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Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders 
is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order 
to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of 
pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed 
clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion 
(IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of 
its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a 
mandatory test to improve the diagnosis in the adult patients in psychiatric services.
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Introduction

Intellectual disability (ID) is a complex and multifacto-
rial disorder that includes both intellectual and adaptive 
functioning deficits in the conceptual, social and practical 
domains with onset during the developmental period. This 
disorder affects approximately 1–3% of the general popula-
tion, and between 10 and 40% of people with ID also present 
with mental illness or behavioural disorders (Cooper et al. 
2007; Lowe et al. 2007; Morgan et al. 2008). The diagnostic 
categories of these mental disorders are based on the symp-
toms (Stein et al. 2013), but there is considerable clinical 
heterogeneity and overlap with different psychiatric cat-
egories (Burmeister et al. 2008). Indeed, the boundaries of 
the diagnostic categories can be blurred when the patients’ 
symptoms are not clearly expressed. The diagnosis of a psy-
chiatric disorder in subjects with ID can be difficult, and 
most symptoms tend to be attributed to the ID. For this rea-
son, the co-occurrence of both entities is usually overlooked 
(Costello and Bouras 2006).

Copy number variants (CNVs) are a source of human 
genetic variation and have been described as an impor-
tant genomic cause of human disease (Iafrate et al. 2004; 
Sebat et  al. 2004). Screening of ID patient cohorts via 
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chromosomal microarray analysis (CMA) has led to the 
characterization of new syndromes, such as 8q21.11 dele-
tion syndrome (OMIM: 614230) and 19p13.3 microdele-
tion/microduplication syndrome (Dolan et al. 2010; Orellana 
et al. 2015). Additionally, there is evidence that CNVs can 
predispose individuals to the development of psychiatric 
disorders, such as the autism spectrum disorders (ASDs) 
(Marshall et al. 2008; Hedges et al. 2012), schizophrenia 
(SQZ) (Kirov et al. 2012; Xu et al. 2008), bipolar disor-
der (Green et al. 2015) and attention-deficit/hyperactive 
disorder (ADHD) (Jarick et al. 2014; Ramos-Quiroga et al. 
2014). Numerous CNV loci have been recurrently observed 
across ID and various neuropsychiatric phenotypes, such as 
the16p11.2 and NRXN1 deletions, both of which are associ-
ated with ID, SQZ and ASD. These findings suggest that ID 
and psychiatric disorders may share genetic susceptibility 
factors (Guilmatre et al. 2009).

A large proportion of the adult population affected by 
ID lacks a genetic diagnosis. Some of these adult patients 
have never received a diagnostic assessment; alternatively, 
in some cases the assessment is completed without finding 
an explanation for the ID possibly due to the use of less 
advanced technologies than are currently available. At pre-
sent, there is little knowledge of the genetics of ID and co-
morbid psychiatric disorder in adults. Nevertheless, CMA 
and whole exome sequencing could shed light on the genetic 
diagnoses in adults with idiopathic ID (Baker et al. 2012; 
Posey et al. 2016; Taylor et al. 2010; Wolfe et al. 2016). 
Here, we report the genetic analysis of 100 adult patients 
affected by ID and psychiatric and/or behavioural disorders. 
The main purpose of this study is to investigate the contribu-
tion of putative pathogenic CNVs among patients with ID 
and comorbid psychiatric/behavioural disorders.

Materials and methods

Participants

This study was designed prospectively. Cognitive, psychiat-
ric and behavioural evaluation was performed by psychiatric 

