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genome assemblies. Third-generation sequencing platforms mitigate this limitation by producing
longer reads that span across complex and repetitive regions. However, the usefulness of such long
reads is limited because of high sequencing error rates. To exploit the full potential of these longer
reads, it is imperative to correct the underlying errors. We propose HECIL—Hybrid Error Correction

with Iterative Learning—a hybrid error correction framework that determines a correction policy for
erroneous long reads, based on optimal combinations of decision weights obtained from short read
alignments. We demonstrate that HECIL outperforms state-of-the-art error correction algorithms for
an overwhelming majority of evaluation metrics on diverse, real-world data sets including E. coli, S.
cerevisiae, and the malaria vector mosquito A. funestus. Additionally, we provide an optional avenue of
improving the performance of HECIL's core algorithm by introducing an iterative learning paradigm that
enhances the correction policy at each iteration by incorporating knowledge gathered from previous
iterations via data-driven confidence metrics assigned to prior corrections.

Current advances in next-generation sequencing (NGS) have fueled genomics-driven research by inexpensively
generating highly accurate ‘reads’ or DNA sequence fragments. Second-generation sequencing technologies, for
example [llumina' and 454 pyro-sequencing?, generate short reads that are sometimes not ideal for downstream
applications such as assembling complex genomes®. To ameliorate this issue, third-generation sequencing tech-
niques introduced by Pacific Biosciences*® and Oxford Nanopore®” generate significantly longer reads. These long
reads typically contain thousands of base-pairs® and are not subject to amplification or compositional biases often
exhibited by second-generation sequencing’. Long reads also overcome issues associated with repetitive regions
and large transcript isoforms. In spite of these significant advantages, a critical limitation of long reads produced
by third-generation sequencing methods is that they generally exhibit high error rates: for example, up to 20%
error has been reported using PacBio'®!!, and up to 35% error using Oxford Nanopore'?.

Various correction algorithms have been proposed for reducing the currently high error rates prevalent in
long reads. For example, HGAP" is a self-correcting algorithm (that is, it does not rely on additional sequencing
data) that performs correction by computing multiple alignments of high coverage long reads. Another class of
correction algorithms rely on short reads generated from the same (or related) samples, and is therefore referred
as hybrid correction algorithms. An example of such a hybrid correction algorithm is the Nanocorr algorithm'? in
which high-quality Illumina MiSeq reads are used to correct Oxford Nanopore reads. Popular hybrid correction
algorithms for PacBio data include: LSC?, PacBioToCA$, LoORDEC!", proovread'®, and CoLoRMap'®. Most of the
methods listed here do not systematically utilize localized information such as base quality of the short reads
or variant information between individuals. The importance of incorporating base quality in correcting noisy
sequence data is well-known'’, and serves as a primary motivation for the present work.

Herein, we propose a hybrid error correction framework that we refer to as HECIL. The proposed algorithm
comprises two components:

1. acore algorithm that selects a correction policy by leveraging an optimal combination of decision weights
based on base quality and mapping identity of aligned short reads; and,
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2. an iterative procedure that enables learning from data generated in previous iterations to improve subse-
quent alignment and corrections.

We compare HECILs core algorithm to existing hybrid correction algorithms on real prokaryotic and eukary-
otic data and, for an overwhelming majority of evaluation metrics (related to both alignment and assembly), show
that HECILs core algorithm outperforms its competitors. The iterative procedure further improves the quality
of error correction both in terms of alignment and assembly-based metrics by incorporating knowledge derived
from high-confidence corrections made in prior iterations. We speculate that the proposed iterative learning
formalism can be incorporated into other contemporary hybrid error correction algorithms to improve perfor-
mance, at the expense of total execution time.

Results

All experiments in this section were run on Dell PowerEdge R815 servers with AMD Opteron processor 6378,
Quad 16 core 2.4 GHz CPU, 32 cores, and 512 GB RAMs. We use the Unix time command to record the runtime
and memory usage of each tool. We test the performance of HECIL on real datasets of varying size: the bacterial
genome of Escherichia coli, the fungal genome of Saccharomyces cerevisiae, and the malaria vector genome of
Anopheles funestus. We explore benchmark data of PacBio-sequenced long reads, Illumina-sequenced short reads,
and reference genomes of E. coli and S. cerevisiae, as used by the state-of-the-art correction tool CoLoRMap!'¢. We
filter long reads of E. coli to exclude reads shorter than 100 bp, creating a final set of 33,360. The corresponding
short reads comprise 22,720,100 sequences. We use the strain K-12 substr. MG1655 for our alignment-based
validation of HECIL. To test S. cerevisiae data, we use 1,758,169 long reads with 4,503,422 short reads. The refer-
ence genome of strain S288C is 12.2 Mbp in size. We obtain long reads for A. funestus, comprising data from 44
flowcells, ranging between 59,937 and 244,754 reads. Due to the high computational effort required by proovread
and CoLoRMap to correct the reads of all flowcells, we present a comparative analysis based on a representative
(albeit arbitrary) selection of three flowcells: 1, 4, and 16. Short read sequences consists of 37,797,235 reads. The
reference genome of strain Fumoz (GenBank assembly accession: GCA_000349085.1) is used for validating cor-
rections. Finally, we test HECIL on the long reads of E. coli generated by the newest Single Molecule, Real-Time
sequencer, the Sequel System's.

