fourth, a gene body region was defined
as that flanking its TSS and TES, including both introns and
exons, plus its two promoter regions (upstream its TSS and
downstream its TES). Finally, to minimize the effect of collin-
earity and to reduce the computational burden, the SNPs were
further pruned such that no pairs of SNPs were highly corre-
lated (with r. 0:95) within a set of the SNPs being tested. For
simplicity, we denote a set of the SNPs inside a gene’s body and
enhancer regions as “E + G,” while that inside a gene’s en-
hancer regions as “E only” or “E.”We further denote standard
gene-based analysis, which tests a set of the SNPs inside a
gene’s body, as “STD.”

Statistical tests

For a given set of SNPs for a target gene or pathway, to
determine whether it is associated with a GWAS trait, for
illustration we applied two popular SNP set-based tests, a
burden test called the Sum or SPU(1) test and a variance-
component score test called the SSU or SPU(2) test, which is
equivalent to kernel machine regression or SKATwith a linear
kernel (Pan 2009; Wu et al. 2011; Pan et al. 2014). Briefly,
based on a GWAS summary data set, for each target gene (or
target pathway) we have its Z-score vector Z ¼ ðZ1; . . . ; ZkÞ9
for k SNPs in a defined SNP set; for each SNP j, we have the
Z-score Zj ¼ b̂j=SEj with b̂j being the estimated (marginal)
effect size and SEj its standard deviation. The burden test

SPU(1) and the variance-component score test SPU(2) are
defined as:

SPUð1Þ ¼
Xk

j¼1

Zj; SPUð2Þ ¼
Xk

j¼1

Z2j :

Under the null hypothesisH0 that the SNP set (for a gene or a
pathway) is not associated with the trait, SPU(1) and SPU(2)
follow an asymptotically (or approximately) normal distribu-
tion and a mixture of chi-squared distributions, respectively.
To calculate the P-values, we need the correlation matrix for
Z, which can be estimated by LD among the SNPs based on a
reference panel (e.g., the 1000 Genomes Project data) (Kwak
and Pan 2015; Gusev et al. 2016).

To better illuminate the effects of enhancers, we applied
both SPU(1) and SPU(2) to enhancer regions only (called “E
only” or “E”), in addition to “E + G” regions and the standard
gene body regions (called “STD”), respectively. For compar-
ison, we also applied the TWAS method (Gusev et al. 2016)
and its extension based on the (weighted) SPU(2) (Xu et al.
2017). Note that, since TWAS is equivalent to the weighted
SPU(1) test with cis-eQTL-derived weights [with 500-kb ex-
tension; Xu et al. (2017)], we applied theweighted SPU(1) test
to represent TWAS. Specifically, the weighted SPU(1) test uses
a weighted sum of the z-scores of the SNPs with eQTL-derived
weights to construct its test statistic, while, as an extension of
TWAS, theweighted SPU(2) test is based on aweighted sumof
the squared z-scores of the SNPs. We downloaded four sets
of eQTL-derived weights from the TWAS website: microarray
gene expression data measured in blood from 1245 unrelated
subjects from the Netherlands Twin Registry (NTR), microar-
ray expression array data measured in blood from 1264 indi-
viduals from the Young Finns Study (YFS), RNA-seqmeasured
in adipose tissue from 563 individuals from the Metabolic Syn-
drome in Men study (METSIM), and RNA-seq measured in
the dorsolateral prefrontal cortex from 621 individuals from
CommonMind Consortium (CMC) (Gusev et al. 2016).