specialists at the Mental Health ID Service (“Parc Hospi-
talari Martí i Julià”, Girona, Catalonia, Spain) while clin-
ical-dysmorphic evaluation and genetic assessment was 
performed by a clinical geneticist at the Clinical Genetics 
Department (“Parc Taulí Hospital Universitari”, Sabadell, 
Catalonia, Spain). This study was approved by the institu-
tional ethics committee (CEIC 2009/582). A legal guardian 
or family member that legally represented the participant 
signed the informed consent form. Adult patients over the 
age of 18 years were consecutively recruited using the fol-
lowing inclusion criteria: mild (IQ = 75 − 50) or moderate 
(IQ = 50 − 35) ID according to the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5) criteria and a defined 
psychiatric disorder or behavioural disorder according to 
the measures listed in Table 1. The exclusion criteria were 
having severe ID or sensory impairment that precluded a 
proper examination, having suffered alterations in the central 
nervous system unrelated to the ID (i.e., head injury, stroke 
or brain tumours), the presence of untreated diseases with 
associated cognitive deficits (i.e., hypothyroidism, vitamin 
B12 deficiency or diabetes mellitus) and substance abuse. 
This recruitment led to 100 eligible patients for the analysis, 
including five sibling pairs and a sibling trio.

Clinical evaluation: cognitive, behavioural, 
psychiatric and dysmorphic measures

Different tests were administered to all participants to iden-
tify the presence of ID and establish its severity level, as well 
as to identify the presence of a psychiatric and/or behav-
ioural disorder (Table 1). The presence of a behavioural 
disorder not necessarily related to a mental disorder was 
defined according to (Emerson 1995) as “culturally abnor-
mal behaviour of such intensity, frequency or duration that 
the physical safety of the person or others is placed in seri-
ous jeopardy, or behaviour which is likely to seriously limit 
or deny them access to ordinary community facilities”. A 
family history of ID, psychiatric or behavioural disorders 
was also recorded.

Dysmorphic features were classified into five categories 
as follows: craniofacial, limbs, cutaneous, genital and body 

Table 1   Cognitive, psychiatric 
and behavioural measures tests

Measures Tests

Cognitive – K-BIT-II (Kauffman Brief Intelligence Test-II)
– ABS-RC2 first part (Adaptive Behaviour Scale Residence Community-2)

Psychiatric – PAS-ADD (Psychiatric Assessment for Adults with Developmental Disabilities)
– Compulsive behaviour checklist
– Y-BOCS (Yale-Brown Obsessive Compulsive Scale)
– RBQ (Repetitive Behaviour Questionnaire)
– NPI (Neuropsychiatric Inventory)

Behavioural – ABC-ECA Scale (Aberrant Behaviour Checklist)
– ABS-RC2 second part (Adaptive Behaviour Scale Residence Community-2)
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(all other dysmorphisms). A category was considered dys-
morphic if at least one feature was abnormal.

Genetic analysis

The cohort was first analysed by G-banded karyotyping to 
determine the presence of unbalanced and balanced rear-
rangements. FMR1 screening and other specific molecular 
technologies were applied to subjects who were clinically 
suspected of having a syndrome.

The CMA analysis was performed with the 400K Agi-
lent platform (Agilent Technologies, Santa Cruz, CA, 
USA) on all patients without a clinically recognized syn-
drome (including subjects known to possess a chromosomal 
rearrangement). This oligonucleotide-based comparative 
genomic hybridization array covered the entire genome 
with an average resolution of 5.3 kb. The microarrays were 
processed according to the manufacturer’s specifications, 
and the Agilent Workbench 5.0, Feature Extraction and 
Cytogenomics softwares (Agilent Technologies, Santa Cruz, 
CA, USA) were used to render the image analysis with the 
manufacturer’s recommended settings and human genome 
assembly hg19. We called CNVs when there were at least 
five consecutive probes with a minimum log2 ratio of ± 0.25.
This low rate is capable to detect mosaicisms and using five 
consecutive probes avoid false positives.