Evaluation metrics. k-mer-based. We employ the widely-used k-mer counting tool Jellyfish! to compute
the number of unique k-mers obtained after each correction algorithm. Since errors in long reads are uniformly
distributed across their length, large numbers of uncorrected errors often greatly inflate the number of unique
k-mers observed. Further, it is known® that the set of common k-mers between the highly accurate short reads
and the erroneous long reads are crucial in improving the quality of data for downstream analysis. Therefore, a
correction algorithm that reduces the number of unique k-mers while increasing the number of valid k-mers is
desirable. Supplementary Figure S1 gives an illustrative example of this idea based on A. funestus.

Alignment-based.  After each method of correction, we align corrected long reads to its reference genome using
BLASR?!. In addition to computing the number of aligned reads and aligned bases, we evaluate matched bases,
that is, the ratio of total number of matched bases and length of sequences in the long reads. We calculate percent
identity (PI) by the ratio of matches to alignment length.

Assembly-based.  One of the most important downstream applications of long reads is de novo genome assembly.
For this purpose, we use the assembler Canu?, specifically designed for noisy long reads. We then use QUAST* to
evaluate assembly quality. We measure total number of contigs, length of the longest contig, and total length (total
number of bases in the assembly). We report the values of N50 (minimum length such that contigs of that length
or longer consists half the assembly), and NG50 (minimum length such that contigs of that length or longer
consists half the reference assembly). As recommended in prior art??, we further measure accuracy by aligning
the assembled genome to the reference genome using MUMMer’s dnadiff tool*. In this context, we compute per-
cent of aligned bases (with respect to reference and query) and average identity of 1-to-1 alignment blocks (with
respect to reference and query).

Comparative analysis. We compare the performance of HECIL with cutting-edge hybrid error correc-
tion tools such as proovread-2.14.0, LORDEC-0.6, and CoLoRMap. We use the above-mentioned k-mer-based,
alignment-based, and assembly-based metrics to assess the performance of each approach. The comparative
results for k-mer-based and alignment-based parameters are presented in Table 1. We report the parameters
before correction (original) and after each method of error correction.

As expected, CoLoRMap'® performs better than proovread and LoRDEC when tested on E. coli (PacBio
and Sequel-sequenced) and S. cerevisiae. However, long reads corrected by the core algorithm of HECIL (iter-
ation 1) generate the lowest number of k-mers for each of these datasets (with the exception of the data set A.
funestus - flowcell 4, although it is still comparable to the best results obtained using proovread), outperforming
CoLoRMap. For all data sets, HECIL consistently produces more valid k-mers: since an increase in valid k-mers
indicates higher consensus to the accurate short reads, producing more valid k-mers implies that HECIL gener-
ates corrected long reads with higher accuracy than its competitors. HECIL also produces the highest number of
aligned bases, reads, and highest percent identity.

We also study the effect of HECIL on assembly-based metrics; the results are tabulated in Table 2. HECILs
core algorithm (Iter 1) generates more contiguous assembled long reads compared to the existing tools, except
for E. coli and yeast where the performance is identical to CoLoRMap. When other metrics such as the size of
the longest contig and the number of bases in the assembled data are compared, we exhibit the best performance
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Data Evaluation Metric | Original proovread LoRDEC CoLoRMap HECIL (Iter 1) HECIL (Iter 5)

# unique k-mers 81,523,648 78,925,288 (3.1) 80,708,419 (1.0) 80,399,425 (1.3) 78,693,704 (3.4) 77,617,181 (4.7)

#valid k-mers 14,531,881 11,463,127 (—21.1) | 10,240,970 (—29.5) | 15,026,950 (3.4) 15,973,826 (9.9) 16,413,012 (12.9)
E coli # aligned reads 31,071 23,453 (—24.5) 30,837 (—0.7) 31,271 (0.6) 31,332 (0.8) 31,401 (1.0)

