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Abstract

Background—A statistical pipeline was developed and used for determining candidate genes 

and candidate gene co-expression networks involved in two alcohol (i.e., ethanol) metabolism 

phenotypes, namely alcohol clearance and acetate area under the curve (AUC) in a recombinant 

inbred (HXB/BXH) rat panel. The approach was also used to provide an indication of how ethanol 

metabolism can impact the normal function of the identified networks.

Methods—RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH 

recombinant inbred rats. The reconstructed transcripts were quantitated and data was used to 

construct gene co-expression modules and networks. A separate group of rats, comprising the 

same 30 strains, were injected with ethanol (2 gm/kg) for measurement of blood ethanol and 

acetate levels. These data were used for QTL analysis of the rate of ethanol disappearance and 

circulating acetate levels. The analysis pipeline required calculation of the module eigengene 

values, the correction of these values with ethanol metabolism rates and acetate levels across the 

rat strains and the determination of the eigengene QTLs. For a module to be considered a 

candidate for determining phenotype, the module eigengene values had to have significant 

correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the 

phenotypic QTLs.

Results—Of the 658 transcript co-expression modules generated from liver RNA sequencing 

data, a single module satisfied all criteria for being a candidate for determining the alcohol 

clearance trait. This module contained two alcohol dehydrogenase genes, including the gene 

whose product was previously shown to be responsible for the majority of alcohol elimination in 

the rat. This module was also the only module identified as a candidate for influencing circulating 

acetate levels. This module was also linked to the process of generation and utilization of retinoic 

acid as related to the autonomous immune response.

Conclusions—We propose that our analytical pipeline can successfully identify genetic regions 

and transcripts which predispose a particular phenotype and our analysis provides functional 

context for co-expression module components.

Keywords

Alcohol metabolism; RNA sequencing; Weighted gene co-expression network analysis; 
Quantitative trait locus mapping; HXB/BXH recombinant inbred rat panel; Liver

Introduction

Genome-wide association studies (GWASs) were originally designed to leverage the 

principle of linkage disequilibrium at the population level by scanning millions of variants in 

the genome across unrelated individuals to identify loci associated with (and presumably 

predisposing) complex traits (Visscher et al., 2012). Since its first applications (Klein et al., 

2005), hundreds of GWASs have been implemented and a dedicated catalog of the published 

studies has been developed (Welter et al., 2014, GWAS Catalog, https://www.ebi.ac.uk/

gwas/. Accessed 04 Dec. 2017). Often the quantitative trait loci (QTLs) identified in GWASs 

do not fully explain the heritability of the complex trait anticipated from epidemiologic 

studies (e.g. alcohol dependence) (Edenberg and Foroud, 2013), and the relationship 
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between the identified loci and the biology underlying complex diseases may not be easily 

deciphered (Nicolae et al., 2010).

The advent of next-generation RNA sequencing (RNA-seq) technologies has provided 

researchers with new tools for gaining insight into the genetic basis of health and disease. 

Namely, researchers can now incorporate RNA expression levels in a “use all data” (Perez-

Enciso et al., 2007) systems biology approach to extract meaningful genetic information 

about complex traits. Integrating transcriptome expression data with genotype information, 

i.e. genetical genomics, can provide insight into the mechanisms predisposing disease 

phenotypes (Schadt et al., 2003). A now standard approach for integrating information on 

RNA expression with genotypic information, to elucidate mechanisms by which DNA 

polymorphisms contribute to complex traits, is to identify the areas of the genome that are 

associated with a complex trait (QTLs) and that contribute to determining the levels of gene 

expression (expression quantitative trait loci; eQTLs). Moreover, the use of methods to 

generate information on networks arising from analysis of gene co-expression and the 

genetic loci driving such co-expression (module eigengene quantitative trait loci; meQTLs), 

can contribute additional knowledge to the underlying biology (Ghazalpour et al., 2006, 

Mackay et al., 2009). For example, co-expressed genes may not only be controlled by the 

same transcriptional regulatory program (Mackay et al., 2009), but also may be functionally 

linked (Stuart et al., 2003). The co-expressed gene products may be members of the same 

metabolic pathway or protein complex (Ge et al., 2001). Additionally, co-expression 

modules can be used to functionally annotate (“guilt by association”) novel or under 

annotated genes (Serin et al., 2016), including non-coding elements. Zhang and Horvath 

(2005) developed a statistical technique for quantifying gene co-expression networks and 

identifying co-expression modules from RNA expression data. This methodology, termed 

weighted gene co-expression analysis (WGCNA), has been employed in numerous studies 

(Fuller et al., 2007, Oldham et al., 2008, Konopka et al., 2009, DiLeo et al., 2011, Xue et al., 

2014) to statistically describe the relationship amongst gene products.

Our previous work has integrated eQTL information and WGCNA with phenotypic QTL 

(pQTL) analysis in a hypothesis generating approach, to identify candidate modules 

predisposing complex traits (Tabakoff et al., 2009, Vanderlinden et al., 2013, Saba et al., 

2015, Harrall et al., 2016). In our current study, we investigated whether this approach can 

be valuable in a “hypothesis testing” mode. We sought to provide a proof-of-concept that an 

unsupervised, statistically-based systems biology approach can identify predisposition co-

expression module(s) in alcohol naïve animals that contain components known to influence 

alcohol (i.e., ethanol) metabolism. It is well-documented that the majority of alcohol (~ 

95%) is eliminated via metabolism in the liver (Bosron et al., 1993, Ramchandani et al., 

2001, Norberg et al., 2003). Hepatic oxidation of ethanol, in which alcohol 

dehydrogenase(s) (ADH) convert ethanol to acetaldehyde, and acetaldehyde is converted to 

acetate by aldehyde dehydrogenase (ALDH), is the major metabolic pathway for elimination 

of ingested ethanol (Norberg et al., 2003, Guindalini et al., 2005, Zakhari, 2006, Cederbaum, 

2012). Prior studies seeking genetic explanations for differences in ethanol metabolism 

using QTL analysis in mice have produced results which were difficult to interpret, and did 

not relate to prior literature (Grisel et al., 2002). Therefore, we were attempting to validate 

our approach by verifying whether co-expression module(s) which were associated with 
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alcohol clearance, derived through our analysis, reflected the extensive information in the 

literature on known pathways of alcohol clearance. Assuming that our analytical framework 

produced credible results, we further postulated that the module information that we 

generated would provide insight into the normal physiologic network that could be perturbed 

by ingestion of ethanol.

Materials and Methods

Unless otherwise noted, all analyses were performed using R (v. 3.3.2).

