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Abstract
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A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders

is not systematically conducted in adults. A cohort of 100 adult

patients affected by both phenotypes were analysed in order

to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of
pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed
clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion

(IMMP2L) in two unrelated patients and duplications in 3929,

9p24.2p24.1 and 15q14ql5.1—providing new evidence of

its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a

mandatory test to improve the diagnosis in the adult patients in

psychiatric services.
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Introduction

Intellectual disability (ID) is a complex and multifacto-
rial disorder that includes both intellectual and adaptive
functioning deficits in the conceptual, social and practical
domains with onset during the developmental period. This
disorder affects approximately 1-3% of the general popula-
tion, and between 10 and 40% of people with ID also present
with mental illness or behavioural disorders (Cooper et al.
2007; Lowe et al. 2007; Morgan et al. 2008). The diagnostic
categories of these mental disorders are based on the symp-
toms (Stein et al. 2013), but there is considerable clinical
heterogeneity and overlap with different psychiatric cat-
egories (Burmeister et al. 2008). Indeed, the boundaries of
the diagnostic categories can be blurred when the patients’
symptoms are not clearly expressed. The diagnosis of a psy-
chiatric disorder in subjects with ID can be difficult, and
most symptoms tend to be attributed to the ID. For this rea-
son, the co-occurrence of both entities is usually overlooked
(Costello and Bouras 2006).

Copy number variants (CNVs) are a source of human
genetic variation and have been described as an impor-
tant genomic cause of human disease (Iafrate et al. 2004;
Sebat et al. 2004). Screening of ID patient cohorts via
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chromosomal microarray analysis (CMA) has led to the
characterization of new syndromes, such as 8q21.11 dele-
tion syndrome (OMIM: 614230) and 19p13.3 microdele-
tion/microduplication syndrome (Dolan et al. 2010; Orellana
et al. 2015). Additionally, there is evidence that CNVs can
predispose individuals to the development of psychiatric
disorders, such as the autism spectrum disorders (ASDs)
(Marshall et al. 2008; Hedges et al. 2012), schizophrenia
(SQZ) (Kirov et al. 2012; Xu et al. 2008), bipolar disor-
der (Green et al. 2015) and attention-deficit/hyperactive
disorder (ADHD) (Jarick et al. 2014; Ramos-Quiroga et al.
2014). Numerous CNV loci have been recurrently observed
across ID and various neuropsychiatric phenotypes, such as
thel6p11.2 and NRXN1 deletions, both of which are associ-
ated with ID, SQZ and ASD. These findings suggest that ID
and psychiatric disorders may share genetic susceptibility
factors (Guilmatre et al. 2009).

A large proportion of the adult population affected by
ID lacks a genetic diagnosis. Some of these adult patients
have never received a diagnostic assessment; alternatively,
in some cases the assessment is completed without finding
an explanation for the ID possibly due to the use of less
advanced technologies than are currently available. At pre-
sent, there is little knowledge of the genetics of ID and co-
morbid psychiatric disorder in adults. Nevertheless, CMA
and whole exome sequencing could shed light on the genetic
diagnoses in adults with idiopathic ID (Baker et al. 2012;
Posey et al. 2016; Taylor et al. 2010; Wolfe et al. 2016).
Here, we report the genetic analysis of 100 adult patients
affected by ID and psychiatric and/or behavioural disorders.
The main purpose of this study is to investigate the contribu-
tion of putative pathogenic CNVs among patients with ID
and comorbid psychiatric/behavioural disorders.

Materials and methods
Participants

This study was designed prospectively. Cognitive, psychiat-
ric and behavioural evaluation was performed by psychiatric

specialists at the Mental Health ID Service (“Parc Hospi-
talari Marti 1 Julia”, Girona, Catalonia, Spain) while clin-
ical-dysmorphic evaluation and genetic assessment was
performed by a clinical geneticist at the Clinical Genetics
Department (“Parc Tauli Hospital Universitari”, Sabadell,
Catalonia, Spain). This study was approved by the institu-
tional ethics committee (CEIC 2009/582). A legal guardian
or family member that legally represented the participant
signed the informed consent form. Adult patients over the
age of 18 years were consecutively recruited using the fol-
lowing inclusion criteria: mild (IQ =75 —50) or moderate
(IQ=50-135) ID according to the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) criteria and a defined
psychiatric disorder or behavioural disorder according to
the measures listed in Table 1. The exclusion criteria were
having severe ID or sensory impairment that precluded a
proper examination, having suffered alterations in the central
nervous system unrelated to the ID (i.e., head injury, stroke
or brain tumours), the presence of untreated diseases with
associated cognitive deficits (i.e., hypothyroidism, vitamin
B12 deficiency or diabetes mellitus) and substance abuse.
This recruitment led to 100 eligible patients for the analysis,
including five sibling pairs and a sibling trio.