# aligned bases 86,642,500 71,320,858 (—17.6) | 79,365,407 (—8.4) 83,344,272 (—3.8) | 87,582,014 (1.0) | 88,809,361 (2.5)

% matched bases 76.9 87.9 (14.3) 85.2(10.7) 87.5(13.7) 88.4 (14.9) 89.4 (16.2)

PI 94.8 99.7 (5.1) 99.4 (4.8) 99.2 (4.6) 99.7 (5.1) 99.8 (5.27)

# unique k-mers 1,982,480,568 | 84,739,287 (95.7) 86,825,382 (95.6) 85,031,655 (95.7) 82,017,841 (95.8) | 80,925,018 (95.9)

# valid k-mers 11,890,472 11,365,013 (—4.4) 10,167,397 (—14.4) 12,626,801 (6.1) 16,957,253 (95.8) 17,826,131 (95.9)
£ colf (Sequel) # aligned reads 1,158,421 910,384 (—21.4) 1,161,432 (0.2) 1,189,253 (2.6) 1,201,357 (3.7) 1,382,839 (19.3)

# aligned bases 4,343,460,105 | 3,963,123,749 (8.7) 4,471,081,390 (2.9) 4,416,369,371 (1.6) 4,698,531,714 (8.1) | 4,927,137,639 (13.4)

9% matched bases | 85.1 93.1(9.4) 92.8(9.0) 93.7 (10.1) 95.6 (12.3) 97.1 (14.1)

PI 85.0 93.1(9.5) 92.8(9.1) 93.7 (10.2) 95.6 (12.4) 97.2 (14.3)

# unique k-mers 1,870,396,869 | 1,871,451,237 (—0.0) | 1,868,238,946 (0.1) 1,869,232,456 (0.0) 1,867,828,519 (0.1) | 1,865,148,289 (0.2)

# valid k-mers 36,904,129 32,436,294 (—12.1) 30,534,546 (—17.2) 37,797,300 (2.4) 39,452,743 (6.9) 40,971,328 (11.0)
S, cerevisiae # aligned reads 224,694 222,976 (—0.7) 221,692 (—1.3) 223,641 (—0.4) 346,242 (54.0) 346,307 (54.1)

# aligned bases 1,229,724,663 | 1,205,706,114 (—1.9) | 1,171,490,123 (—4.7) | 1,207,729,568 (—1.7) | 1,247,616,674 (1.4) | 1,249,303,521 (1.5)

% matched bases 78.8 83.1(5.4) 83.4(5.8) 85.6 (8.6) 85.6 (8.6) 86.5 (9.7)

PI 93.8 96.3 (2.6) 98.3 (4.8) 98.3 (4.8) 98.6 (5.1) 98.9 (5.4)

# unique k-mers 692,831,731 649,989,172 (6.1) 653,931,808 (5.6) 662,366,838 (4.4) 649,764,906 (6.2) 648,091,381 (6.4)

# valid k-mers 211,908,809 172,074,427 (—18.8) | 229,625,736 (8.3) 222,195,325 (4.8) 242,957,349 (14.6) | 244,317,225 (15.2)
A funestus # 1 # aligned reads 190,217 94,536 (—50.3) 190,240 (0.0) 190,166 (—0.0) 190,229 (0.0) 191,245 (0.5)

# aligned bases 671,881,278 401,850,047 (—40.1) | 655,072,426 (—2.5) 660,848,583 (—1.6) 676,055,060 (0.6) 678,092,137 (0.9)

% matched bases 84.0 81.4(-3.1) 83.1(—1.0) 82.1(—2.2) 85.1(1.3) 87.9 (4.6)

PI 94.5 96.8 (2.4) 95.6 (1.1) 97.1(2.7) 97.8 (3.4) 98.5 (4.2)

# unique k-mers 216,327,700 | 205,053,236 (5.2) 205,883,182 (4.8) 206,986,374 (4.3) 205,064,188 (5.2) | 203,997,977 (5.7)

# valid k-mers 80,612,612 72,716,589 (—9.8) 82,568,831 (2.4) 81,027,437 (0.5) 83,788,157 (3.9) 84,529,123 (4.8)
A funestus #4 # aligned reads 59,163 32,726 (—44.6) 59,165 (0.0) 59,159 (—0.0) 59,177 (0.0) 59,306 (0.24)

# aligned bases 231,326,514 149,049,154 (—35.5) | 234,098,182 (1.2) 233,435,402 (0.9) 235,620,667 (1.8) 237,428,249 (2.6)