To control multiple testing, we used the Bonferroni cor-
rection. For the SCZ1 data, we analyzed 9127 and 4600 genes

Figure 1 Histograms of enhancer–promoter interaction data. In the middle panel, for better visualization, 12 pairs with distance .1 Mb are omitted.
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for MCF7- and Hippo-defined gene regions, respectively;
we used a slightly more stringent Bonferroni cutoff
(0:05=10; 000 ¼ 53 1026). For STD, we tested on �22,000
genes with a corresponding Bonferroni-adjusted cutoff. For
TWAS, we applied the Bonferroni correction to each set of
the eQTL-derived weights (around a few thousands), for which
we ignored the fact that the four sets of the eQTL-derived
weights were used in TWAS; unless specified otherwise, we
took the union of the identified gene sets of TWAS across the
four sets of the weights.

Following Gusev et al. (2016), we evaluated the perfor-
mance of the methods by first identifying the significant and
novel genes that did not overlap with any genome-wide sig-
nificant SNP, both based on the SCZ1 data, then examining
the replication rate of the identified genes that also contained
one ormore genome-wide significant SNPs in the larger SCZ2
data. To test for the statistical significance of such a replica-
tion rate or an enrichment, we applied a hyper-geometric test

with the background probability estimated from the set of
genes being tested. Note that, for a given GWAS data set, a
novel gene is defined as a significant gene (extended 6
500 kb) that does not include any significant SNP.

For pathway-based analysis, we extracted the candidate
pathways from the KEGG pathway database (Kanehisa and
Goto 2000) and restricted our analyses to the 191 KEGG
pathways containing between 10 and 200 genes, which is
widely adopted in practice for pathway-based analysis
(O’Dushlaine et al. 2015). We used a stringent Bonferroni
cutoff (0:05=500 ¼ 13 1024) for pathway-based analysis.
For comparison, we applied a new method (Wu and Pan
2018), which extends TWAS from gene-based to pathway-
based analysis. Briefly, we applied the weighted SPU(1) and
SPU(2) tests, in which each of the SNPs in the genes (or their
extended regions) belonging to a pathway is weighted by its
estimated cis-effect size on the gene expression based on an
eQTL data set.

Figure 2 Histograms of2log10 P-values for SNPs in enhancers and gene body regions, respectively. The left and right panels are based on the SCZ1 and
SCZ2 data, respectively.

Table 1 Numbers of significant genes identified by analyzing the SCZ1 data

Enhancer Enhancer + gene body

Gene body (STD)

TWAS

MCF7 Hippo MCF7 Hippo YFS NTR METSIM CMC

# genes 8589 3363 9127 4600 22842 4697 2452 4665 5412
SPU(1) 14/12/11a 8/6/6 20/19/18 15/13/14 36/32/34 14/11/14 10/6/10 8/5/7 16/10/13
SPU(2) 35/25/29 9/9/9 39/29/33 46/34/40 89/77/84 31/25/26 27/19/26 23/14/23 39/25/34

The numbers a/b/c in each cell indicate the numbers of (a) significant genes; (b) significant genes that covered one or more genome-wide significant SNPs within an extended
gene region 6500 kb in the SCZ1 data; (c) significant genes that covered one or more genome-wide significant SNPs within an extended gene region 6500 kb in the SCZ2
data.
a Some genome-wide significant loci in the SCZ1 data were no longer significant in the SCZ2 data. For example, gene CUL9 contained some significant SNPs in the SCZ1 data
(with the most significant SNP p ¼ 1:23 1028) but did not contain any significant SNPs in the SCZ2 data (with the smallest p ¼ 9:63 1027).
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Data availability

The original SCZ1 and SCZ2 GWAS summary data can be
downloaded at the PGC site https://www.med.unc.edu/
pgc/results-and-downloads. The LD reference data can be
obtained from http://www.internationalgenome.org/data;
TWAS and eQTL-based weights can be downloaded at http://
gusevlab.org/projects/fusion/. The enhancer–promoter inter-
action data can be obtained from Li et al. (2012), Won et al.
(2016), and Cao et al. (2017). The related computer scripts,
examples, and processed enhancer information can be down-
loaded at https://figshare.com/articles/Enhancer_information_
and_related_codes_for_a_new_gene-based_analysis/5995381.
Supplemental material available at Figshare: https://doi.org/
10.25386/genetics.6193055.