The identified CNVs were cross-referenced with the 
Database of Genomic Variants (DGV, http://proje​cts.tcag.
ca/varia​tion); those variants completely overlapped with 
common CNVs (prevalence > 1% in the general popula-
tion) were excluded from further analysis. All rare CNVs 
(prevalence < 1% in the general population) were inter-
preted individually by comparing each genomic region to 
information available in public databases [University of 
California, Santa Cruz Genome Browser (http://genom​
e.ucsc.edu), National Center for Biotechnology Infor-
mation (http://www.ncbi.nlm.nih.gov), Ensembl (http://
www.ensem​bl.org/index​.html), Decipher (https​://decip​
her.sange​r.ac.uk/), Clinical Genome Resource (https​://
www.clini​calge​nome.org)] and Online Mendelian Inher-
itance in Man database (https​://www.omim.org/) as well 
as literature, and classified into four categories as fol-
lows: (1) Pathogenic CNVs (pCNV), which overlap with 
known causative findings previously associated with ID or 
psychiatric disorders (from databases and literature). (2) 
Variants of unknown significance (VOUS) that were likely 
pathogenic (pVOUS) when at least two of the following 
conditions are met: (a) Partially overlap with a pathogenic 
susceptibility locus; (b) It is not reported in control popu-
lation from (Coe et al. 2014); (c) Include genes enriched 
for deletions/duplications at nominal level of significance 
according to (Coe et al. 2014); (d) Include developmen-
tal delay (DD) genes from (Deciphering Developmental 

Disorders Study 2017); (e) Include genes with relevant 
function in the nervous system. (3) VOUS that were likely 
benign (bVOUS), which included only intronic regions 
of genes with a function in the nervous system not yet 
described in the patients or CNVs that included genes with 
unknown functions or functions not related to the central 
nervous system. (4) Benign CNVs (bCNVs), which were 
without genes or devoid of known regulatory elements. 
We focused on pCNVs and pVOUSs, both of which are 
likely associated with the affected phenotype. Custom-
ized multiplex ligation-dependent probe amplification 
(MLPA) and fluorescent in situ hybridization (FISH) were 
performed according to standard protocols to validate and 
determine the inheritance of CNVs. Custom MLPA probes 
were designed according to protocols and guidelines from 
MRC-Holland (Amsterdam, the Netherlands) and the Pro-
Seek web server created by Estivill et al. (Pantano et al. 
2008), and specific bacterial artificial chromosome clones 
were selected for the aberration regions.

Finally, since the cohort of 100 patients results from a 
50-patient set which was subsequently increased with a sec-
ond 50-patient set, we selected seven CNVs (pCNVs and 
pVOUS) identified in the first patient-set analysed by CMA 
to evaluate their recurrence. Two pCNVs associated with 
ID and psychiatric disorders (2p16.3 and 12p12.1) and five 
pVOUSs (2p12, 3q29, 15q14q15, 15q26.2 and 17q24) were 
analysed in a new set of 161 adult patients affected by mild/
moderate ID and 189 controls using a custom MLPA.

Data analysis

The potential associations between categorical variables 
were tested using the χ2 test. When one or more of the 
expected values for the χ2 computation was lower than 5, 
the p value was computed using Fisher’s exact test. When a 
result was significant, the odds ratio was indicated as a meas-
ure of the effect size. The Kruskal–Wallis and Mann–Whit-
ney U tests were performed for dependent continuous vari-
ables that showed non-normal distributions (as determined 
by the Shapiro–Wilk test and visual inspection). A threshold 
of p < 0.05 was set to indicate statistical significance, and the 
Bonferroni correction was applied for post hoc comparisons. 
The statistical analyses were performed using the Statistical 
Package for Social Sciences (SPSS for Windows, Version 
16.0., SPSS Inc., Chicago, IL, USA).

http://projects.tcag.ca/variation
http://projects.tcag.ca/variation
http://genome.ucsc.edu
http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov
http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
https://decipher.sanger.ac.uk/
https://decipher.sanger.ac.uk/
https://www.clinicalgenome.org
https://www.clinicalgenome.org
https://www.omim.org/
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Results