9% matched bases | 86.3 83.2 (—3.5) 87.0 (0.8) 85.6 (—0.8) 87.2(1.0) 89.3 (3.48)

PI 94.3 96.9 (2.7) 96.6 (2.4) 97.2 (3.0) 97.7 (3.6) 98.4 (4.3)

# unique k-mers 265,998,542 250,267,133 (5.9) 252,291,701 (5.1) 254,293,778 (4.4) 249,528,780 (6.1) 248,471,673 (6.5)

#valid k-mers 96,317,177 86,396,798 (—10.3) 106,713,483 (10.7) 101,431,900 (5.3) 109,954,860 (14.6) | 110,798,014 (15.0)
A funestus # 16 # aligned reads 73,779 43,530 (—41.0) 73,757 (—0.0) 73,750 (—0.0) 73,790 (0.0) 74,111 (0.45)

# aligned bases 278,976,792 | 190,054,632 (—31.8) | 280,699,552 (0.6) 280,831,201 (0.6) 282,244,589 (1.1) | 283,981,841 (1.7)

% matched bases 84.3 82.7 (—1.9) 85.6 (1.5) 84.5(0.2) 86.1(2.1) 87.5(3.8)

PI 94.8 96.9 (2.2) 96.3 (1.5) 97.4(2.7) 98.0 (3.3) 98.6 (4.0)

Table 1. Comparison of k-mer-based and alignment-based metrics (with % improvement) evaluated from
testing E. coli, E. coli (Sequel-sequenced), S. cerevisiae, and A. funestus on proovread, LORDEC, CoLoRMap,

and HECIL. For the case of HECIL, metrics are reported before and after using the iterative learning algorithm;
specifically, iteration 1 (the core algorithm) and iteration 5 (with four rounds of learning) are shown.

unequivocally. Standard assembly quality parameters like N50 and NG50 have highest values after using HECIL
for correction, and the assembled genomes of HECIL have higher aligned bases and 1-to-1 alignment iden-
tity. Note that the proportion of aligned bases in the reference genome with respect to the query genome is low
because we use a subset of mosquito flowcell data. For highly heterozygous samples such as insects like mos-
quitoes?, low frequency bases in aligned short reads may indicate inherent variation that are not necessarily
sequencing errors. Correction algorithms that solely rely on a consensus call or majority vote often discard these
heterogenous alleles. The optimization-based correction step of HECIL is not biased by bases which have high
frequency, and hence, is better able to capture variation between similar individuals. This is corroborated by the
results obtained from testing HECIL on the highly heterozygous mosquito data set of A. funestus.