Results
Data summary

Figure 1 shows the distributions of some statistics for the two
enhancer–promoter interaction data sets. The MCF7 and
Hippo data contained 25,310 and 7245 pairs of enhancer–
promoter interactions, respectively. On average, for each
target gene there were 2.8 and 1.6 enhancer–promoter inter-
actions in the two data sets, respectively. Some enhancers
(e.g., 168 in theMCF7data) located on chromosomes different
from that of their target genes, confirming the potential use-
fulness of enhancer–promoter interaction data. For the MCF7
and Hippo data, the average distances between a target gene
and its farthest enhancer were �246 and 99 kb, respectively,
indicating that the usual practice of extending a gene body by
several kilobase pairs (as in STD) might fail to cover some
important regulatory elements. Furthermore, there were on
average�1.5 (with theMCF7) and 1.3 genes (with theHippo)
between a target gene and its farthest enhancer, suggesting the
pitfall of the usual practice of assigning an associated SNP to
the nearest gene in GWASs. This phenomenon has been
confirmed by other researchers as well (Won et al. 2016;
Mumbach et al. 2017).

The Kolmogorov–Smirnov test showed that the empirical
distribution of the P-values for SNPs in enhancers was signif-
icantly different from that for gene body regions (P-value
, 2:2310216). Figure 2 depicts the distribution of 2log10
P-values for SNPs in enhancers and in gene body regions,
respectively, illustrating that there was an enrichment of
small P-values for SCZ GWASs in enhancers. This phenome-
non was more evident for the larger SCZ2 data.

Gene-based testing

We first applied the various methods to the SCZ1 data while
using the larger (but overlapping) SCZ2 data to partially
validate the results. First, the numbers of the significant genes
are shown in Table 1. For fair comparisons, we applied the
Bonferroni correction for each method (with possibly differ-
ent numbers of the genes/SNP sets available) separately. It
appears that our methods and TWAS identified fewer signif-
icant genes than that of the standard gene-based testing,
whichwas likely due to differing numbers of the genes tested:
the former applied to only �10,000 genes while the latter
(STD) to�22,000 genes. If we focused on the common set of
5203 genes that could be analyzed by all methods, using a
common andmore stringent cutoff 0:05=10; 000 ¼ 53 1026;

“E + G,” “E only,” STD, and TWAS identified 29, 20, 26, and
38 significant genes, respectively (Supplemental Material,
Figure S1).

To further illustrate the added value of using enhancer
information,wegenerated randomenhancer regions based
on theHippo data. Specifically, for each gene,we generated
the same number of “enhancer regions” with the same
lengths but different start and end positions as compared

Table 2 Numbers of significant and novel genes identified by analyzing the SCZ1 data

Enhancer Enhancer + gene body

STD

TWAS

MCF7 Hippo MCF7 Hippo YFS NTR METSIM CMC

# genes 8589 3363 9127 4600 22842 4697 2452 4665 5412
SPU(1) 2/0 2/0 1/1 2/2 4/4 3/3 4/4 3/2 6/4
SPU(2) 10/6 0/0 10/6 12/8 12/10 6/3 8/8 9/9 14/11

The numbers a/b in each cell indicate the numbers of (a) significant and novel genes with no genome-wide significant SNPs within an extended gene region 6500 kb in the
SCZ1 data; (b) significant and novel genes that covered one or more genome-wide significant SNPs within an extended gene region 6500 kb in the SCZ2 data.