Clinical evaluation: cognitive, behavioural,
psychiatric and dysmorphic measures

Different tests were administered to all participants to iden-
tify the presence of ID and establish its severity level, as well
as to identify the presence of a psychiatric and/or behav-
ioural disorder (Table 1). The presence of a behavioural
disorder not necessarily related to a mental disorder was
defined according to (Emerson 1995) as “culturally abnor-
mal behaviour of such intensity, frequency or duration that
the physical safety of the person or others is placed in seri-
ous jeopardy, or behaviour which is likely to seriously limit
or deny them access to ordinary community facilities”. A
family history of ID, psychiatric or behavioural disorders
was also recorded.

Dysmorphic features were classified into five categories
as follows: craniofacial, limbs, cutaneous, genital and body

Table 1 Cognitive, psychiatric
and behavioural measures tests

Measures Tests

Cognitive

— K-BIT-1I (Kauffman Brief Intelligence Test-II)

— ABS-RC?2 first part (Adaptive Behaviour Scale Residence Community-2)

Psychiatric

— PAS-ADD (Psychiatric Assessment for Adults with Developmental Disabilities)

— Compulsive behaviour checklist

— Y-BOCS (Yale-Brown Obsessive Compulsive Scale)
— RBQ (Repetitive Behaviour Questionnaire)

— NPI (Neuropsychiatric Inventory)

Behavioural

— ABC-ECA Scale (Aberrant Behaviour Checklist)

— ABS-RC2 second part (Adaptive Behaviour Scale Residence Community-2)
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(all other dysmorphisms). A category was considered dys-
morphic if at least one feature was abnormal.

Genetic analysis

The cohort was first analysed by G-banded karyotyping to
determine the presence of unbalanced and balanced rear-
rangements. FMRI screening and other specific molecular
technologies were applied to subjects who were clinically
suspected of having a syndrome.

The CMA analysis was performed with the 400K Agi-
lent platform (Agilent Technologies, Santa Cruz, CA,
USA) on all patients without a clinically recognized syn-
drome (including subjects known to possess a chromosomal
rearrangement). This oligonucleotide-based comparative
genomic hybridization array covered the entire genome
with an average resolution of 5.3 kb. The microarrays were
processed according to the manufacturer’s specifications,
and the Agilent Workbench 5.0, Feature Extraction and
Cytogenomics softwares (Agilent Technologies, Santa Cruz,
CA, USA) were used to render the image analysis with the
manufacturer’s recommended settings and human genome
assembly hg19. We called CNVs when there were at least
five consecutive probes with a minimum log, ratio of +0.25.
This low rate is capable to detect mosaicisms and using five
consecutive probes avoid false positives.

The identified CNVs were cross-referenced with the
Database of Genomic Variants (DGV, http://projects.tcag.
ca/variation); those variants completely overlapped with
common CNVs (prevalence > 1% in the general popula-
tion) were excluded from further analysis. All rare CNVs
(prevalence < 1% in the general population) were inter-
preted individually by comparing each genomic region to
information available in public databases [University of
California, Santa Cruz Genome Browser (http://genom
e.ucsc.edu), National Center for Biotechnology Infor-
mation (http://www.ncbi.nlm.nih.gov), Ensembl (http://
www.ensembl.org/index.html), Decipher (https://decip
her.sanger.ac.uk/), Clinical Genome Resource (https://
www.clinicalgenome.org)] and Online Mendelian Inher-
itance in Man database (https://www.omim.org/) as well
as literature, and classified into four categories as fol-
lows: (1) Pathogenic CNVs (pCNV), which overlap with
known causative findings previously associated with ID or
psychiatric disorders (from databases and literature). (2)
Variants of unknown significance (VOUS) that were likely
pathogenic (pVOUS) when at least two of the following
conditions are met: (a) Partially overlap with a pathogenic
susceptibility locus; (b) It is not reported in control popu-
lation from (Coe et al. 2014); (c) Include genes enriched
for deletions/duplications at nominal level of significance
according to (Coe et al. 2014); (d) Include developmen-
tal delay (DD) genes from (Deciphering Developmental