Description of the patient cohort

A patient cohort of 100 adults affected by ID and co-morbid 
psychiatric/behavioural disorders without a genetic diagno-
sis was recruited with the main purpose of identifying CNVs 
responsible for their conditions. The cohort comprised 50 
men and 50 women with an average age of 31.28 years 
(18–56 years, SD = 10.14), of whom 60% had mild ID and 
40% had moderate ID. Out of the 100 patients, 50 had both 
a psychiatric and a behavioural disorder, 37 had only a psy-
chiatric disorder and 13 had only a behavioural disorder. 
Sixteen patients had a diagnosis of two different psychiatric 
disorders, nine of whom also presented with a behavioural 
disorder. Table 2 shows the distribution of the psychiatric 
disorders in our cohort according to ID severity level and the 
presence or absence of behavioural disorders. The χ2 test did 
not show a significant difference in the presence of psychiat-
ric or behavioural disorders between the mild and moderate 
ID groups. Mild dysmorphic features were present in all 
patients and were identified via minor facial or cranial dys-
morphologies (98%) and abnormalities in the limbs (44%), 
cutaneous tissue (52), genitals (16%) and other (60%).

Genetic analysis of the patient cohort

A preliminary karyotype identified four rearrangements 
and the specific molecular technologies confirmed the 
presence of a clinically recognized syndromes in four-
teen individuals (Table 3). The CMA performed in the 86 
patients with no clinically recognized syndromes identified 
a total of 216 rare CNVs (additional file 1) with an aver-
age of 2.5 CNVs/patient and range of 0–8 CNVs/patient. 
According to the classification criteria, 13 pCNVs were the 
genetic cause of the phenotype and 11 pVOUSs were the 
putative cause of the phenotype (additional file 2) while 
192 CNVs (88.9%) were non-pathogenic (139bVOUSs and 
53 bCNVs). The 13pCNVs, nine deletions and four dupli-
cations, were identified in 11 of the 86 patients (12.8%) 

Table 2   Distribution of the 
psychiatric disorders according 
to the ID severity level and 
the presence or absence of 
behavioural disorders

*The table includes the 116 psychiatric diagnoses identified in the adult cohort (n): 36 in patients with 
mild ID and behaviour disorders; 36 in patients with moderate ID and behaviour disorders; 33 in patients 
with mild ID without behavioural disorders; 11 in patients with moderate ID without behavioural disorders. 
There were 16 individuals with two different psychiatric disorders

Psychiatric disorders (n = 116)* Mild ID Moderate ID

With behavioural disorders n = 36 n = 36
 Organic mental disorders (F01–F09) 2 (5.6%) 0
 Schizophrenia spectrum (F20–F29) 3 (8.3%) 1 (2.8%)
 Depressive disorders (F30–F39) 3 (8.3%) 0
 Anxiety (F40–F48) 14 (38.9%) 12 (33.3%)
 Non-organic disorder of the sleep-wake schedule (F51.2) 0 0
 Personality disorders (F60–F69) 7 (19.4%) 3 (8.3%)
 Psychological developmental disorders (F80–F89) 0 3 (8.3%)
 Childhood behavioural/emotional disorders (F90–F98) 3 (8.3%) 8 (22.2%)
 No diagnosable disorder 4 (11.1%) 9 (25%)

Without behavioural disorders n = 33 n = 11
 Organic mental disorders (F01–F09) 0 0
 Schizophrenia spectrum (F20–F29) 5 (15.2%) 3 (27.3%)
 Depressive disorders (F30–F39) 7 (21.2%) 1 (9.1%)
 Anxiety (F40–F48) 15 (45.5%) 2 (18.2%)
 Non-organic disorder of the sleep-wake schedule (F51.2) 0 1 (9.1%)
 Personality disorders (F60–F69) 1 (3%) 0
 Psychological developmental disorders (F80–F89) 3 (9.1%) 3 (27.3%)
 Childhood behavioural/emotional disorders (F90–F98) 2 (6.1%) 1 (9.1%)
 No diagnosable disorder 0 0

Table 3   Well-known specific syndromes

Syndrome Genetic cause No. cases

Fragile X CGG expansion 5
Velocardiofacial 22q11.2 deletion 4
Prader Willi 15q11q13 deletion 2
Smith Magenis RAI1 point muation 1