Figure 3 Venn diagram of the significant and novel genes identified by
the different methods applied to the SCZ2 data. “E + G” and “E” com-
bine the results (i.e., taking the union) of using MCF7 and Hippo data,
while TWAS combines the results of using YFS-, NTR-, METSIM-, and
CMC-based weights.
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to the original enhancers. Both the SPU(1) and SPU(2)
tests with the randomly generated “enhancer regions”
plus the gene body identified fewer significant genes
[eight for SPU(1) and 33 for SPU(2)] than those of using
the original “E + G” regions [15 for SPU(1) and 46 for SPU
(2)], showcasing that enhancer information indeed added
the value. Note that, since gene body regions may contain
some associated SNPs, with random “enhancer regions”
both SPU(1) and SPU(2) could still identify some signifi-
cant genes.

Next, we checked the novel genes among the significant
genes as shown in Table 2; a novel gene is defined as one that
does not cover any genome-wide significant SNP in an ex-
tended gene region 6500 kb upstream its TSS and down-
stream TES. We summarize the replication rates and their
statistical significance by a hyper-geometric test in Table
S1. SPU(2) applied to “E + G” based on MCF7 identi-
fied 10 novel genes in the SCZ1 data, of which 6 (60%) con-
tained genome-wide significant SNPs in the SCZ2 data
(P-value ¼ 5:93 1026 by the hyper-geometric test), offering
a highly significant partial validation on the identified genes.
Even though two significant and novel genes identified by
applying SPU(1) to “E only”withMCF7 (or Hippo) data were
not replicated in the SCZ2 data, SPU(1) is a widely used gene-

based test with its well-controlled type 1 error rates estab-
lished by many previous studies (Li and Leal 2008; Pan 2009;
Kwak and Pan 2015; Gusev et al. 2016). In comparison,
TWAS and its extension gave a similar replication rate. For
example, the standard TWAS [i.e., SPU(1)] based on CMC
identified six novel genes in the SCZ1 data, of which 4 (67%)
contained genome-wide significant SNPs in the SCZ2 data (P-
value ¼ 6:53 1024 by the hyper-geometric test). Impor-
tantly, Table S2 lists the significant and novel genes identified
by analyzing the SCZ1 data, showing that most of the signif-
icant and novel genes (31 out of 37, �84%) identified by
“E only” or “E + G” have been reported by other studies.
Similarly, TWAS and its extension identified 41 significant
and novel genes, of which 34 (�83%) have been reported
by other studies. In addition, applying SPU(1) and SPU(2) to
“E + G” regions identified similar numbers of significant and
novel genes to those of TWAS [i.e., SPU(1) and its extension
SPU(2)] with each of the four sets of eQTL-derived weights.
For a fair comparison, we also examined a common set of
2226 genes that could be analyzed by our methods with
MCF7 data, TWAS with CMC-based weights, and STD. We
applied the Bonferoni correction (0:05=2226 ’ 2:23 1025).
Figure S2 shows that using “E + G” and “E,” TWAS, and STD
identified nine, six, seven, and eight significant and novel

Table 3 Significant and novel genes identified by our newmethod applied to “enhancer + gene body” regions, but missed by TWAS, with
the SCZ2 data