Disorders Study 2017); (e) Include genes with relevant
function in the nervous system. (3) VOUS that were likely
benign (bVOUS), which included only intronic regions
of genes with a function in the nervous system not yet
described in the patients or CNVs that included genes with
unknown functions or functions not related to the central
nervous system. (4) Benign CNVs (bCNVs), which were
without genes or devoid of known regulatory elements.
We focused on pCNVs and pVOUSs, both of which are
likely associated with the affected phenotype. Custom-
ized multiplex ligation-dependent probe amplification
(MLPA) and fluorescent in situ hybridization (FISH) were
performed according to standard protocols to validate and
determine the inheritance of CNVs. Custom MLPA probes
were designed according to protocols and guidelines from
MRC-Holland (Amsterdam, the Netherlands) and the Pro-
Seek web server created by Estivill et al. (Pantano et al.
2008), and specific bacterial artificial chromosome clones
were selected for the aberration regions.

Finally, since the cohort of 100 patients results from a
50-patient set which was subsequently increased with a sec-
ond 50-patient set, we selected seven CNVs (pCNVs and
pVOUS) identified in the first patient-set analysed by CMA
to evaluate their recurrence. Two pCNVs associated with
ID and psychiatric disorders (2p16.3 and 12p12.1) and five
pVOUSs (2p12, 3929, 15q14q15, 15q26.2 and 17q24) were
analysed in a new set of 161 adult patients affected by mild/
moderate ID and 189 controls using a custom MLPA.

Data analysis

The potential associations between categorical variables
were tested using the y° test. When one or more of the
expected values for the y° computation was lower than 5,
the p value was computed using Fisher’s exact test. When a
result was significant, the odds ratio was indicated as a meas-
ure of the effect size. The Kruskal-Wallis and Mann—Whit-
ney U tests were performed for dependent continuous vari-
ables that showed non-normal distributions (as determined
by the Shapiro—Wilk test and visual inspection). A threshold
of p<0.05 was set to indicate statistical significance, and the
Bonferroni correction was applied for post hoc comparisons.
The statistical analyses were performed using the Statistical
Package for Social Sciences (SPSS for Windows, Version
16.0., SPSS Inc., Chicago, IL, USA).
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Results
Description of the patient cohort

A patient cohort of 100 adults affected by ID and co-morbid
psychiatric/behavioural disorders without a genetic diagno-
sis was recruited with the main purpose of identifying CNVs
responsible for their conditions. The cohort comprised 50
men and 50 women with an average age of 31.28 years
(18-56 years, SD=10.14), of whom 60% had mild ID and
40% had moderate ID. Out of the 100 patients, 50 had both
a psychiatric and a behavioural disorder, 37 had only a psy-
chiatric disorder and 13 had only a behavioural disorder.
Sixteen patients had a diagnosis of two different psychiatric
disorders, nine of whom also presented with a behavioural
disorder. Table 2 shows the distribution of the psychiatric
disorders in our cohort according to ID severity level and the
presence or absence of behavioural disorders. The j° test did

Genetic analysis of the patient cohort

A preliminary karyotype identified four rearrangements
and the specific molecular technologies confirmed the
presence of a clinically recognized syndromes in four-
teen individuals (Table 3). The CMA performed in the 86
patients with no clinically recognized syndromes identified
a total of 216 rare CNVs (additional file 1) with an aver-
age of 2.5 CNVs/patient and range of 0-8 CNVs/patient.
According to the classification criteria, 13 pCNVs were the
genetic cause of the phenotype and 11 pVOUSs were the
putative cause of the phenotype (additional file 2) while
192 CNVs (88.9%) were non-pathogenic (139bVOUSs and
53 bCNVs). The 13pCNVs, nine deletions and four dupli-
cations, were identified in 11 of the 86 patients (12.8%)