Animals

The HXB/BXH Recombinant Inbred (RI) rat panel used in this study was derived from the 

congenic Brown Norway strain with polydactyly-luxate syndrome (BN-Lx/Cub) and the 

spontaneous hypertensive rat strain (SHR/OlaIpcv) using gender reciprocal crossing and 

more than 80 generations of brother/sister mating after the F2 generation (Pravenec et al., 

1989). While this panel was originally constructed to examine genetic control of 

cardiovascular phenotypes, many other complex traits have been found to vary across this 

panel and are thus amenable to genetic studies (Tabakoff et al., 2009, Vanderlinden et al., 

2013, Saba et al., 2015, Kunes et al., 1994, Bielavska et al., 2002, Conti et al., 2004, 

Pravenec et al., 2004).

Male rats at the age of 90 days were used for our studies. These animals were bred and 

maintained at the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech 

Republic. All experiments involving the administration of ethanol and blood sampling, as 

well as liver harvesting, were performed in accordance with the Animal Protection Law of 

the Czech Republic and were approved by the Ethics Committee of the Institute of 

Physiology, Czech Academy of Sciences, Prague.

Alcohol Clearance and Blood Acetate Level Measurements in the HXB/BXH Recombinant 
Inbred Rat Panel

Three male rats per strain across 30 strains of the HXB/BXH RI panel (90 rats total) were 

intraperitoneally injected with a 2 g/kg dose of ethanol (15% w/v). (See Supplementary 

Methods in Appendix S1 for a detailed description of ethanol dose choice rationale.) Blood 

draws from the tail vein were collected for quantifying alcohol and acetate concentration at 

the following time points post-alcohol administration: 20, 40, 60, 90, 120, 180, 240, 300, 

and 400 minutes. In addition, a 0 time point sample was gathered immediately prior to 

alcohol administration. For each sampling, approximately 100 μL of blood was collected. 

Following collection, two volumes of ice cold 0.6 N perchloric acid were added to each 

sample, and the resulting supernatant, after centrifugation at 13000 g and 4 °C for 10 

minutes, was kept for analysis. Samples were stored at −80 °C and shipped in dry ice to the 

University of Colorado Anschutz Medical Campus for analysis.

Alcohol Clearance Quantitation in the HXB/BXH Recombinant Inbred Rat Panel

Blood alcohol levels were determined using a Varian 3800 gas chromatograph (Varian, Palo 

Alto, CA, USA) equipped with an Agilent Technologies DB-ALC1 column (Agilent 
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Technologies, Santa Clara, CA, USA; part number 123-9134) and a Varian 8200 

AutoSampler (Varian, Palo Alto, CA, USA). Prior to gas chromatographic analysis, the 

thawed blood samples were centrifuged at 13000 g and 4 °C for three minutes, and 10 μL of 

100 mM 2-propanol internal standard was added to 80 μL aliquots of the supernatant. With 

each batch of samples assayed, standard curves were generated using 0, 5, 10, 20, 40, 60, 80, 

and 100 mM alcohol standards that were prepared in blood taken from control rats in a 

manner identical to the experimental samples. The alcohol concentration/time curves for 

each rat were fit to a one-compartment pharmacokinetic (PK) model with first-order 

absorption and first-order elimination by employing the nonlinear Levenberg-Marquardt 

fitting algorithm using the minpack.lm package (v. 1.2-1) (Elzhov et al., 2012) in R. The 

first-order clearance values represent the alcohol clearance phenotype (see Supplementary 

Methods in Appendix S1 for a detailed description of alcohol quantitation). We used 

intraperitoneal injection of ethanol to avoid the confounding of metabolism of ethanol by the 

high KM stomach ADH system (Vaglenova et al., 2003). (See Supplementary Methods in 

Appendix S1 for a detailed description of ethanol delivery method rationale.) The 

pharmacokinetics of some strains of the HXB/BXH RI panel resembled pseudo zero-order 

alcohol elimination kinetics (e.g., BXH10 in Fig. 1). We, however, used a uniform 

phenotype derived using first-order kinetic parameters to enable comparison of alcohol 

clearance across strains. Both statistical (Table S1) and visual comparison of zero-order 

(straight line) and first-order (exponential decay) kinetic models indicated little difference in 

fits between the two models for each animal.

Acetate Area under the Curve (AUC) Quantitation in the HXB/BXH Recombinant Inbred Rat 
Panel

Blood acetate levels were determined using the Sigma-Aldrich acetate colorimetric assay kit 

(Sigma-Aldrich, St. Louis, MO, USA; catalog number MAK086) using the manufacturer’s 

recommended protocol. To prepare the blood samples for analysis, 48 μL of 0.5 M 

potassium hydroxide was added to 60 μL aliquots of the blood samples. Samples were 

centrifuged at 13000 g and 4 °C for one minute, and 35.7 μL of the supernatant was 

combined with 14.3 μL of assay buffer. For the standard curves, blood from control rats was 

processed in an identical manner to the experimental samples, and standard curves for 

concentrations of 0.00, 0.25, 0.50, 1.00, 1.50, and 2.00 mM were constructed. Absorbance 

values were measured using the BioTek Synergy HT plate reader (BioTek, Winooski, VT, 

USA). Acetate AUC from 0 to 400 minutes was calculated from the acetate concentration-

time curves for each individual rat by employing the linear trapezoidal rule using the PK 

package (v. 1.3-3) (Jaki and Wolfsegger, 2010) and these values were used as the acetate 

AUC phenotype (see Supplementary Methods in Appendix S1 for a detailed description of 

acetate quantitation).

Whole Liver RNA Sequencing for the HXB/BXH Recombinant Inbred Rat Panel

Liver tissue was stored in liquid nitrogen and shipped to the University of Colorado 

Anschutz Medical Campus for RNA extraction and cDNA library preparation. Total RNA 

extracted from livers obtained from 49 male rats (90 days old) was sequenced. Of the 49 

liver samples, 44 were from the HXB/BXH RI panel (1-2 livers/strain) and five samples 

were from the progenitor strains (BN-Lx/Cub and SHR/OlaIpcv). The rats from these RI 
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strains are genetically identical to the rats used for phenotyping but the rats used for RNA-

Seq analysis were not exposed to alcohol. These animals were housed in identical 

environments as the rats that received ethanol.

Livers were processed in three batches and included seven technical replicates (56 libraries). 

Total RNA (>200 bases) was extracted and cleaned using the RNeasy Plus Universal Midi 

Kit and RNeasy Mini Kit, respectively (Qiagen, Valencia, CA, USA). Four μL of a 1:100 

dilution of either ERCC Spike-In Mix 1 or Mix 2 (ThermoFisher Scientific, Wilmington, 

DE, USA) were added to each extracted RNA sample. Construction of sequencing libraries 

was done using the Illumina TruSeq Stranded RNA Sample Preparation kit (Illumina, San 

Diego, CA, USA) in accordance with the manufacturer’s protocol. Part of this process 

included ribosomal RNA depletion via the Ribo-Zero rRNA reduction chemistry. An Agilent 

Technologies Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) was utilized 

to assess sequencing library quality, and samples were sequenced (2×100 paired-end (PE) 

reads, three to four samples multiplexed per lane) on an Illumina HiSeq2500 (Illumina, San 

Diego, CA, USA) in High Output mode.