Although the performance of hybrid correction algorithms largely depend on the set of high coverage short
reads, we devise additional experiments to verify that restraining the coverage of short reads does not have a dele-
terious effect on HECIL. We down-sample short reads by randomly selecting 50%, 25%, and 12% of the data to be
used for correction. In E. coli, this results in a subset of short reads for correction with an average coverage of 62 %,
33x,and 18X, respectively. In Table 3, we present k-mer-based and alignment-based parameters from correcting
long reads of E. coli with the down-sampled short reads using HECIL and in Table 2 we present assembly-based
parameters from the lowest coverage (18x) of short reads. Thus, HECIL shows potential for use in projects that do
not have high coverage short read data readily available: this is especially important in larger eukaryotic genomes
sequenced predominantly with longer read technology.
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Data Evaluation Metric Original proovread LoRDEC CoLoRMap HECIL (Iter 1) HECIL (Iter 5)
# Contigs 182 29 (84.0) 28 (84.6) 24 (86.8) 20 (89.0) —
Largest contig 69,266 567,484 (719.2) | 885,819 (1178.8) | 813,262 (1074.1) | 1,204,631 (1639.1) | —
Total length 3,508,197 4,235,031 (20.7) 4,068,085 (15.9) | 4,036,161 (15.0) 4,596,013 (31.0) —
E. coli (D-SR) | N50 24,663 189,712 (669.2) | 179,638 (628.3) | 184,367 (647.5)) | 232,826 (844.0) —
NG50 17,847 212,621 (1091.3) 190,621 (968.0) | 210,913 (1081.7) 267,311 (1397.7) —
Aligned base (%) - Ref/Query 83/84 87/89 92/93 48/92 97/100 —
Average Identity (1-1) - Ref/Query 88/88 93/93 97/97 97/97 99/99 —
# Contigs 182 26 (85.7) 24 (86.8) 19 (89.5) 19 (89.5) 17 (90.6)
Largest contig 69,266 605,792 (774.5) 920,903 (1229.5) | 1,089,140 (1472.4) | 1,223,474 (1666.3) | 1,481,824 (2039.3)
Total length 3,508,197 4,629,719 (31.9) 4,623,137 (31.7) | 4,624,793 (31.8) 4,838,971 (37.9) 5,106,276 (45.5)
E. coli N50 24,663 231,774 (839.7) | 226,456 (818.2) | 239,066 (869.3) | 256,830 (941.3) 288,192 (1068.5)
NG50 17,847 231,774 (1198.6) 226,456 (1168.8) | 239,066 (1239.5) 294,635 (1550.8) 344,848 (1832.2)
Aligned base (%) - Ref/Query 82/87 92/92 98/98 54/94 99/99 99/99
Average Identity (1-1) - Ref/Query | 91/91 95/95 96/96 97/97 98/98 99/99
# Contigs 84 34 (59.5) 29 (65.4) 29 (65.4) 27 (67.8) 24 (71.4)
Largest contig 88,975 775,707 (771.8) 884,469 (894.0) | 1,363,678 (1432.6) | 1,627,011 (1728.6) | 1,865,932 (1997.1)
Total length 5,389,574 6,012,453 (11.5) 5,821,596 (8.0) 5,819,632 (7.9) 6,374,798 (18.2) 6,773,369 (25.6)
E. coli (Sequel) | N50 18,611 119,735 (543.3) 117,028 (528.8) | 127,892 (587.1) 141,213 (658.7) 162,580 (773.5)
NG50 13,903 116,255 (736.1) 113,036 (713.0) | 118,087 (749.3) 122,389 (780.3) 149,637 (976.2)
Aligned base (%) - Ref/Query 78/80 89/89 95/95 67/92 97/97 98/98
Average Identity (1-1) - Ref/Query 88/88 92/92 92/92 93/93 95/96 98/98
# Contigs 26 32 (—23.0) 28 (—7.6) 24(7.6) 24 (7.6) 23 (11.5)
Largest contig 1,543,990 1,537,979 (—0.3) 1,552,711 (0.5) 1,555,857 (0.7) 1,558,190 (0.9) 1,713,201 (10.9)
Total length 12,341,981 (1.1) | 12,485,995 (1.1) 12,497,078 (1.2) | 12,315,869 (—0.2) | 12,435,702 (0.7) 12,731,203 (3.1)
S. cerevisiae N50 777,602 777,713 (0.0) 818,962 (5.3) 932,935 (19.9) 1,018,591 (30.9) 1,308,313 (68.2)
NG50 777,602 777,713 (0.0) 818,962 (5.3) 932,935 (19.9) 1,538,190 (97.8) 2,005,346 (157.8)
Aligned base (%) - Ref/Query 95/90 91/91 95/95 78/97 99/99 99/99
Average Identity (1-1) - Ref/Query 92/92 93/93 97/97 98/98 99/99 99/99
# Contigs 998 712 (28.6) 788 (21.0) 847 (15.1) 633 (36.5) 543 (45.5)
Largest contig 71,070 36,306 (—48.9) 75,298 (5.9) 72,306 (1.7) 84,490 (18.8) 94,937 (33.5)
Total length 25,405,949 8,371,287 (—67.0) | 26,745,092 (5.2) |26,802,126 (5.5) | 28,954,268 (13.9) | 32,371,298 (27.4)
A. funestus N50 13,038 14,802 (13.5) 15,118 (15.9) 14,555 (11.6) 16,409 (25.8) 19,014 (45.8)
NG50 71,070 45,637 (—35.7) 77,294 (8.7) 76,306 (7.3) 84,490 (18.8) 91,303 (28.4)
Aligned base (%) - Ref/Query 20/87 23/93 27/96 20/95 31/99 37/99
Average Identity (1-1) - Ref/Query 83/83 87/87 95/95 92/92 98/98 99/99

Table 2. Comparison of assembly-based metrics (with % improvement) evaluated from testing E. coli: with
downsampled short reads (D-SR) having 18x coverage (lowest coverage) and original short reads, E. coli
(Sequel-sequenced) S. cerevisiae, A. funestus (merged flowcells) on proovread, LORDEC, CoLoRMap, and
HECIL. For the case of HECIL, metrics are reported before and after using the iterative learning algorithm;
specifically, iteration 1 (the core algorithm) and iteration 5 (with four rounds of learning) are shown.

HECIL can also be used to improve the results of alternative correction algorithms. To test its effectiveness, we
assemble PacBio-sequenced long reads of E. coli with Canu and then use HECIL to further improve the quality
of Canu-corrected reads for a new assembly. The results presented in Supplementary Tables S1 ans S2 show that
HECIL consistently improved the assembled genome with respect to all the evaluation metrics.