Table 3 Well-known specific syndromes

not show a significant difference in the presence of psychiat- Syndrome Genetic cause No. cases
ric or behavioural disorders between the mild and moderate Frasile X GG i 5
. . . ragile expansion
ID groups. Mild dysmorphic features were present in all £ . P .
. . . . . . . Velocardiofacial 22q11.2 deletion 4
patients and were identified via minor facial or cranial dys- o .
. e . Prader Willi 15q11q13 deletion 2
morphologies (98%) and abnormalities in the limbs (44%), . ) . .
. . Smith Magenis RAII point muation 1
cutaneous tissue (52), genitals (16%) and other (60%). .
17p11.2 deletion 1
Williams 7q11.23 deletion 1
Table 2 Distribution of the Psychiatric disorders (n= 116)* Mild ID Moderate ID
psychiatric disorders according
tﬁ the ID sever ityblevel ans With behavioural disorders n=36 n=36
the presence or absence o . .
behavioural disorders Organic mental disorders (FO1-F09) 2 (5.6%) 0
Schizophrenia spectrum (F20-F29) 3 (8.3%) 1(2.8%)
Depressive disorders (F30-F39) 3 (8.3%) 0
Anxiety (F40-F48) 14 (38.9%) 12 (33.3%)
Non-organic disorder of the sleep-wake schedule (F51.2) 0 0
Personality disorders (F60-F69) 7 (19.4%) 3(8.3%)
Psychological developmental disorders (F80-F89) 0 3(8.3%)
Childhood behavioural/emotional disorders (F90-F98) 3 (8.3%) 8 (22.2%)
No diagnosable disorder 4 (11.1%) 9 (25%)
Without behavioural disorders n=33 n=11
Organic mental disorders (FO1-F09) 0 0
Schizophrenia spectrum (F20-F29) 5 (15.2%) 3(27.3%)
Depressive disorders (F30-F39) 7(21.2%) 1(9.1%)
Anxiety (F40-F48) 15 (45.5%) 2 (18.2%)
Non-organic disorder of the sleep-wake schedule (F51.2) 0 1(9.1%)
Personality disorders (F60-F69) 1 (3%) 0
Psychological developmental disorders (F80-F89) 3(9.1%) 3(27.3%)
Childhood behavioural/emotional disorders (FO0-F98) 2 (6.1%) 1(9.1%)
No diagnosable disorder 0 0

*The table includes the 116 psychiatric diagnoses identified in the adult cohort (n): 36 in patients with
mild ID and behaviour disorders; 36 in patients with moderate ID and behaviour disorders; 33 in patients
with mild ID without behavioural disorders; 11 in patients with moderate ID without behavioural disorders.
There were 16 individuals with two different psychiatric disorders
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(Table 4), given that two patients presented two CNVs—in
one case the 2 pCNVs arose from a maternal inversion
(patient 10) and in the other case the 2 pCNVs derived
from an unbalanced translocation (patient 26) according
to the FISH performed afterwards. The 11pVOUS, five
deletions and six duplications, were identified in 11 of
the 86 patients (12.8%) (Table 4), but if we consider only
one patient of each sibling set (given that we include four
set of siblings in the CMA population), pVOUS are the
putative cause of disease in nine of 82 patients (11%). The
analysis of parental samples (when available) revealed that
the pCNVs were de novo in seven patients and maternally
inherited in two cases (one X-linked). In contrast, of the
eight cases with pVOUSs with available parental samples,
there were no de novo pVOUSs (Table 4).

Two shared CNV regions were present in unrelated
patients. The first CNV region was the pathogenic 2p16.3
deletion in patients 55 and 94, which partially included the
NRXNI gene (Table 4). The shared phenotype between these
patients and the neuropsychological evaluation of deletion
family carriers was previously reported (Vinas-Jornet et al.
2014). The second shared CNV was a 7q31.1 deletion that
disrupted the IMMP2L gene, which encodes a catalytic sub-
unit of the mitochondrial inner membrane peptidase (IMP)
complex. This CNV was identified in two males (patients 32
and 151 from Table 4) affected by moderate ID and psychiat-
ric disorders [a post-traumatic stress disorder in one patient
and obsessive—compulsive disorder (OCD) with childhood
autism in the other patient]. The deletion was maternally
inherited in these two unrelated patients, and both patients
had a registered familial history: patient 32’s mother was
diagnosed with early Alzheimer’s disease and patient 151°s
maternal aunt was diagnosed with a psychiatric disorder.