Quantitation of Whole Liver RNA for the HXB/BXH Recombinant Inbred Rat Panel

Raw reads were trimmed to remove adapter sequences as well as low quality bases using 

Trim Galore! (v. 0.4.0). Low quality bases were determined using the default parameters. 

The trimmed reads were initially aligned to ribosomal RNA (rRNA) from the RepeatMasker 

database (Smit et al., 1996) accessed through the UCSC Genome Browser (Kent et al., 

2002b, UCSC Genome Browser. https://genome.ucsc.edu/. Accessed 15 April 2016) using 

TopHat (v. 2.0.14) (Trapnell et al., 2009). PE reads which did not map to rRNA were 

quantified into Ensembl gene-level abundance estimates (Ensembl Release 81) 

(Cunningham et al., 2015) using the RSEM (RNA-Seq by Expectation Maximization 

package) (v. 1.2.21) (Li and Dewey, 2011) and strain-specific Ensembl transcriptomes 

generated in our laboratories. (See Supplementary Methods in Appendix S1 for a detailed 

description of Trim Galore!, TopHat, and RSEM settings). Initially, strain-specific genomes 

for the RI strains were constructed from the Rat Genome Sequencing Consortium (RGSC) 

Rnor_6.0 version of the rat genome (Gibbs et al., 2004) by imputing single nucleotide 

polymorphism (SNP) information for each strain based on their STAR Consortium 

genotypes (Star Consortium et al., 2008) and DNA sequencing (DNA-Seq) data from male 

rats of the progenitor strains [86]. These data are publicly available on the PhenoGen 

website (Saba et al., 2015, PhenoGen. http://phenogen.ucdenver.edu. Accessed 04 Dec. 

2017). Strain-specific transcriptomes were generated from these imputed genomes and the 

Ensembl database (Ensembl Release 81) (Cunningham et al., 2015).

To prepare the expression estimates for analysis, genes with an average RSEM-estimated 

read count of less than one across the 56 samples were considered undetectable above 

background and not used in the analysis. Quantitated samples were initially examined for 

quality using hierarchical clustering. The RUV (Removal of Unwanted Variance) algorithm 

(Risso et al., 2014) based on empirically-derived control genes was used to eliminate batch 

effects and other technical factors contributing to variance. Empirically-derived control 

genes were identified as the 5,000 least significant genes in a negative binomial generalized 
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linear model (McCarthy et al., 2012) with RI strain as the covariate using the edgeR package 

(v. 3.14.0) (Robinson et al., 2010) in R. The RUVg function from the RUVSeq package (v. 

1.6.2) (Risso et al., 2014) was used to derive three normalization factors. The number of 

normalization factors used was determined by the clustering of technical replicates. 

Normalized counts were used in subsequent analyses.

After normalization, samples were reduced to only include RI animals (not the progenitors) 

and only one technical replicate per biological sample, i.e., multiple RNA-Seq libraries from 

the same animal (the technical replicate with the highest normalized read count was retained 

to ensure the most powerful library for that animal). Because of the reduction in the number 

of libraries included and the normalization of read counts, genes were again filtered based 

on the criteria of an average normalized read count greater than one. The normalized 

expression data were transformed into regularized log (rlog) values using the DESeq2 

package (v. 1.12.4) (Love et al., 2014). This function 1) transformed the data to a log2 scale 

and 2) stabilized the within gene variance to avoid the dependence of the variance on the 

mean.

Weighted Gene Co-Expression Network Analysis for the HXB/BXH Recombinant Inbred Rat 
Panel

The WGCNA package (v. 1.51) (Langfelder and Horvath, 2008) was used to build co-

expression modules from the rlog-transformed RNA expression estimates for the HXB/BXH 

RI panel collected for this study. For HXB/BXH RI strains with multiple biological 

replicates, i.e., measurements on independent animals but of the same strain, mean strain 

values were used to calculate connectivity. Two settings of the network-building function for 

WGCNA were changed from their default settings: the minimum module size parameter (set 

to five instead of 30) and the deepSplit parameter (set to four instead of two). Both of these 

alterations promote the identification of smaller modules, which was desirable because it 

facilitates subsequent independent expert analysis of how genes contained within any 

identified candidate modules are interrelated for ascertaining biological insights. By 

allowing smaller modules, we are retaining genes and their respective co-expression 

modules that would have otherwise not been placed into a module at all. The absolute value 

of the Pearson correlation coefficient was used to determine the adjacency matrix, i.e. an 

unsigned network. Furthermore, the soft-thresholding index, β, was set to six to approximate 

a scale-free topology. The value for the soft-thresholding index was determined using the 

methods and critical values proposed in Zhang and Horvath (2005) (Fig. S1). A module 

eigengene (first principal component) was used to summarize the gene expression profiles 

within a module across strains for subsequent analyses (Langfelder and Horvath, 2008).

Molecular Markers for Genetic Mapping

The molecular marker set used for quantitative trait loci (QTL) analyses was derived from 

the existing publicly available strain-specific genomes created using SNPs genotyped by the 

STAR Consortium (2008). The SNP positions within the marker set that was publically 

released were based on the RN3.4 version of the rat genome. To convert the SNP positions 

to the RN6 version of the rat genome, we aligned the probes from the SNP arrays used to 

generate the public STAR Consortium marker set to the RGSC Rnor_6.0 rat genome 
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assembly (Gibbs et al., 2004, Havlak et al., 2004) using the UCSC command line BLAST-

like alignment tool (BLAT) (Kent, 2002a), and both the genome and the alignment tool were 

downloaded from the UCSC Genome Browser (Kent et al., 2002b, UCSC Genome Browser. 

https://genome.ucsc.edu/. Accessed 15 April 2016). We retained markers for QTL analysis 

in this study if the following criteria were met: 1) their probe sequence aligned perfectly and 

uniquely to the genome, 2) their genotypes differed between progenitor strains, 3) neither 

progenitor strain was heterozygous for the SNP, and 4) less than 5% of the HXB/BXH RI 

strains were missing or heterozygous for the SNP. In addition, markers with large estimated 

genetic distance compared to physical distance from adjacent markers (improbable 

recombination events, flanked by more than 10 cM on each side) and double recombinant 

markers were removed. Genetic distances were estimated using the R/qtl package (v. 1.40-8) 

(Broman et al., 2003). Prior to QTL analyses, the marker set was reduced to unique strain 

distribution patterns, i.e. multiple adjacent markers with the same genotype pattern across 

strains were represented by a single marker, in order to reduce the computational burden. 