In Table 4, we compare the runtimes and maximum memory usage incurred in correcting each data set (see
Methods). proovread, LORDEC, and CoLoRMap were run with 16 threads. The workload of HECIL was split
into 16 concurrent tasks, which were run in parallel. Computation time of hybrid error correction methods is
mainly dominated by the underlying steps of generating intermediate data, such as mapping short reads to the
long reads. Similarly, LORDEC and CoLoRMap construct a graph data structure, which demands high computa-
tional resources. LORDEC, however, uses the efficient GATB library®®, which lowers the overhead (see Table 4).
Although our tool incurs higher computation time than LoRDEG, it is consistently faster (generally almost twice
as fast) than the other correction methods and generates overall higher quality corrected long reads without a
significant increase in memory consumption.

Effect of Iterative Learning. We leverage our proposed iterative learning scheme on HECILS core algo-
rithm to demonstrate its effectiveness in further improving correction accuracy. As discussed in the Methods
section, we select a high-confidence cut-off of =95 percentile. The alignment-based incremental improvements
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#unique k-mers 78,693,704 78,292,463 78,097,941 78,008,319
#valid k-mers 15,973,826 15,889,155 15,737,641 15,576,317
#aligned reads 31,332 31,328 31,322 31,318
#aligned bases 87,582,014 87,359,227 87,288,475 87,196,236
% matched bases 88.4 88.4 88.3 88.3

PI 99.7 99.7 99.7 99.6

Table 3. Comparison of k-mer-based and alignment-based metrics with downsampled E. coli short reads using
HECILs core algorithm.

proovread 6:15:37 11.4
LoRDEC 38:53 6.2

E. coli
CoLoRMap 2:48:23 28.9
HECIL (Iter 1; Iter 5) 1:16:55; 4:47:52 9.1;9.1
proovread 42:53:06 34.6
LoRDEC 17:47:27 24.3

4E. coli (Sequel)
CoLoRMap 26:20:23 40.9
HECIL (Iter 1; Iter 5) 19:33:47; 59:18:23 26.5;26.5
proovread 20:54:15 14.5
LoRDEC 3:43:12 6.1

48. cerevisiae
CoLoRMap 7:57:49 38.2
HECIL (Iter 1; Iter 5) 5:14:09; 21:19:24 11.2;11.2
proovread 76:13:47 8.8
LoRDEC 35:08:13 3.1

A. funestus (Flowcell # 1)
CoLoRMap 90:50:12 23.4
HECIL (Iter 1; Iter 5) 46:06:47; 162:21:37 8.3;8.3
proovread 36:32:25 7.3
LoRDEC 11:25:05 6.7

A. funestus (Flowcell # 4)
CoLoRMap 32:18:30 20.7
HECIL (Iter 1; Iter 5) 17:38:01; 51:37:34 6.9;6.9

Table 4. Comparison of runtime and maximum memory footprint for correcting long reads. Runtime includes
index construction, alignment of short and long reads, and error correction (after the first and fifth iterations).
Only the best and worst A. funestus results are shown.

obtained after each iterative correction of HECIL is presented in Fig. 1. For each data set (each column), we
observe that the incremental metrics: number of fewer k-mers, number of additional aligned long reads, number
of additional aligned bases, and additional percent of matched bases, improve after each iteration, until one of the
termination criteria is reached. For the termination criteria, we select € as 0.02 for the metric of unique k-mers.
Based on this, we report alignment-based and assembly-based metrics obtained up to the fifth iteration of HECIL
in Tables 1 and 2, respectively. HECIL in conjunction with iterative learning consistently outperforms all the
evaluation metrics. For a few metrics, such as number of contigs in E. coli and S. cerevisiae and total length in S.
cerevisiae, the core algorithm of HECIL is comparable but does not outperform the alternatives, and the iterative
version of HECIL consistently results in better performance. These results verify the potential of the iterative
learning-based component of HECIL, particularly in heterozygous samples like the mosquito data set used in
this study.