Family studies may help to understand the pathogenicity
of CNVs and delineate genotype-phenotype correlations. Of
the five sibling pairs included in the cohort, we identified a
putative genetic cause that was shared between siblings in
two pairs. A 9p24.2p24.1 duplication was identified in two
brothers affected by moderate ID and behavioural disorders
(patients 122 and 123), but a generalized anxiety disorder
was diagnosed in only one patient (Table 4). This dupli-
cation overlaps two duplications described in DECIPHER
in patients affected by cognitive and behavioural disorders
(295,026 and 254,714, respectively). The second sibling pair
was a female and her brother (patients 59 and 60) who were
both affected by moderate ID, hyperkinetic conduct disorder
and minor facial/cranial dysmorphology; the siblings shared
a 2.7 Mb duplication in 15q14ql15.1 (Table 4). There are
overlapping duplications in public databases (ClinVar) with
unknown clinical significance in patients with global devel-
opmental delay (nssv580863 and nssv1609978), the first
of whom also presented with microcephaly and upslanted
palpebral fissures.

Finally, a homozygous 3q29 duplication was identified
in patient 34, who was affected by mild ID, post-traumatic
stress disorder and behavioural disorders (Table 4). The
patient was the third child of a consanguineous couple; both
parents had borderline IQs and a heterozygous 3q29 duplica-
tion. The patient had a younger brother with a severe ID and
ASD phenotype who also presented with the duplication in
homozygosity.

Effect of CNVs on dysmorphic
and neurodevelopmental traits

Demographic and clinical variables (gender, ID severity
level, dysmorphology, psychiatric disorders, behavioural
disorders and psychiatric co-morbidity) from the group of
patients with an identified putative genetic cause (pCNV and
pVOUS) were compared to the patients with an unknown
possibly genetic cause (bVOUS, bCNVs and absence of rare
CNVs). The comparison of the number of dysmorphic fea-
tures, the ID severity level, psychiatric disorders or behav-
ioural disorders between the two groups did not show any
significant difference. Interestingly, the odds of having two
psychiatric disorders diagnosed in the same patient were
4.22 times higher in the genetic cause group than in the
unknown possible genetic cause group (95% CI 1.21-14.74,
7 (1)=5.56, p=0.035).

Analysis of specific CNVs in an additional cohort

In order to evaluate the recurrence of seven pCNVs/pVOUS,
an independent population of 161 patients affected by mild/
moderate ID and 189 controls were analysed. None of the
selected seven CN'Vs were detected either in the patients or
the control individuals indicating a very low frequency of
these pCNVs/pVOUS.

Discussion

A genetic cause of the ID and psychiatric phenotypes was
identified in 25 patients of our adult cohort. This incidence is
due to the diagnosis of clinically recognized syndromes such
as fragile X, Velocardiofacial, Prader Willi, Smith Magenis
and Williams not recognised at the adult psychiatric service.
The application of CMA test in those patients without a rec-
ognised syndrome allows the genetic diagnosis in 12.8% in
agreement to a similar adult population affected by ID and
co-morbid psychiatric disorders (Wolfe et al. 2016). This
rate would have increased to 19% if the CMA had been per-
formed in all patients being comparable to an adult popu-
lation with ID and mild-severe congenital malformation
anomalies (Ho et al. 2016).
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Interestingly, in our series we found a NRXN] deletion in
two cases responsible for bipolar disorder, persistent delu-
sional disorders and behavioural phenotype (Vinas-Jornet
et al. 2014) in keeping with (Lowther et al. 2017).

An additional 11% of the patients present pVOUS that
may contribute to the phenotype despite there not being
strong evidence for their pathogenicity. Given the low fre-
quency of each individual CNV it is important to report
them to increase the knowledge and clarify their possible
association with the phenotype.

The 7q31 deletion identified in two unrelated patients
(Table 4) disrupted the IMMP2L gene (NM_001244606).
Although deletions in this region are reported as benign loss
in ISCA database and are identified in control population,
they are considered rare CNVs because their frequency is
lower than 1% considering the DGV Gold Standard Variants
(additional file 3). The 7q31 deletion was considered a risk
factor in several neuropsychiatric disorders, including ASD
(Maestrini et al. 2010; Pagnamenta et al. 2010; Casey et al.
2012), ADHD (Elia et al. 2010) and language disorder (Lai
et al. 2001) and partial deletions of the IMMP2L gene in
particular has been described as risk factors for neurological
diseases with an incomplete penetrance (Gimelli et al. 2014).
The history of Alzheimer’s disease in the carrier mother is
interesting, particularly because the IMMP2L gene encodes
a mitochondrial protein that regulates the levels of reactive
oxygen species (George et al. 2011), and has been impli-
cated in Alzheimer’s disease susceptibility (Swaminathan
et al. 2012). This evidence suggests that IMMP2L may con-
tribute to the ID and psychiatric disorders in these patients.