Gene CHR # SNPs SPU(1) SPU(2) Sig SNP Source Ref STD E

ZBTB48 1 11 6:431022 3:731026 4:931026 Hippo T
RBBP5 1 64 4:331021 1:331027 8:731027 Hippo T T
RBBP5 1 69 1:731021 3:931028 8:731027 MCF7 T T
DSTYK 1 147 1:231026 4:031026 8:731027 MCF7 T
HAT1 2 78 4:231023 4:431026 1:931026 MCF7
MED19 3 15 5:231021 2:831026 6:731028 Hippo [2] T T
UBE2D3 4 183 1:131026 1:531025 2:231026 MCF7 T
ZNF664 4 54 2:831025 1:831026 4:131027 Hippo [1] T
NDFIP2 5 70 2:031021 1:231026 3:831026 Hippo T
MAN2A1 5 404 1:331021 1:931026 1:031027 MCF7 [1,2] T
SRP54 6 144 2:231022 4:031026 1:531027 Hippo T
SLC16A10 6 163 4:231028 9:731027 1:431026 MCF7 T
TRAF3IP2-AS1 6 214 1:131025 3:231027 1:431026 MCF7 [1] T T
DDX56 7 37 7:431028 9:831027 7:131027 MCF7 [1] T T
LIPC 7 309 3:131024 2:031026 5:231027 Hippo [1] T
FAM63B 7 123 3:231022 1:531026 5:231027 Hippo [1] T
CNOT7 8 51 6:531023 2:731026 1:131027 MCF7 T
DYM 10 759 3:231025 1:831026 2:531026 Hippo T
GSTO1 10 11 2:831026 4:031024 6:231026 MCF7 T
NDFIP2 13 74 1:431021 2:431026 3:831026 MCF7 T
DOPEY2 14 370 1:431022 1:931027 6:331026 Hippo [1] T
FAM214A 15 225 4:431024 1:231026 1:131025 MCF7 [1] T
DNAJA3 16 41 4:331026 5:931027 2:831027 MCF7 [1] T T
SPG7 16 237 9:931022 5:231028 1:131027 MCF7 [1] T T
C16orf55 16 45 1:831021 1:431026 1:131027 MCF7
SPATA2L 16 50 4:331021 3:031026 1:131027 MCF7 T
VPS9D1 16 107 7:731023 2:231026 1:131027 MCF7 T
CDK5R1 17 12 2:531021 1:331026 3:331026 MCF7
DIRAS1 19 23 1:631026 5:731028 1:131026 MCF7 T
DOPEY2 21 416 5:931022 1:131027 6:331026 MCF7 [1] T

The P-value of the most significant SNP (“Sig SNP”) in the region and the source database used to construct enhancer–promoter interactions are also shown. The validated gene–
trait associations appeared in the following references: [1] Goes et al. (2015); [2] Li et al. (2017). T stands for the gene has been identified by either STD or “E only.”
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genes, respectively. Using “E + G” and “E only” identified two
(CNOT7 and ACTR5) and three (SMG6, ANKRD44, and
SH3RF1) significant and novel genes that were missed by
the other two methods, respectively.

In summary, compared to TWAS and STD, our new meth-
ods (“E + G” and “E only”) identified similar numbers of the
significant and novel genes with similar replication rates for
the SCZ1 data. Importantly, our new methods could identify
some significant and novel genes that were missed by both
TWAS and STD. Equally, TWAS and its extension could also
identify some significant and novel genes missed by our new
methods. When a gene includes one or several far away en-
hancer regions with GWAS trait-associated SNPs, we expect
that our newmethods will be most useful. On the other hand,
if one gene contains several cis-eQTLs that are not in annotated
enhancer regions, we expect that TWASwill bemore powerful
than our new methods. In short, our new methods can be
useful in using enhancer information to boost statistical power
to identify novel trait-associated genes that could bemissed by
other methods.

Having established the potential usefulness of our new
method based on the smaller SCZ1 data, we applied the
methods to the larger SCZ2 data to identify significant and
novel genes. For a fair comparison, we mainly focused on the
5212 genes that could be analyzed by both our new methods
and TWAS, using the same and more stringent cutoff
(0:05=10; 000 ¼ 53 1026). Figure 3 shows the Venn dia-
gram of the identified significant and novel genes by different
methods. Our methods applied to “E + G” and “E only,”
TWAS and STD identified 46, 30, 44, and 36 significant novel
genes, respectively. Six novel genes have been identified by
both TWAS and our new method, but missed by STD. For
example, MRPL33 was identified by our methods; it con-
tained eight SNPs in the gene body plus seven SNPs in three

enhancers, of which the most distant enhancer was �618 kb
away from the gene body. MRPL33 was reported to be asso-
ciated with SCZ by Goes et al. (2015). However, a standard
gene-based test with an extension of up to several kilobase
pairs would fail to include some of its enhancers and thus
miss its significant association. In addition, SCZ is associated
with impairments in working memory that reflect dysfunc-
tion of dorsolateral prefrontal cortex (DLPFC) circuitry (Kahn
and Keefe 2013; Arion et al. 2015); it has been shown that
MRPL33 for cells dissected from the DLPFC of monkeys dis-
played significantly lower expression in SCZ subjects (Arion
et al. 2015). Although TWAS/SPU(1) could not identify gene
MRPL33 (P-value ¼ 9:73 1024), its extension SPU(2) could