Discussion

Third-generation sequencing techniques, particularly Single-Molecule Real-Time (SMRT) sequencing, is revolu-
tionizing modern genomics. The usefulness of current long read data, however, is restricted due to high sequenc-
ing error rates. Hence, it is crucial to correct long reads prior to downstream applications like de novo genome
assembly. In this paper, we develop a novel approach of hybrid error correction called HECIL, which corrects
erroneous long reads based on optimal combinations of base quality and mapping identity of aligned short reads.
As seen in Tables 1 and 2, HECIL performs significantly better for an overwhelming majority of evaluation met-
rics, even with limited amounts of short reads available for correction. We show for the first time that our formu-
lation can also be used to correct residual errors in de novo assemblies and therefore can be used to further polish
existing long read assemblies where short read data are available. Spatial mapping information has been used very
sucessfully in other areas of bioinformatics, such as protein function prediction?”.
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Figure 1. Improvement of alignment-based metrics (# fewer unique k-mers, additional aligned long reads,
additional aligned bases, additional percent matched bases) for E. coli, S. cerevisiae, and A. funestus with
iterative learning. The Oth iteration denotes the original data set and the Ist iteration indicates corrected data set
obtained from running HECILs core algorithm.

We speculate that the iterative procedure will improve the performance metrics that we are concerned with
(for example, the number of unique k-mers) until saturation. Due to our confidence-based correction, after each
iteration, the quality of alignment between the long and short reads are expected to improve, causing the normal-
ized weight and the high-confidence threshold to increase until a saturation point is reached, beyond which it is
unexpected that a significant improvement of the evaluation metrics will be seen. Note that this is a conjecture,
laying a rigorous mathematical framework for proving iterative improvement likely cannot be made without
making (possibly unrealistic) assumptions on stochastic properties of the normalized weights; this remains an
open problem.

To the best of our knowledge, this is the first time an iterative strategy for improving correction quality via
confidence-informed realignment has been proposed. The confidence-based iterative procedure shows potential
using the HECIL core algorithm, but could also be seamlessly integrated with other error correction algorithms
that leverage short read alignments since it is data-driven and algorithm independent. The current version of
HECIL allows decomposition of the workload into independent data-parallel tasks that can be executed simulta-
neously. A natural extension of the tool will be to implement multi-threading to achieve speedup on traditional
machines.

Methods

Similar to existing hybrid error correction methods, HECIL requires all reads to be derived from highly similar
individuals. We begin by aligning the given set of short reads to the long reads. For each alignment, we compute
normalized weights using base quality information and alignment identity of the underlying short reads. The
short read that maximizes the sum of these normalized weights is used for correction. In this manner, we tend
to select higher quality short reads that have a suitable degree of overlap with a long read. This forms the core
algorithm of HECIL.

Next, we optionally define a subset of these corrections as high confidence and correct only these
high-confidence errors. By introducing elitism to the correction procedure based on confidence, the updated
long reads now exhibit slightly higher consensus (or similarity) with the short reads. Therefore, we expect to
obtain slightly higher quality alignments for fixing lower confidence corrections in subsequent iterations: this is
the intuition behind the iterative learning procedure. Herein, we discuss each of these steps in detail.

HECIL's Core Algorithm.  Quick Correction. We obtain read alignments using BWA-MEM? with previ-
ously reported parameters!>!® and mark positions with disagreements (for example: mismatches, insertions, and
deletions) on long reads as questionable. For each questionable position on the long read, we investigate the
set of short reads that align to it. If there is strong consensus (determined by a threshold 0 «<n<1 selected by
the user), we replace the questionable base on the long read with the respective aligned base of the short read.
This quick correction step is illustrated in Fig. 2(A). This step is inspired by majority voting methods® and prior
work®. Contrary to corrections based on a simple majority, we adopt a stricter threshold of at least 90% consensus
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Figure 2. Illustration of HECILs core algorithm. The orange rectangle denotes an erroneous long read and the
purple rectangles represent aligned short reads. (A) Quick correction with high consensus. (B) Optimization-
based correction: The green dashed box depicts the objective function values, from which the optimal short
read (green rectangle) is selected for correction.

(n=0.9) to be eligible for quick correction. Shifting from majority voting to strong consensus prevents spurious
corrections made on the basis of high-frequency, low-quality short reads. Note that quick correction also reduces
the search space in the next step of HECILs core algorithm.