Little is known about the clinical effects of duplications
in 3929, 9p24.2p24.1 and 15q14q15.1 in contrast to the dele-
tions in these regions that have been previously associated
with neurodevelopmental disorders (Myles-Worsley et al.
2013; Bianchi et al. 2014; Spencer et al. 2011; Willatt et al.
2005). However, patients presented here suggest that these
duplications could be pathogenic. The 3q29 duplication not
only could disrupt the PAK2 gene, which codifies a serine/
threonine protein kinase involved in the dendritic develop-
ment of early cortical neurons, but also includes the FBXO45
gene. This gene, which is a component of an E3 ubiquitin
ligase complex, is evolutionarily conserved and selectively
expressed in the nervous system, plays an important role
in the regulation of neurotransmission (Tada et al. 2010)
and has been described as a candidate gene for SQZ (Wang
et al. 2014). This CNV partially overlaps the 3.5 Mb critical
region in 3q29 present in five members of a family affected
by ID and microcephaly (Lisi et al. 2008) and spans some
smaller duplications described in patients affected by ID
and a wide range of minor dysmorphic features (Ballif et al.
2008). In our case, phenotypic severity correlated with the
copy number of the 3q29 region in the proband, who har-
bours four copies of the 3q29 material and was affected by

ID and a psychiatric disorder, and the parents, both of whom
harbour three copies of 3q29 and had borderline 1Qs. A sec-
ond putative pathogenic duplication identified in our cohort
is located in 9p24.2p24.1 and includes the SLCIAI gene.
This gene encodes a member of the high-affinity glutamate
transporters, which are crucial for the termination of the
postsynaptic action of the neurotransmitter glutamate and
maintenance of extracellular glutamate concentrations below
the neurotoxic levels. Changes in its expression are associ-
ated with neuropsychiatric diseases, such as OCD and SQZ
(Porton et al. 2013; Bauer et al. 2008), and overexpression
of SLCIAT has been demonstrated to increase the expression
level of the two glial members of the glutamate transporter
family (SLCIA2 and SLCIA3), which are associated with
SQZ (Afshari et al. 2015). Finally, although pathogenicity of
the 15q14q15.1 duplication has not been demonstrated, this
duplication includes three genes (SPREDI, RASGRPI and
PAK®6) that have been previously related to neuropsychiatric
diseases (Brems et al. 2007; Denayer et al. 2008; Kato et al.
2011; Furnari et al. 2013). The presence of SPRED] is par-
ticularly interesting given that deletions and point mutations
in this gene are responsible for Legius syndrome, which
is a genetic skin pigmentation disorder that is sometimes
accompanied by other common manifestations, including
moderate ID, ADHD, hypotelorism and pectus excavatum;
these symptoms were present in the two patients with the
15q14q15.1 duplication. This evidence suggests that the
SPREDI gene may be responsible for the ID and neuropsy-
chiatric disorders in our patients and that increased dosage
in this region is capable of yielding a similar phenotype as
decreased dosage.

Of the 13pCNVs and 11 pVOUSs, ten genes (NRXNI,
IMMP2L, MSRA, SLC1AI, SOX5, UBE3A, CHRNA?7,
SPREDI, PRKCA, and SHANK3) have each been associ-
ated with more than one psychiatric phenotype (Table 5)
and neurodevelopmental disorders based on the hypothesis
that perturbation of the same molecular pathway can result
in different psychiatric diagnoses (Plummer et al. 2016);
for instance, SHANK3 and SLCIA1 participate in the gluta-
matergic pathway and UBE3A and FBXO45 in the ubiquitin
pathway (Javitt 2007, Tebartz van Elst et al. 2014; Glessner
et al. 2009; Plummer et al. 2016). Other genes involved in
synaptic formation and function may contribute to behaviour
impairments and a brain malfunction (Mehregan et al. 2016).
Interestingly, we found that the presence of two psychiatric
disorders increases the likelihood of detecting a pathogenic
or possibly pathogenic CNV supporting the fact that differ-
ent psychiatric disorders share common genetic aetiologies
(Moreno-De-Luca et al. 2013).