The RN6 version of the STAR Consortium SNP map is available on the PhenoGen website.

Quantitative Trait Loci Analysis (QTL)

Marker regression was used to calculate module eigengene QTLs using strains of the 

HXB/BXH RI panel that had both genotype information from the STAR Consortium and 

RNA expression/eigengene estimates from the PhenoGen database. The pQTLs for alcohol 

clearance and acetate AUC in the HXB/BXH RI panel were also determined using marker 

regression with strain means. Empirical genome-wide p-values were calculated using 1000 

permutations (Churchill and Doerge, 1994). For the two phenotypes, both significant (p < 

0.05) and suggestive (p < 0.63) pQTLs were considered. The definitions of significant and 

suggestive p-values were taken from Lander and Kruglyak (1995) and have been adopted by 

others (The Complex Trait Consortium, 2003). The 95% Bayesian credible interval of each 

meQTL and pQTL was calculated using the methods detailed in Sen and Churchill (2001). 

All QTL analyses and graphics were generated using the R/qtl package (v. 1.40-8) (Broman 

et al., 2003).

Identification of Candidate Modules for Alcohol Clearance and Acetate Area under the 
Curve in the HXB/BXH Recombinant Inbred Rat Panel

The first step for identifying candidate co-expression modules for alcohol clearance and 

acetate AUC was to evaluate their association with each phenotype. Strain mean values of 

alcohol clearance and acetate AUC were used for correlation analysis. A Pearson correlation 

coefficient between the module eigengene and the phenotype across the strains of the 

HXB/BXH RI panel was estimated for each module and phenotype. Only modules 

significantly associated (nominal p-value < 0.01) with at least one of the two phenotypes 

were considered in subsequent steps.

For modules correlated with alcohol clearance and/or acetate AUC, additional criteria were 

imposed in order to be considered a candidate module for either phenotype. Candidate 

modules were required to have a genome-wide significant (p-value < 0.01) meQTL, and the 

module meQTL must fall within the 95% Bayesian credible interval of a significant or 

suggestive pQTL for the given phenotype.
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Results

Alcohol Clearance and Acetate Area Under the Curve in the HXB/BXH Recombinant Inbred 
Rat Panel

Representative blood alcohol and acetate profiles (Fig. 1) demonstrate the diversity of the 

blood alcohol and acetate profiles across the HXB/BXH RI panel. Overall, 82 rats and 691 

measurements were used for alcohol clearance calculations after quality control. (See 

Supplementary Results in Appendix S1 for detailed results from quality control imposed on 

alcohol and acetate measures). Average alcohol clearance varied approximately 10-fold 

among strains in the recombinant inbred (RI) rat panel (0.8 to 7.5 mL/min/kg; Fig. 2A). 

Furthermore, the panel exhibited high broad-sense heritability (81%) for this phenotype, 

estimated as the coefficient of determination from a one-way ANOVA. After quality control, 

89 rats and 888 measurements were used for acetate AUC calculations. Peak circulating 

blood acetate levels varied from 0.20 to 2.74 mM (interquartile range: 0.84 to 1.79 mM) 

among strains, and acetate (AUC) varied from 82 to 617 mM*min and displayed a high 

broad-sense heritability (66%; Fig. 2B). Using strain means, alcohol clearance and acetate 

AUC were positively correlated (Pearson’s correlation coefficient = 0.43, 95% CI = 0.09 to 

0.69, p-value = 0.016; Fig. 2C).

Whole Liver RNA Sequencing for the HXB/BXH Recombinant Inbred Rat Panel

RNA-Seq was performed on RNA extracted from livers of naïve (non-alcohol exposed) rats 

in three batches (56 libraries including technical replicates). Over three billion total paired-

end (PE) reads were generated from these samples. This amounts to approximately 60 

million PE reads per sample. After trimming and removal of reads that aligned to ribosomal 

RNA (rRNA), the average number of PE reads per sample was 59.5 million and 58.4 

million, respectively. A detailed summary of the RNA-Seq results by sample is in Table S2.

Quantitation of Whole Liver RNA for the HXB/BXH Recombinant Inbred Rat Panel

We eliminated Ensembl genes with an average estimated RSEM count of less than one 

across the 56 rat liver RNA-Seq libraries. This resulted in a reduction from 32285 to 16093 

Ensembl genes. Based on visual inspection of the Pearson correlation between samples 

using log2(RSEM counts + 1) transformed data, four samples were identified as outliers and 

removed (Fig. S2). The dendrograms of the samples (including information on technical 

replicates and batches) before and after implementation of the RUV algorithm provided 

evidence that unwanted variance, such as that introduced by batch effects, was markedly 

reduced. Removal of data from progenitor strains and technical replicates (used for 

normalization) left data from 41 HXB/BXH RI samples (1-2 rats/strain; 29 strains), and the 

further removal of genes with normalized counts less than this final number of samples left 

15984 Ensembl gene identified in liver. These data were utilized in WGCNA.

Weighted Gene Co-Expression Network Analysis for the HXB/BXH Recombinant Inbred Rat 
Panel

For strains in which RNA-Seq data were obtained (29 HXB/BXH RI strains), the expression 

estimates were subjected to WGCNA to identify co-expression modules. A total of 658 
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modules were identified (median module size = 8 genes; Fig. S3) along with 205 genes that 

could not be assigned to a module. The module eigengenes captured much of the within-

module variability in expression across strains (interquartile range: 59% to 67%).

Quantitative Trait Loci Analyses

A total of 20283 SNPs were originally contained in the STAR dataset (2008). After 

processing (see Supplementary Results in Appendix S1 for detailed results from processing), 

we identified 1529 unique strain distribution patterns, i.e. haplotype blocks, for the 32 

HXB/BXH RI strains genotyped by the STAR Consortium. Of 32 HXB/BXH RI strains with 

genotype information, 29 strains had expression/eigengene estimates and were used to 

calculate meQTLs, and 30 strains had alcohol clearance and acetate AUC data and were 

used for pQTL analysis. The HXB21 RI strain had alcohol clearance and acetate AUC data 

and was therefore used in pQTL analysis, but the RNA-Seq data were removed as outliers 

and therefore were not used in meQTL analysis. The pQTL analysis using 1,000 

permutations identified one significant (genome-wide p-value < 0.05) and two suggestive 

(genome-wide p-value < 0.63) pQTLs for alcohol clearance (Fig. 3A) and four suggestive 

pQTLs for acetate AUC (Fig. 3B).