Optimization-based Correction. ~For the remaining questionable bases, we employ an optimization-based cor-
rection framework. Let £(i, j) be the jth questionable base corresponding to the i th long read. Suppose N short
reads align to this £(i, j); {S,(i, j)}&_, denotes the set of aligning short reads. For each k=1, 2, ...., N we assign two
normalized weights Lf);(i, j) and @Sk(i, j), representing the quality and similarity of the kth short read,
respectively.
The normalized quality weight is given by
wk i 7
O, ) = ) ])k —,
max; << W, ()]

where the scalar w(i, ) is determined by extracting the PHRED quality score readily available from FASTQ files.
The normalized similarity weight (i, j) is obtained by calculating the alignment identity, defined as the number
of exact matches of the kth short read S, (i, j) to the long read L(i, j), divided by the length of S, (i, j). Untrimmed

short reads, therefore, may result in a lower estimated of)sk(i, 7)» which is why we adhere to trimmed short reads in
this study. For each short read, we compute a cost by taking a convex combination of the two normalized weights

i) = (0 + 6. )-

1
We then solve the following optimization problem:
k* = argmaxji (i, j).
1<k<N g 2)

which yields the index k* of the short read S,.(i, j) that exhibits the maximum combined quality and similarity
weight. In case there is a conflict amongst maximizers, the short read with highest quality is selected to be the
winner. Note that the optimal cost for each L(i, j) is denoted by J,.(i, j). Subsequently, we replace the erroneous
base L(i, j) on the long read with the corresponding base of the short read S,.(i, ). This procedure is illustrated in
Fig. 2(B).

If perfect consensus (that is, =1 in Step 1) is reached amongst all the short reads, there is no need to per-
form Step 2, because both steps will yield identical corrections. Similarly, if we select a consensus threshold
n€ (0, 1), then the probability that the quick correction value matches the optimization-based correction value
is 7, irrespective of the cost function selected. Therefore, choosing 7 close to 1 ensures that quick correction
matches optimization-based correction with high-probability. We do not set 7 strictly equal to 1 hypothesizing
that achievement of perfect consensus is rare in practice. Also note that the quality of a short read and its align-
ment identity with the long read are not contending objectives. That is, a high quality read does not always imply
low similarity and vice versa. Therefore, we consider a convex combination of these objectives as in equation (2)
rather than formulating a multi-objective optimization problem and searching for Pareto-optimal solutions.

Improving Correction Performance via Iterative Learning. A definition of iterative learning that
closely resembles our proposed approach in this paper is offered’!: iterative learning “considers systems that
repetitively perform the same task with a view to sequentially improve accuracy”. Here, the same task refers to the
core algorithm of HECIL, and the goal is to improve error corrections in the £th iteration by learning from
high-confidence corrections in the (¢ — 1)th iteration (see Fig. 3). An iterative approach has been previously used
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Figure 3. Iterative learning procedure of HECIL. Other hybrid error correction algorithms can replace the core
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by iCORN™, which adopts a greedy method of correcting reference sequence and reverting them if mapping
coverage reduces in successive iterations. A potential issue with iCORN is that corrections made in prior itera-
tions can be reverted in subsequent iterations after realignment. HECIL eliminates this issue by selecting
data-driven high confidence corrections that remain fixed in all subsequent iterations.

Assignment of confidence.  For each L(i, j) in the (th iteration, suppose the corresponding optimal cost obtained
by solving equation (2) be denoted by ],Ef)(i, 7)»and let u([) denote the a-percentile (expressed as a scalar between
0 and 100) computed over all these optimal costs. Here we select a > 95 so that a small percentage of the optimal
corrections are considered to be of high confidence. Selecting a high value of o ensures that only the highest
quality corrections will always inform future iterations. Conversely, selecting o too close to 100 will result in
slower improvement of correction accuracy, because large o implies that very few corrections are deemed high
confidence. Therefore, the increment in information used to update the correction policy in the following itera-
tion will be limited.

Realignment based on high-confidence corrections. We learn in successive iterations by realigning the updated
long reads to the short reads. Note that, for each iteration, the updated context of L(i, j) could generate entirely
different sets of aligned short reads, as well as disparate localized information from previous iterations, leading to
the calculation of different sets of normalized weights qu” and qu”. This is why the confidence threshold .(* is
recomputed based on the statistics of the optimal costs (ngmely, the percentile measure) and not fixed. The sites
on the long read corresponding to low-confidence short reads are left to be changed via the core algorithm in a
subsequent iteration while the high confidence changes in prior iterations are effectively fixed.

Termination criteria. We present the following termination criteria for the iterative learning procedure of
HECIL. If the relative improvement in terms of unique k-mers between two successive iterations is below a given
threshold € € (0, 1), that is,

#unique k — mers({ — 1) — #unique k — mers({)

#unique k — mers(¢ — 1) (3)

then we terminate after the (th iteration. Specific arguments why k-mers are used for termination are provided in
the Results section in the context of k-mer-based evaluation metrics. To prevent a large number of iterations from
occuring if € is chosen to be very small in equation (3), we also recommend selecting a secondary termination
criterion: the maximal number # of allowable iterations for iterative learning.

Accession codes.  https://github.com/NDBL/HECIL
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