17p11.2 deletion 1
Williams 7q11.23 deletion 1
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(Table 4), given that two patients presented two CNVs—in 
one case the 2 pCNVs arose from a maternal inversion 
(patient 10) and in the other case the 2 pCNVs derived 
from an unbalanced translocation (patient 26) according 
to the FISH performed afterwards. The 11pVOUS, five 
deletions and six duplications, were identified in 11 of 
the 86 patients (12.8%) (Table 4), but if we consider only 
one patient of each sibling set (given that we include four 
set of siblings in the CMA population), pVOUS are the 
putative cause of disease in nine of 82 patients (11%). The 
analysis of parental samples (when available) revealed that 
the pCNVs were de novo in seven patients and maternally 
inherited in two cases (one X-linked). In contrast, of the 
eight cases with pVOUSs with available parental samples, 
there were no de novo pVOUSs (Table 4).

Two shared CNV regions were present in unrelated 
patients. The first CNV region was the pathogenic 2p16.3 
deletion in patients 55 and 94, which partially included the 
NRXN1 gene (Table 4). The shared phenotype between these 
patients and the neuropsychological evaluation of deletion 
family carriers was previously reported (Vinas-Jornet et al. 
2014). The second shared CNV was a 7q31.1 deletion that 
disrupted the IMMP2L gene, which encodes a catalytic sub-
unit of the mitochondrial inner membrane peptidase (IMP) 
complex. This CNV was identified in two males (patients 32 
and 151 from Table 4) affected by moderate ID and psychiat-
ric disorders [a post-traumatic stress disorder in one patient 
and obsessive–compulsive disorder (OCD) with childhood 
autism in the other patient]. The deletion was maternally 
inherited in these two unrelated patients, and both patients 
had a registered familial history: patient 32’s mother was 
diagnosed with early Alzheimer’s disease and patient 151’s 
maternal aunt was diagnosed with a psychiatric disorder.

Family studies may help to understand the pathogenicity 
of CNVs and delineate genotype-phenotype correlations. Of 
the five sibling pairs included in the cohort, we identified a 
putative genetic cause that was shared between siblings in 
two pairs. A 9p24.2p24.1 duplication was identified in two 
brothers affected by moderate ID and behavioural disorders 
(patients 122 and 123), but a generalized anxiety disorder 
was diagnosed in only one patient (Table 4). This dupli-
cation overlaps two duplications described in DECIPHER 
in patients affected by cognitive and behavioural disorders 
(295,026 and 254,714, respectively). The second sibling pair 
was a female and her brother (patients 59 and 60) who were 
both affected by moderate ID, hyperkinetic conduct disorder 
and minor facial/cranial dysmorphology; the siblings shared 
a 2.7 Mb duplication in 15q14q15.1 (Table 4). There are 
overlapping duplications in public databases (ClinVar) with 
unknown clinical significance in patients with global devel-
opmental delay (nssv580863 and nssv1609978), the first 
of whom also presented with microcephaly and upslanted 
palpebral fissures.

Finally, a homozygous 3q29 duplication was identified 
in patient 34, who was affected by mild ID, post-traumatic 
stress disorder and behavioural disorders (Table 4). The 
patient was the third child of a consanguineous couple; both 
parents had borderline IQs and a heterozygous 3q29 duplica-
tion. The patient had a younger brother with a severe ID and 
ASD phenotype who also presented with the duplication in 
homozygosity.

Effect of CNVs on dysmorphic 
and neurodevelopmental traits

Demographic and clinical variables (gender, ID severity 
level, dysmorphology, psychiatric disorders, behavioural 
disorders and psychiatric co-morbidity) from the group of 
patients with an identified putative genetic cause (pCNV and 
pVOUS) were compared to the patients with an unknown 
possibly genetic cause (bVOUS, bCNVs and absence of rare 
CNVs). The comparison of the number of dysmorphic fea-
tures, the ID severity level, psychiatric disorders or behav-
ioural disorders between the two groups did not show any 
significant difference. Interestingly, the odds of having two 
psychiatric disorders diagnosed in the same patient were 
4.22 times higher in the genetic cause group than in the 
unknown possible genetic cause group (95% CI 1.21–14.74, 
χ2 (1) = 5.56, p = 0.035).