Identification of Candidate Modules for Alcohol Clearance and Acetate Area under the 
Curve in the HXB/BXH Recombinant Inbred Rat Panel

RNA expression data from alcohol-naïve rats were used to identify the transcriptional 

predisposing factors for alcohol clearance and circulating acetate levels after administration 

of ethanol. Module eigengenes were correlated with strain mean values of alcohol clearance 

and acetate AUC separately. Ten modules were significantly (nominal p-value < 0.01) 

correlated with alcohol clearance, and ten modules were significantly associated with acetate 

AUC; moreover, three modules were correlated with both phenotypes (Table S3). The same 

marker set used for pQTL analyses was used to identify the meQTL with the greatest 

logarithm of odds (LOD) score for each module that had a significant correlation with either 

alcohol clearance or acetate AUC. Of these modules, one module associated with alcohol 

clearance had a significant (genome-wide p-value < 0.01) module eigengene QTL. The 

examination of overlap between the 95% Bayesian credible intervals of the alcohol tolerance 

pQTL and the location of the peak LOD score for the module eigengene QTL (Fig. 4) 

demonstrated that only this candidate module (orange3) met all the criteria to be identified 

as a candidate module influencing alcohol clearance. This module was also identified as a 

candidate module for acetate AUC. The genes comprising the orange3 module are listed in 

Table 1, and the connectivity between genes of the candidate module is visualized in Fig. 5.

The module eigengene for orange3 explained 56% of the genetic variance in alcohol 

clearance and 32% of the genetic variance in acetate AUC across the HXB/BXH RI rat 

panel, estimated as the coefficient of determination from a linear model using the module 

eigengene as a predictor of each phenotype. The hub gene, i.e. the gene with the highest 

intra-modular connectivity within the orange3 candidate module, was alcohol 

dehydrogenase 4 (Adh4).
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Characterization of Alcohol Dehydrogenase Genes in the orange3 Candidate Module

Two alcohol dehydrogenase Ensembl genes, alcohol dehydrogenase 6 (Adh6) and Adh4, 

were initially identified in the orange3 candidate module. We further examined these genes 

at the transcript-level to verify their identities. The Adh6 gene expression estimate was 

found to be derived from pooled estimates of three Ensembl transcripts. Using the University 

of California – Santa Cruz (UCSC) Genome Browser (Kent et al., 2002b, UCSC Genome 

Browser. https://genome.ucsc.edu/. Accessed 15 April 2016), we found that the RefSeq 

database annotated two of these transcripts as separate genes: namely Adh6 and the class I 

alcohol dehydrogenase 1 (Adh1). The remaining transcript was unannotated in RefSeq, and 

closer inspection in Ensembl (Ensembl Release 88) (Aken et al., 2016) revealed that this 

transcript represented a fusion of Adh1 and Adh6. To disentangle the two Adh genes, we 

first examined the pile-up of the total RNA-Seq reads from the livers of the two progenitor 

strains. The vast majority of reads aligned to the RefSeq Adh1 gene, with very few reads 

aligning to Adh6, and there was no evidence for expression of the fusion gene (Fig. S4A). 

To verify that the variation in expression levels of the original gene-level estimate mimic 

variation in Adh1, pairwise Pearson’s correlation analysis was performed between the 

Ensembl gene-level expression estimate, Ensembl transcript-level expression estimates of 

the three transcripts, and the phenotypes, using strain mean values. Expression estimates of 

the transcripts were calculated in an identical manner as the gene-level estimate, i.e., rlog-

transformed batch-corrected RNA expression values. The expression of the Ensembl 

transcript corresponding to the RefSeq Adh1 gene was most strongly correlated with the 

overall Ensembl Adh6 gene expression (Pearson’s r = 0.95) and closely matched its 

correlation with the phenotypes (Table S4). Moreover, the Ensembl database used for our 

initial annotation (Ensembl Release 81) (Cunningham et al., 2015) did not annotate any 

transcripts as Adh1, in spite of the fact that RNA from Adh1 is known to be present in rat 

liver (Hoog et al., 2001). Therefore, we concluded that the gene-level expression estimates 

originally annotated as Adh6 in fact most likely represented Adh1 and changed the 

annotation throughout this manuscript accordingly.

Likewise, Adh4 included pooled estimates from three Ensembl transcripts. Again, two of the 

Ensembl transcripts were annotated by RefSeq as separate genes, Adh4 and class III alcohol 

dehydrogenase 5 (Adh5), and the third represented a fusion of these genes that was 

unannotated in other databases. In this case, the expression of the Ensembl transcript 

corresponding to the RefSeq Adh4 gene was most closely correlated with the overall 

Ensembl Adh4 gene-level expression (Pearson’s r = 0.97) and most closely resembled its 

correlation with the phenotypes (Table S4). While the liver total RNA-Seq reads from the 

progenitor strains mapped to both the Adh4 and Adh5 RefSeq genes, indicating that both 

were expressed in the liver (Fig. S4B), the Ensembl transcript/RefSeq Adh4 gene 

demonstrated greater variation in expression across strains. Taken together, we surmised 

Adh4 was indeed the gene represented in the orange3 candidate module, and the original 

nomenclature was retained. Furthermore, BLAST analysis (Zhang et al., 2000) revealed that 

the Ensembl transcript/RefSeq Adh4 that we identified shared > 99% sequence similarity 

with the experimentally cloned and sequenced class II rat Adh4 gene (Hoog and Ostberg, 

2011), thereby supporting the identity of the transcript that we sequenced as the class II 

alcohol dehydrogenase gene product in rat.
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Further Review of Alcohol Dehydrogenase Genes, Aldehyde Dehydrogenase Genes, and 
Other Genes That Can Contribute to Alcohol Metabolism in the HXB/BXH RI Panel

All Ensembl annotated alcohol dehydrogenase genes and aldehyde dehydrogenase genes 

with expression estimates, as well as the genes encoding catalase (Cat) and Cytochrome 

P450 2E1 (Cyp2e1), were examined to ascertain their expression and determine the 

correlation of their expression estimates with alcohol clearance and acetate AUC in the 

HXB/BXH RI panel (Table S5). Using pairwise Pearson correlation analysis on strain mean 

values, significant (nominal p-value < 0.05) associations were only found between the 

following: expression of Adh1 and alcohol clearance (Pearson’s r = 0.76, p < 0.001), 

expression of Adh1 and acetate AUC (Pearson’s r = 0.57, p-value = 0.0012), expression of 

Adh4 and alcohol clearance (Pearson’s r = 0.64, p-value = 0.0002), and expression of Adh4 
and acetate AUC (Pearson’s r = 0.52, p-value = 0.0037). However, we noted that the 

correlation between expression of Aldh1a1 (aldehyde dehydrogenase 1 family, member A1) 

and acetate AUC was marginally significant (Pearson’s r = 0.36, p-value = 0.052). If we 

accept the premise that expression levels of Aldh1a1 are contributing to the variation of 

acetate AUC in the panel, then Aldh1a1 transcript levels explain approximately 13% of the 

variance in acetate AUC.