Figure 4 Venn diagram of the significant and novel pathways identified
by the different methods applied to the SCZ2 data.

Table 4 Significant and novel genes identified by our new method applied to enhancer regions only (“E only”), but missed by TWAS, with
the SCZ2 data

Gene CHR # SNPs SPU(1) SPU(2) Sig SNP Source Ref STD E + G

NOL9 1 2 6:43 1021 2:83 1026 4:931026 Hippo
ZBTB48 1 5 3:13 1021 4:93 1026 4:931026 Hippo T
PSMB2 1 3 1:03100 2:33 1026 1:231025 MCF7
RBBP5 1 11 4:53 1022 1:03 1026 8:731027 MCF7 T T
MED19 3 5 1:13 1024 2:63 1026 6:731028 Hippo [2] T T
SRP54 6 8 3:33 1024 2:53 1026 1:531027 Hippo T
REV3L 6 48 3:33 1027 1:03 1027 1:431026 MCF7
TRAF3IP2-AS1 6 48 3:33 1027 1:03 1027 1:431026 MCF7 [1] T T
DDX56 7 21 7:43 1028 9:83 1027 7:131027 MCF7 [1] T T
DEF8 8 9 7:23 1021 4:93 1026 1:131027 Hippo
ZNF623 8 46 2:13 1025 3:53 1026 1:831027 MCF7
GNG7 11 3 1:33 1022 3:03 1026 1:131026 Hippo [1]
FAM214A 15 106 1:63 1024 4:83 1027 1:131025 MCF7 [1] T
DNAJA3 16 4 8:83 1027 8:93 1027 2:831027 MCF7 [1] T T
SPG7 16 107 6:53 1021 2:63 1028 1:131027 MCF7 [1] T T
SPATA2L 16 40 4:83 1021 1:13 1026 1:131027 MCF7 T
VPS9D1 16 89 5:43 1023 1:03 1026 1:131027 MCF7 T
SLC35A4 18 4 1:93 1026 2:23 1025 3:631027 Hippo

The P-value of the most significant SNP (“Sig SNP”) in the region and the source database used to construct enhancer–promoter interactions are also shown. The validated gene–
trait associations appeared in the following references: [1] Goes et al. (2015); [2] Li et al. (2017). T stands for the gene has been identified by either STD or “E 1 G.”
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(P-value ¼ 9:33 1028). Table 3 highlights 27 significant and
novel genes identified by “E+G”; none of the genes contained
any genome-wide significant SNPs in its extended regions by
6500 kb in the SCZ2data; theywere alsomissed byTWASand
its extensionwith any of the four eQTLdata sets. Twelve genes,
such as MED19 and MAN2A1, have been reported by other
independent studies (Goes et al. 2015; Li et al. 2017) as shown
in the GWAS Catalog v1.0 (Welter et al. 2013). For example,
gene FAM214A, reported to be associated with SCZ (Goes
et al. 2015), contained 119 SNPs in the gene body plus
106 SNPs in 10 enhancer regions; its most distant en-
hancer region was �152 kb away. The most significant
SNP (P-value ¼ 1:13 1025) within its E + G region was lo-
cated in an enhancer region, explaining why our new method
(when applied to either “E+G” or “E only”) could identify this
gene while STD [P-value of SPU(1) ¼ 7:83 1024; P-value of
SPU(2) ¼ 8:23 1026] failed, confirming GWAS signals in en-
hancer regions. Table 4 shows 18 significant and novel genes
identified using “E only” regions; all of them were missed by
TWAS, though 11 were also identified by our method applied
to “E + G.” Again most of the genes have been reported to be
SCZ-associated by other independent studies (Goes et al.
2015; Li et al. 2017). Because a gene body may contain many
nonassociated SNPs, leading to nonsignificant gene-based
testing, using enhancer regions only identified some genes
that could have been missed by the standard gene-based or
“E + G”-based testing. Tables S3–S6 list the significant and
novel genes identified by “E + G”- and “E only”-based testing,
TWAS, and STD (with 96, 60, 84, and 92 unique genes, respec-
tively) whenwe focused on all available genes for eachmethod.