Analysis of specific CNVs in an additional cohort

In order to evaluate the recurrence of seven pCNVs/pVOUS, 
an independent population of 161 patients affected by mild/
moderate ID and 189 controls were analysed. None of the 
selected seven CNVs were detected either in the patients or 
the control individuals indicating a very low frequency of 
these pCNVs/pVOUS.

Discussion

A genetic cause of the ID and psychiatric phenotypes was 
identified in 25 patients of our adult cohort. This incidence is 
due to the diagnosis of clinically recognized syndromes such 
as fragile X, Velocardiofacial, Prader Willi, Smith Magenis 
and Williams not recognised at the adult psychiatric service. 
The application of CMA test in those patients without a rec-
ognised syndrome allows the genetic diagnosis in 12.8% in 
agreement to a similar adult population affected by ID and 
co-morbid psychiatric disorders (Wolfe et al. 2016). This 
rate would have increased to 19% if the CMA had been per-
formed in all patients being comparable to an adult popu-
lation with ID and mild-severe congenital malformation 
anomalies (Ho et al. 2016).
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Interestingly, in our series we found a NRXN1 deletion in 
two cases responsible for bipolar disorder, persistent delu-
sional disorders and behavioural phenotype (Vinas-Jornet 
et al. 2014) in keeping with (Lowther et al. 2017).

An additional 11% of the patients present pVOUS that 
may contribute to the phenotype despite there not being 
strong evidence for their pathogenicity. Given the low fre-
quency of each individual CNV it is important to report 
them to increase the knowledge and clarify their possible 
association with the phenotype.

The 7q31 deletion identified in two unrelated patients 
(Table 4) disrupted the IMMP2L gene (NM_001244606). 
Although deletions in this region are reported as benign loss 
in ISCA database and are identified in control population, 
they are considered rare CNVs because their frequency is 
lower than 1% considering the DGV Gold Standard Variants 
(additional file 3). The 7q31 deletion was considered a risk 
factor in several neuropsychiatric disorders, including ASD 
(Maestrini et al. 2010; Pagnamenta et al. 2010; Casey et al. 
2012), ADHD (Elia et al. 2010) and language disorder (Lai 
et al. 2001) and partial deletions of the IMMP2L gene in 
particular has been described as risk factors for neurological 
diseases with an incomplete penetrance (Gimelli et al. 2014). 
The history of Alzheimer’s disease in the carrier mother is 
interesting, particularly because the IMMP2L gene encodes 
a mitochondrial protein that regulates the levels of reactive 
oxygen species (George et al. 2011), and has been impli-
cated in Alzheimer’s disease susceptibility (Swaminathan 
et al. 2012). This evidence suggests that IMMP2L may con-
tribute to the ID and psychiatric disorders in these patients.

Little is known about the clinical effects of duplications 
in 3q29, 9p24.2p24.1 and 15q14q15.1 in contrast to the dele-
tions in these regions that have been previously associated 
with neurodevelopmental disorders (Myles-Worsley et al. 
2013; Bianchi et al. 2014; Spencer et al. 2011; Willatt et al. 
2005). However, patients presented here suggest that these 
duplications could be pathogenic. The 3q29 duplication not 
only could disrupt the PAK2 gene, which codifies a serine/
threonine protein kinase involved in the dendritic develop-
ment of early cortical neurons, but also includes the FBXO45 
gene. This gene, which is a component of an E3 ubiquitin 
ligase complex, is evolutionarily conserved and selectively 
expressed in the nervous system, plays an important role 
in the regulation of neurotransmission (Tada et al. 2010) 
and has been described as a candidate gene for SQZ (Wang 
et al. 2014). This CNV partially overlaps the 3.5 Mb critical 
region in 3q29 present in five members of a family affected 
by ID and microcephaly (Lisi et al. 2008) and spans some 
smaller duplications described in patients affected by ID 
and a wide range of minor dysmorphic features (Ballif et al. 
2008). In our case, phenotypic severity correlated with the 
copy number of the 3q29 region in the proband, who har-
bours four copies of the 3q29 material and was affected by 