Discussion

The systems genetics approach which utilizes quantitative genetics analysis to integrate 

physiological, behavioral, and transcriptomic information has been used to uncover a 

number of genetic factors for predisposition to cardiovascular, metabolic, and certain 

behavioral traits (Langfelder et al., 2012, Hasin et al., 2017). We have adopted this approach 

and integrated several filters (Fig. S5) to focus attention on the role of co-expression 

modules, and we have required conditions that have to be met to categorize a module as a 

candidate for influencing the quantitative character of a chosen trait. To diminish false 

positives, a co-expression module had to satisfy three conditions to be considered a 

candidate: 1) the module eigengene had to be significantly correlated with the quantitative 

phenotype measured across strains, 2) the module eigengene had to have a statistically 

significant QTL, and 3) the module eigengene QTL had to reside within the 95% Bayesian 

credible interval of a significant or suggestive physiologic/behavioral QTL. In the current 

work we chose to apply our approach to analysis of two phenotypes related to alcohol 

(ethanol) metabolism: 1) alcohol clearance rate and 2) the measure of circulating acetate 

levels over time after alcohol administration (i.e., the “area under the curve” for acetate). 

With regard to the alcohol clearance phenotype, our hypothesis was that if our approach was 

viable, the identified module would contain components, such as alcohol dehydrogenases, 

which are accepted determinants of the rate of alcohol metabolism in mammals. For the 

phenotype of acetate “area under the curve”, the approach was being used as hypothesis-

generating rather than a hypothesis testing entity.

Candidate Module for Alcohol Clearance – orange3

Of the 658 co-expression modules built from the liver “total” RNA-Seq data across naïve 

rats of the HXB/BXH RI panel, only one module satisfied all criteria as a candidate module 

for alcohol clearance. The orange3 candidate module contained two alcohol dehydrogenase 
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transcripts, Adh1 and Adh4, which produce the alcohol dehydrogenase enzymes class I 

Adh1 and class II Adh4, respectively. Adh1 is a high affinity, i.e., low Km, enzyme for 

alcohol (~ 1.4 mM) that is mainly expressed in liver, where it accounts for the majority of 

alcohol elimination in rats (Julia et al., 1987, Boleda et al., 1989). Adh4 in rat is analogous 

to the human variant (Julia et al., 1988) and is also expressed in the liver (Estonius et al., 

1993, Svensson et al., 1999). While the Km value of rat Adh4 may be greater than that of its 

human counterpart (Svensson et al., 1999), similar to human ADH4, the rat enzyme most 

likely contributes to the metabolism of alcohol in the liver at higher concentrations of 

alcohol (Zakhari, 2006). Two other liver alcohol dehydrogenase genes in the rat have been 

reported in the literature – class III alcohol dehydrogenase 5 (Adh5) and class IV alcohol 

dehydrogenase 7 (Adh7) (Plapp et al., 2015). The Rnor_6.0 version of the rat genome lacked 

any Ensembl annotation for Adh5; however, RefSeq annotation indicates that one of the 

Ensembl transcripts quantitated in our RNA-Seq data may actually represent Adh5. Indeed, 

research has demonstrated that Adh5 is expressed in the rat liver (Julia et al., 1988), and the 

pile-up of liver total RNA-Seq reads from the progenitor strains indicates significant levels 

of Adh5 expression. Nevertheless, the gene product of Adh5 is believed to have no 

detectable ethanol metabolizing activity at concentrations reached in our studies (Julia et al., 

1987, Julia et al., 1988, Plapp et al., 2015). An additional alcohol dehydrogenase gene, 

Adhfe1, existed in Ensembl annotation but is known for metabolizing 4-hydroxybutyrate in 

mammals rather than alcohol (Kardon et al., 2006). Finally, expression of both human and 

rat ADH7/Adh7 has been established as exclusive to the stomach (Pares et al., 1992). Our 

findings corroborated this view, as we found little Adh7 expression in the liver (Fig. S6). 

Overall, we were satisfied that our unsupervised statistically-based systems biology 

approach could clearly reproduce an accepted fact about the importance of Adh1 and Adh4 

in the metabolism of alcohol when alcohol is present at levels attained in our studies.

The contradictory information regarding Ensembl and RefSeq annotations (see Results) with 

regard to Adh1 and Adh4, however, highlights both the need to carefully examine the results 

obtained from high throughput RNA-Seq analyses, and the intrinsic advantages of next-

generation sequencing technologies like RNA-Seq over methods such as microarrays. 

Namely, RNA-Seq allows one to examine post-hoc where reads aligned to the genome, and 

accordingly make annotation adjustments as necessary. Indeed, updated Ensembl versions, 

for example Ensembl Release 88 (Aken et al., 2016) and newer, changed the Adh6 gene 

annotation in the Rnor_6.0 rat genome to Adh1 in agreement with the annotation used 

throughout this manuscript.

Characterization of Other Genes in the orange3 Module and Common Genetic Pathways

The added benefit of a systems biology approach is that it provides biologic context for the 

statistically-derived relationships between transcripts contained in a module. Gene products 

composing the orange3 candidate module are listed in Table 1. While products of Adh4 and 

Adh1 are well known for their ethanol metabolizing function, alcohol dehydrogenases also 

metabolize a wide variety of other substances, such as longer chain aliphatic alcohols (David 

et al., 1976, Ehrig et al., 1988), omega-hydroxy-fatty acids (Hoog and Ostberg, 2011, Boleda 

et al., 1993), hydroxysteroids (Hoog and Ostberg, 2011), and lipid peroxidation products 

(Boleda et al., 1993, Sellin et al., 1991, Hartley et al., 1995). Another substrate for ADH 
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enzymes is all-trans-retinol which is the alcohol form of vitamin A (Kumar et al., 2012). The 

active metabolite of vitamin A is retinoic acid and the initial step in the conversion of the 

retinol to retinoic acid is catalyzed by Adh1 as well as members of the retinol 

dehydrogenase families (Kumar et al., 2012). The importance of Adh1 in this metabolic step 

is demonstrated by the knock-out of this enzyme, which results in accumulation of retinol in 

adult mice, and a greater retinol toxicity in the adult tissues (Kumar et al., 2012). The role of 

Adh1 in retinol metabolism provides one of the links to explain the association of Adh and 

the other gene products in the orange3 module. Retinoic acid plays a number of 

physiological roles through binding to cellular retinoic acid receptors (RARs) that control 

transcription (Shiota and Kanki, 2013). With regard to the components of the orange3 

module, the induction of the retinoic-acid inducible gene I (RIG-I) is of interest (Matsumiya 

and Stafforini, 2010). RIG-I is a helicase which functions to destroy a number of RNA 

viruses that may enter the cell. The RIG-I pathway is tightly regulated to maximize antiviral 

immunity while minimizing immune-related pathology. The product of the orange3 module 

member ADP-ribosylation factor-like 16 (Arl16) is a protein that interacts with RIG-I and 

inhibits its activity. Arl16 is part of the extended ADP ribosylation factor (ARF) family of 