Using enhancer–promoter interaction data in developing
human brain: We applied CP- and GZ-based “E only” and
“E + G” testing to both the SCZ1 and SCZ2 data. Tables S7
and S8 show the numbers of the significant genes identified
by analyzing the SCZ1 and SCZ2 data, respectively. For fair
comparisons, we used the Bonferroni correction for each
method separately. Perhaps due to the numbers of genes
tested being much smaller here (�1000), testing with “E + G”
identified fewer significant genes than that with the MCF7

data. This was also true for testing with “E only.” However,
the CP and GZ data indeed provided some useful informa-
tion. For the SCZ2 data, testing with CP- or GZ-based “E+G”
could identify 52 significant and novel genes, among which
40weremissed by “E+G”withMCF7 orHippo, “E only”with
MCF7 or Hippo, TWAS, and STD (Table S9).

Pathway-based analysis

Weapplied the pathway-basedmethods to the SCZ2 data.We
defined a significant gene as the one identified by applying the
SPU(1) and SPU(2) tests to the SCZ2 datawith the gene body
regions (i.e., the STD method). For simplicity, we defined a
novel pathway as the one with no known significant gene.
Figure 4 shows the Venn diagram of the identified significant
and novel pathways by the different methods. Our methods
applied to “E + G” and “E only,” TWAS, and STD identified
40, 19, 18, and 27 significant and novel pathways, respec-
tively. Table 5 highlights 11 novel pathways identified by our
method with “E + G” regions but missed by both TWAS and
STD. Pathways NOD-like receptor signaling (hsa04621) and
Pathogenic Escherichia coli infection (hsa05130) have been
reported by others to be associated with SCZ (Szatkiewicz
et al. 2014; Wu et al. 2016). Table 6 shows five significant
and novel pathways identified by using “E only” regions but
missed by both TWAS and STD, of which three were also
missed by using “E + G” regions. Again, because the gene

Table 5 Significant and novel pathways identified by our new method applied to “enhancer + gene body” regions, but missed by TWAS
and STD, with the SCZ2 data

ID Pathway name # gen SPU(1) SPU(2) Source

hsa00071 Fatty acid degradation 42 8:531021 6:73 1025 Hippo
hsa00511 Other glycan degradation 15 9:731025 1:03 1023 Hippo
hsa00534 Glycosaminoglycan biosynthesis 26 3:731021 5:53 1025 Hippo
hsa03320 PPAR signaling 66 6:631021 6:93 1025 Hippo
hsa04621 NOD-like receptor signaling 57 4:831021 2:13 1025 Hippo

1:731022 2:93 1025 MCF7
hsa04960 Aldosterone-regulated sodium reabsorption 40 5:331021 5:83 1026 Hippo
hsa04966 Collecting duct acid secretion 25 1:131021 3:03 10211 Hippo
hsa00562 Inositol phosphate metabolism 53 7:031021 7:43 1025 MCF7
hsa03022 Basal transcription factors 33 3:031022 4:73 1027 MCF7
hsa03450 Nonhomologous end-joining 13 1:231021 1:03 1025 MCF7
hsa05130 Pathogenic Escherichia coli infection 52 8:331021 3:03 1025 MCF7