ID and a psychiatric disorder, and the parents, both of whom 
harbour three copies of 3q29 and had borderline IQs. A sec-
ond putative pathogenic duplication identified in our cohort 
is located in 9p24.2p24.1 and includes the SLC1A1 gene. 
This gene encodes a member of the high-affinity glutamate 
transporters, which are crucial for the termination of the 
postsynaptic action of the neurotransmitter glutamate and 
maintenance of extracellular glutamate concentrations below 
the neurotoxic levels. Changes in its expression are associ-
ated with neuropsychiatric diseases, such as OCD and SQZ 
(Porton et al. 2013; Bauer et al. 2008), and overexpression 
of SLC1A1 has been demonstrated to increase the expression 
level of the two glial members of the glutamate transporter 
family (SLC1A2 and SLC1A3), which are associated with 
SQZ (Afshari et al. 2015). Finally, although pathogenicity of 
the 15q14q15.1 duplication has not been demonstrated, this 
duplication includes three genes (SPRED1, RASGRP1 and 
PAK6) that have been previously related to neuropsychiatric 
diseases (Brems et al. 2007; Denayer et al. 2008; Kato et al. 
2011; Furnari et al. 2013). The presence of SPRED1 is par-
ticularly interesting given that deletions and point mutations 
in this gene are responsible for Legius syndrome, which 
is a genetic skin pigmentation disorder that is sometimes 
accompanied by other common manifestations, including 
moderate ID, ADHD, hypotelorism and pectus excavatum; 
these symptoms were present in the two patients with the 
15q14q15.1 duplication. This evidence suggests that the 
SPRED1 gene may be responsible for the ID and neuropsy-
chiatric disorders in our patients and that increased dosage 
in this region is capable of yielding a similar phenotype as 
decreased dosage.

Of the 13pCNVs and 11 pVOUSs, ten genes (NRXN1, 
IMMP2L, MSRA, SLC1A1, SOX5, UBE3A, CHRNA7, 
SPRED1, PRKCA, and SHANK3) have each been associ-
ated with more than one psychiatric phenotype (Table 5) 
and neurodevelopmental disorders based on the hypothesis 
that perturbation of the same molecular pathway can result 
in different psychiatric diagnoses (Plummer et al. 2016); 
for instance, SHANK3 and SLC1A1 participate in the gluta-
matergic pathway and UBE3A and FBXO45 in the ubiquitin 
pathway (Javitt 2007, Tebartz van Elst et al. 2014; Glessner 
et al. 2009; Plummer et al. 2016). Other genes involved in 
synaptic formation and function may contribute to behaviour 
impairments and a brain malfunction (Mehregan et al. 2016). 
Interestingly, we found that the presence of two psychiatric 
disorders increases the likelihood of detecting a pathogenic 
or possibly pathogenic CNV supporting the fact that differ-
ent psychiatric disorders share common genetic aetiologies 
(Moreno-De-Luca et al. 2013).

Our cohort has been clinically examined in great detail 
for psychiatric and behavioural disorders as well as a dys-
morphological evaluation was performed by a clinical 
geneticist. Almost all patients in our cohort present mild 
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cranial or facial dysmorphic features suggesting that hav-
ing multiple mild dysmorphic features may be a clue to an 
underlying genetic cause, despite specific comparison was 
not possible. We suggest that adults with mild or moderate 
ID, psychiatric/behavioural disorders and mild dysmorphic 
signs are an especially CNV enriched group as shown in the 
present study.