GTPases, and although the ADP-ribosylation factor-like (ARL) proteins have actions beyond 

those exhibited by the ARF GTPases, they also participate in the regulation of secretion, 

phagocytosis, endocytosis and signal transduction characteristic of the ARF GTPases (Burd 

et al., 2004). RIG-I activation also leads to the production of interferon (IFN), which in turn 

is the major inducer of transcription of guanylate-binding proteins (GBPs). The guanylate 

binding protein 5 (Gbp5) gene is a member of the orange3 module, and synthesis of its 

protein (Gbp5) is responsive to IFN-γ (Britzen-Laurent et al., 2010). Gbp5 is a member of 

the dynamin family of GTPases and recent studies have shown it to be a critical factor in the 

assembly of inflammasomes. Overexpression of Gbp5 enhances the expression of IFN and 

other pro-inflammatory factors (Feng et al., 2017), which generates a feed forward immune 

response and antiviral activity (Hotter et al., 2017). Since LOC685067 is an under-annotated 

gene described as “similar to guanylate binding protein family, member 6”, the fact that it 

shares membership with another guanylate binding protein in the orange3 module may add 

rationale to its description.

Hs2st1 (heparin sulfate 2-O-sulfotransferase) encodes a member of the heparin sulfate 

biosynthesis pathway (Xu et al., 2007). Heparin sulfate is part of a family of heparin/heparin 

sulfate glycosaminoglycans that organize at the cell surface to act as recognition and binding 

sites for chemokines (Schenauer et al., 2007, Monneau et al., 2016), transforming growth 

factors (Lyon et al., 1997), and viruses (Khanna et al., 2017, Kim et al., 2017). It should be 

noted that the quantity and location of sulfate groups on the heparin sulfate polysaccharide is 

a determining factor in the selectivity of the cell surface polyglycan for various ligands 

(Sasisekharan and Venkataraman, 2000, Kreuger et al., 2006). Acetylation of heparin sulfate 

is a further modification of the glycosaminoglycans and is important in determining the 

recognition of various chemokines (Kreuger et al., 2006). We postulate that the production 

of acetate from ethanol could influence this molecular modification. On the whole, the 

production and modification of heparin sulfate is an important component of both the 

capacity of pathogens, particularly viruses, to infect cells, and for the cell to mount an 

immune response to the pathogen. There also exists an under-investigated interaction 
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between the heparin/heparin-sulfate glycosaminoglycans generated by the actions of the 

Hs2st1 protein and another member of the orange3 module. Heparin has been shown to 

inhibit phosphorylation and the generation of autonomous activity of the calcium/

calmodulin-dependent protein kinase II (CaMKII) (Mishra-Gorur et al., 2002). The protein 

product of the module member calcium/calmodulin-dependent protein kinase II inhibitor 

(Camk2n1) is also an inhibitor of CaMKII. CaMKII is a multipurpose calcium/calmodulin 

signal transduction enzyme, best known for its role in generating cellular memory 

(specifically, long-term potentiation) in the hippocampus. In relation to the liver and the 

orange3 module, CaMKII has an important role in controlling tumor necrosis factor alpha 

(Tnf-α)-induced expression of CD44 (Mishra et al., 2005). CD44 is a transmembrane 

glycoprotein expressed in many cell types. A key event in the activation of monocytes and 

their transformation, cytokine release, and migration to sites of inflammation and tissue 

injury is the induction of CD44 expression (Mishra et al., 2005). Interestingly, ethanol is 

known to increase circulating levels of Tnf-α, and the Camk2n1 gene product may be a 

modifier of this response.

Zfp143 (zinc finger protein 143) encodes a zinc finger transcriptional regulator. Its human 

counterpart, ZNF143 (zinc finger protein 143), exhibits the interesting property of 

connecting promoter regions of DNA with distant regulatory elements through looping of 

chromatin (Bailey et al., 2015), and the protein product of ZNF143 has been hypothesized to 

influence differentiation and cell identity (Bailey et al., 2015). The Piwil2 (piwi like RNA-

mediated gene silencing 2) gene product has previously been shown to be expressed in liver, 

and is considered to be involved in regeneration of liver after damage (Rizzo et al., 2014). 

The function of the product of the Tmem79 (transmembrane protein 79) gene is not known 

with regard to liver, but its inclusion in this module may provide some insights.

The module as a whole provides the impression that in a basal state (without having 

substantial amount of ethanol in the milieu) the co-expressed genes are functioning as 

components which contribute to cell interaction with pathogens (possibly viruses), cellular 

response to pathogens and immune system signals, and components of liver regeneration (if 

it sustains damage). The alcohol dehydrogenases included in this module may be the 

enzymes that generate the necessary ligands (e.g., retinoic acid or acetate) critical for the 

function of the other module components. The association of the alcohol dehydrogenase 

genes with the other module components may also indicate cross-cell type communication, 

with retinoic acid production in hepatocytes being utilized for function of other liver cell 

types (e.g., Kupffer cells and/or infiltrating macrophages). The relationship of the alcohol 

dehydrogenase-containing orange3 module with immune function may be through 

promoting what is called the autonomous immune response directed at viral infections. The 

chronic consumption of alcohol in excess of 50 g/day increases an individual’s vulnerability 

to the hepatitis C virus (HCV) (Taylor et al., 2016). McCartney et al. (2008) produced 

evidence that ethanol metabolism, rather than ethanol per se, promotes the replication of 

HCV and diminishes the antiviral action of interferon α. Our data may contribute to the 

interpretation of mechanisms by which ethanol metabolism promotes the development of 

viral hepatitis.
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The orange3 module was additionally identified as a candidate module for influencing 

acetate AUC. This result indicates that the rate of alcohol clearance influences acetate AUC, 

i.e. systemic blood acetate levels are at least partially determined by the rate at which 

alcohol is metabolized. Such an observation logically follows what has been reported in the 

literature; that is, the majority of alcohol is cleared via oxidative metabolism (Ramchandani 

et al., 2001, Norberg et al., 2003) that generates acetate (Zakhari, 2006).