Table 6 Significant and novel pathways identified by our new
method applied to enhancer regions only (“E only”), but missed
by TWAS and STD, with the SCZ2 data

ID
Pathway
name # gen SPU(1) SPU(2) Source

hsa00340 Histidine
metabolism

29 2:831021 7:431025 Hippo

hsa00380 Tryptophan
metabolism

37 1:231021 8:431027 Hippo

hsa00740 Riboflavin
metabolism

16 1:531028 2:431027 Hippo

hsa03320 PPAR signaling 66 6:831025 3:431024 Hippo
hsa03022 Basal transcription

factors
33 1:131021 2:631025 MCF7
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bodies in a pathway may contain no or few associated SNPs,
leading to nonsignificant pathway-based testing, using en-
hancer regions only identified some pathways that could be
missed by the standard (STD) pathway-based or “E + G”-
based testing. In summary, the pathways in Tables 5 and 6
represent some new discoveries gained by using enhancer–
promoter interaction information.

Discussion

It has become increasingly important to measure enhancer–
promoter interactions, ormore generally the three-dimensional
organization of the human genome, to understand gene
expression regulation. In particular, such data have been
used to link GWAS risk loci to their (putative) target genes,
enhancing the interpretation of GWAS discoveries. Since
the target genes may not be the ones nearest to GWAS risk
variants, the usual practice of assigning the gene nearest to
a risk variant as the (putative) target gene is generally prob-
lematic. Here we directly incorporate enhancer–promoter
interactions into gene-based association testing for GWAS,
which is expected to not only boost statistical power, but
also enhance biological interpretation at the target gene
level. In particular, complementary to the standard gene-
based and TWAS approaches, testing with annotated en-
hancer regions could identify some significant and novel
genes that would be missed by the other two approaches;
these novel genes did not contain any significant SNPs in-
side or near the regions. Our proposed two variants of using
gene body and enhancer regions (“E + G”) and using only
enhancer regions (“E only”) are also complementary to each
other: in general “E+G” is expected to be more powerful by
taking advantage of information with gene body regions,
while “E only” is more specific with a focus on enhancers,
which might yield significant results that would be missed
by “E + G.” Furthermore, the proposed method is applicable
to pathway-based analysis. For its relative performance as
compared to the standard or TWAS-based pathway analy-
ses, we reach the same conclusions as that for gene-based
testing.

Although it would be ideal to use enhancer–promoter in-
teraction data drawn from a disease- or trait-related tissue,
wemainly used the data from the tissues not necessarily most
relevant to schizophrenia but that still demonstrated their
potential usefulness due to the lack of disease-related tissue
data and expected commonalities of theDNA three-dimensional
organizations across multiple tissue and cell types. Neverthe-
less, we also applied our method to an enhancer–promoter
interaction data set based on the developing human brain,
uncovering some significant genes that would bemissed based
on the other two data sets. Although the results confirmed the
usefulness of using tissue-specific data, due to varying sensitiv-
ities and specificities of different biotechnologies (e.g., ChIA-PET
vs. Hi-C, experimental vs. computational), we found that it
was useful and complementary to use different tissue-based
data sets. In addition, as in TWAS, we could apply our method

to and then combine the results frommultiple tissues, or apply
other more powerful and adaptive tests (Gusev et al. 2016; Xu
et al. 2017). The issue with the choice of the tissue or cell type
is similar to that in TWAS: a recent study (Qi et al. 2018) has
shown that, for brain-related traits, using blood cis-eQTL (with
larger sample sizes) could gain power over using (smaller)
brain eQTL data sets, while the genetic effects of cis-eQTL
are highly correlated between independent brain and blood
samples. Finally, although our application was focused on
schizophrenia, the proposed method is quite general and
applicable to other traits based on either individual-level
or summary GWAS data.
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