We highlight there is a high familial burden of ID and 
neuropsychiatric disorders in all individuals with an inher-
ited genetic cause mainly gathered in the pVOUS group. 
Inherited variants must be taken into account because they 
can act as susceptibility factors having an additive or syner-
gistic effect (Pinto et al. 2010; Girirajan and Eichler 2010). 
The identification of a familial history in individuals with 
ID and neuropsychiatric disorders is challenging due to the 
continuous spectrum of the phenotype that could explain the 
discrepancy between family members. Therefore, pVOUS 

should be considered in larger studies to reinforce their 
pathogenicity for ID and co-morbid psychiatric disorders.

The data provided here from an adult cohort with mild-
moderate ID and co-morbid psychiatric and behavioural 
disorders is essential to advance our knowledge of these 
pathologies and useful for genotype-phenotype correlations 
as well as contribute to the prognosis of the behavioural phe-
notype in children and adolescents with the same diagnoses. 
Most behaviours and organic/mental health problems are 
easier to work with and to understand when an aetiological 
diagnosis is delivered, which enables the planning of bet-
ter medical intervention strategies. Furthermore, having a 
genetic diagnosis provides relevant information for families 
in terms of genetic counselling, allows improved care of all 
family members and provides an early diagnosis of related 
diseases, which is a significant issue to take into account 
when governments and authorities plan local and national 
health strategies. We propose that CMA testing together 

Table 5   Genes associated with various psychiatric disorders

ASD autism spectrum disorder, ADHD attention deficit and hyperactive disorder, SQZ schizophrenia, BD bipolar disorder, OCD obsessive–com-
pulsive disorder, A anxiety, GTS Gilles de la Tourette syndrome
*Hahn and Friedman (1999); Lai et al. (2001); Ophoff et al. (2002); Moessner et al. (2007); Bauer et al. (2008); Djurovic et al. (2009); Pasmant 
et al. (2009); Walss-Bass et al. (2009); Wang et al. (2009); Weiss et al. (2009); Carroll et al. (2010); Elia et al. (2010); Gauthier et al. (2010); 
Maestrini et al. (2010); Pagnamenta et al. (2010); Rosenfeld et al. (2010); Wisniowiecka-Kowalnik et al. (2010); Girirajan et al. (2011); Kato 
et al. (2011); Levy et al. (2011); Ma et al. (2011); Spencer et al. (2011); Waga et al. (2011); Casey et al. (2012); Girirajan et al. (2012); Lamb 
et al. (2012); O’Roak et al. (2012); Prasad et al. (2012); Schaaf et al. (2012); Grayton et al. (2013); Myles-Worsley et al. (2013); Porton et al. 
(2013); Bacchelli et al. (2014); Gimelli et al. (2014); Noor et al. (2014); Schaaf (2014); Gillentine and Schaaf (2015); Nesbitt et al. (2015); Noor 
et al. (2015)

Gene Loci Psychiatric disorder in current study Bibliography*

ASD ADHD SQZ BD OCD A GTS

NRXN1 2p16.3 BD + + + + – + +
Delusional disorder
Disexecutive syndrome
Anxiety

IMMP2L 7q31 GTS + + – + + – +
Post-traumatic stress disorder
OCD + autism

MSRA 8p23.1 Transvestism, destructive and aggressive behaviour – – + + – – –
SLC1A1 9p24.2p24.1 Generalized anxiety disorder – – + + + – –
SOX5 12p12 Behavioural disorder + + – – – + –
UBE3A 15q11q13 Specific phobias + + + – + + –
CHRNA7 15q13.3 Generalized anxiety disorder + + + + – – –
SPRED1 15q14q15 OCD + + – – – – –

Hyperkinetic disorder
RASGRP1 15q14q15 OCD – – – + – – –

Hyperkinetic disorder
MCTP2 15q26.2 Asperger syndrome – – + – – – –

Depressive episode with somatic syndrome
PRKCA 17q24.1q24.2 Acute stress reaction – – + + – –

Other habit and impulse disorders
SHANK3 22q13.33 Autism + – + + – – –
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with a clinical genetics assessment would help to achieve 
more aetiological diagnoses in adult patients with ID and 
psychiatric disorders.
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