Our cohort has been clinically examined in great detail
for psychiatric and behavioural disorders as well as a dys-
morphological evaluation was performed by a clinical
geneticist. Almost all patients in our cohort present mild
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Table 5 Genes associated with various psychiatric disorders

Gene Loci Psychiatric disorder in current study Bibliography*
ASD ADHD SQZ BD OCD A GTS
NRXN1 2pl6.3 BD + + + + - + +
Delusional disorder
Disexecutive syndrome
Anxiety
IMMP2L 7931 GTS + + - + + _ +
Post-traumatic stress disorder
OCD + autism
MSRA 8p23.1 Transvestism, destructive and aggressive behaviour — — - + + - - -
SLCIAI 9p24.2p24.1 Generalized anxiety disorder - - + + + - -
SOX5 12p12 Behavioural disorder + + - - - + _
UBE3A 15q11q13 Specific phobias + + + - + + -
CHRNA7 15q13.3 Generalized anxiety disorder + + + + — - -
SPREDI 15q14q15 OCD + + - — - — _
Hyperkinetic disorder
RASGRPI1 15q14q15 OCD - - - + - - _
Hyperkinetic disorder
MCTP2 15q26.2 Asperger syndrome - - + - - - _
Depressive episode with somatic syndrome
PRKCA 17q24.1q24.2 Acute stress reaction - - + + — _
Other habit and impulse disorders
SHANK3 22q13.33 Autism + - + + - - _

ASD autism spectrum disorder, ADHD attention deficit and hyperactive disorder, SQZ schizophrenia, BD bipolar disorder, OCD obsessive—com-

pulsive disorder, A anxiety, GTS Gilles de la Tourette syndrome

*Hahn and Friedman (1999); Lai et al. (2001); Ophoft et al. (2002); Moessner et al. (2007); Bauer et al. (2008); Djurovic et al. (2009); Pasmant
et al. (2009); Walss-Bass et al. (2009); Wang et al. (2009); Weiss et al. (2009); Carroll et al. (2010); Elia et al. (2010); Gauthier et al. (2010);
Maestrini et al. (2010); Pagnamenta et al. (2010); Rosenfeld et al. (2010); Wisniowiecka-Kowalnik et al. (2010); Girirajan et al. (2011); Kato
et al. (2011); Levy et al. (2011); Ma et al. (2011); Spencer et al. (2011); Waga et al. (2011); Casey et al. (2012); Girirajan et al. (2012); Lamb
et al. (2012); O’Roak et al. (2012); Prasad et al. (2012); Schaaf et al. (2012); Grayton et al. (2013); Myles-Worsley et al. (2013); Porton et al.
(2013); Bacchelli et al. (2014); Gimelli et al. (2014); Noor et al. (2014); Schaaf (2014); Gillentine and Schaaf (2015); Nesbitt et al. (2015); Noor

et al. (2015)

cranial or facial dysmorphic features suggesting that hav-
ing multiple mild dysmorphic features may be a clue to an
underlying genetic cause, despite specific comparison was
not possible. We suggest that adults with mild or moderate
ID, psychiatric/behavioural disorders and mild dysmorphic
signs are an especially CNV enriched group as shown in the
present study.

We highlight there is a high familial burden of ID and
neuropsychiatric disorders in all individuals with an inher-
ited genetic cause mainly gathered in the pVOUS group.
Inherited variants must be taken into account because they
can act as susceptibility factors having an additive or syner-
gistic effect (Pinto et al. 2010; Girirajan and Eichler 2010).
The identification of a familial history in individuals with
ID and neuropsychiatric disorders is challenging due to the
continuous spectrum of the phenotype that could explain the
discrepancy between family members. Therefore, pVOUS

@ Springer

should be considered in larger studies to reinforce their
pathogenicity for ID and co-morbid psychiatric disorders.
The data provided here from an adult cohort with mild-
moderate ID and co-morbid psychiatric and behavioural
disorders is essential to advance our knowledge of these
pathologies and useful for genotype-phenotype correlations
as well as contribute to the prognosis of the behavioural phe-
notype in children and adolescents with the same diagnoses.
Most behaviours and organic/mental health problems are
easier to work with and to understand when an aetiological
diagnosis is delivered, which enables the planning of bet-
ter medical intervention strategies. Furthermore, having a
genetic diagnosis provides relevant information for families
in terms of genetic counselling, allows improved care of all
family members and provides an early diagnosis of related
diseases, which is a significant issue to take into account
when governments and authorities plan local and national
health strategies. We propose that CMA testing together
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with a clinical genetics assessment would help to achieve
more aetiological diagnoses in adult patients with ID and
psychiatric disorders.
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