A somewhat surprising outcome was that, although the alcohol dehydrogenase-containing 

module contributed to the determining circulating levels of acetate, enzymes essential for 

conversion of acetaldehyde to acetate (aldehyde dehydrogenases) were not identified 

through the process of co-expression module analysis as being responsible for circulating 

levels of acetate. A cogent explanation of this fact would be, that under our experimental 

conditions, the aldehyde dehydrogenases that catalyze an irreversible production of acetate 

are not rate-limiting in the transition of ethanol to acetate. On the other hand, not all 

expressed genes can be assigned to co-expression modules, or even if assigned to a module, 

the module eigengene values for that module may not generate a statistically significant 

meQTL. With regard to Aldh1a1, we noted that it was included in an identified module but 

that the module’s eigengene values did not generate a meQTL which overlapped the pQTL 

for acetate AUC. On the other hand, an eQTL for the expression levels of Aldh1a1 per se 
was associated with a SNP located at chr20: 44.71 Mb (p-value = 0.006 via permutation on 

PhenoGen) and overlapped the pQTL for acetate AUC (chr20: 39.94 Mb, 95% Bayesian 

credible interval = 36.33-48.67 Mb, LOD score = 3.50). The expression levels of Aldh1a1 
did, also, nominally correlate with the acetate AUC values although no correlation was 

evident with values for ethanol clearance. These results indicate to us that under some 

circumstances, transcript products may act outside of the context of the module to which 

they belong in order to carry out metabolic functions not normally part of the repertoire of 

the module.

The current conceptualization of the metabolism of acetaldehyde produced from ethanol is 

that it is rapidly metabolized by the protein product of Aldh2 (aldehyde dehydrogenase 2 

family), which resides in the mitochondria (Klyosov et al., 1996). There is, however, ample 

evidence for the involvement of Aldh1a1 when higher levels of acetaldehyde are present. 

Thus, the contribution of Aldh1a1 to acetate AUC may be primarily evident under 

conditions of high ethanol clearance rates.

Conclusions

Overall, the unsupervised, statistically-based, systems biology approach that we instituted 

for analyzing factors influencing ethanol metabolism and resultant acetate levels produced 

some rewarding results. First, out of 658 modules, our approach identified one module 

related to the genomic locus determining the rate of ethanol clearance. This liver module 

contained two alcohol dehydrogenase transcripts that would be fully expected, from ample 

literature (Julia et al., 1987, Boleda et al., 1989), to be responsible for ethanol oxidation in 

the rat. The identification of a module with two alcohol dehydrogenases also substantiates 

the belief that alcohol dehydrogenase isoforms with different KM values for ethanol can 

contribute to metabolism depending on the blood levels achieved after a particular dose of 
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ethanol (2 g/kg in our work). Our results also pointed to the functional context for inclusion 

of these alcohol dehydrogenases in a module which, in the rat, under normal conditions 

rarely, if at all, experiences alcohol concentrations of 40 mM or higher. The same can be 

said for most humans and this module’s involvement in generation and utilization of retinoic 

acid is another relevant component of our results.

We would suggest that the protocol we illustrate in Fig. S5, coupled with QTL or GWAS 

analysis of physiologic, pathologic and behavioral traits in animals, including humans, can 

bring credence to anticipated results and introduce unexpected but plausible systems genetic 

explanations of complex traits. Furthermore, since the RI rats utilized in this study represent 

a renewable genetic resource due to their inbred nature, and we have developed a rich 

database of their attributes for public use, studies addressing alternative research questions, 

e.g., the influence of genes and/or modules on different phenotypes or how they predispose 

response to various environmental factors, can easily be employed in this panel and perhaps 

extrapolated to humans for valuable insights. The evidence for the possible contribution of 

Aldh1a1 to acetate AUC, must, however, temper the absolute utility of our approach and 

indicates that careful inspection of all forms of gene expression data in relationship to a 

given phenotype is still necessary to reach optimum conclusions. Additionally, it should be 

noted that our study design included only male rats, and gender differences in alcohol 

metabolism have been reported (Rachamin et al., 1980).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Representative alcohol and acetate profiles in blood after 2 g/kg alcohol administration
Concentrations in millimolar for individual animals are represented by circles at each time 

point for (a) blood alcohol concentrations and (b) blood acetate concentrations. The lines 

represent strain-specific one-compartment pharmacokinetic models with first-order 

absorption and elimination (a) generated from the mean of the parameter estimates from the 

individual rats and the lines connecting the strain mean concentrations of acetate at each 

time point (b).
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Figure 2. Distribution of alcohol clearance and acetate AUC across the HXB/BXH recombinant 
inbred rat panel
The bars represent mean values of the biological replicates within the strain denoted on the 

x-axis for (a) first-order alcohol clearance (blue) and (b) acetate AUC (red). The error 

bars represent plus/minus standard error of the mean. If error bars are missing, only one 

biological replicate was available for the given strain. Alcohol clearance estimate and acetate 

AUCs were determined in each rat separately. The broad sense heritability of each 

phenotype was estimated as the R-squared value from a one-way ANOVA using strain as the 

predictor. Mean values for the two phenotypes were plotted against each other by strain to 

examine the (c) association between alcohol clearance and acetate AUC. Each point is 

labeled by its respective strain.
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Figure 3. Quantitative trait loci for alcohol clearance and acetate AUC in the HXB/BXH 
recombinant inbred panel
Strain means were used in a marker regression to determine phenotypic QTL for (a) alcohol 
clearance and (b) acetate AUC. The red lines represent the logarithm of odds (LOD) score 

threshold for a significant QTL (genome-wide p-value = 0.05), and the blue lines represent 

the LOD threshold for a suggestive QTL (genome-wide p-value = 0.63). Significant and 

suggestive QTL are labeled with their location, 95% Bayesian credible interval, LOD score, 

and genome-wide p-value.
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Figure 4. Chromosome 2 QTLs for alcohol clearance, acetate AUC, and the orange3 module 
eigengene
Strain means were used in a marker regression to determine phenotypic QTLs (pQTLs) for 

alcohol clearance (blue) and acetate AUC (red), and the orange3 module eigengenes were 

used in marker regression to elucidate module eigengene QTLs (meQTLs, shown in green). 

The maximum meQTL for the orange3 module was significant (genome-wide p-value < 

0.01) and overlapped a significant (genome-wide p-value < 0.05) pQTL for alcohol 

clearance and a suggestive (genome-wide p-value < 0.63) pQTL for acetate AUC.
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Figure 5. Connectivity within the candidate co-expression module for both alcohol clearance and 
acetate AUC
Each circle represents a gene from the co-expression module. The size of each circle is 

weighted based on its intra-modular connectivity (not to scale), and the thickness of each 

edge is weighted based on the magnitude of the connectivity between the two genes (not to 

scale). The edge colors indicate the direction of the connectivity (red = positive, blue = 

negative). The hub gene, defined here as the single gene with the largest intra-modular 

connectivity, is colored in yellow (Adh4 = alcohol dehydrogenase 4), and its expression is 

positively associated with both alcohol clearance and acetate AUC. The figure was generated 

using Cytoscape (v. 3.4.0) (Shannon et al., 2003).
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