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Abstract

Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However,
most of the commonly used traditional phenological observations do not give any coherent spatial information. While
consistent spatial data can be obtained from airborne sensors and preprocessed gridded meteorological data, not many studies
robustly benefit from these data sources. Therefore, the main aim of this study is to create and evaluate different statistical
models for reconstructing, predicting, and improving quality of phenological phases monitoring with the use of satellite and
meteorological products. A quality-controlled dataset of the 13 BBCH plant phenophases in Poland was collected for the
period 2007-2014. For each phenophase, statistical models were built using the most commonly applied regression-based
machine learning techniques, such as multiple linear regression, lasso, principal component regression, generalized boosted
models, and random forest. The quality of the models was estimated using a k-fold cross-validation. The obtained results
showed varying potential for coupling meteorological derived indices with remote sensing products in terms of phenological
modeling; however, application of both data sources improves models’ accuracy from 0.6 to 4.6 day in terms of obtained
RMSE. It is shown that a robust prediction of early phenological phases is mostly related to meteorological indices, whereas
for autumn phenophases, there is a stronger information signal provided by satellite-derived vegetation metrics. Choosing a
specific set of predictors and applying a robust preprocessing procedures is more important for final results than the selection
of a particular statistical model. The average RMSE for the best models of all phenophases is 6.3, while the individual
RMSE vary seasonally from 3.5 to 10 days. Models give reliable proxy for ground observations with RMSE below 5 days
for early spring and late spring phenophases. For other phenophases, RMSE are higher and rise up to 9-10 days in the case
of the earliest spring phenophases.
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Introduction have shown that global warming determines the advance

of phenological events (Bradley et al. 1999; Root et al.
Phenology of the plants is mainly influenced by photoperiod ~ 2003; Menzel et al. 2006; Parmesan 2006; Cleland et al.
and temperature (Swanton et al. 2000). Previous studies  2007), and some of the plants currently approach their
physiological limits (Iler et al. 2013). The consequences
of changes in plant phenology due to climate change can
create more feedbacks that alter biogeochemical cycling
and species interactions (Melillo 2014), and may affect
all Earth’s spheres (Elmendorf et al. 2016). Monitoring
of phenological processes and plant reaction to currently

< Bartosz Czernecki
nwp@amu.edu.pl

Department of Climatology, Faculty of Geographical
and Geological Sciences, Adam Mickiewicz University,

Krygowskiego 10, 61 680 Poznar, Poland observed climate change is therefore of high importance.
2 Space Informatics Lab, Department of Geography and GIS, Char}ges in timing of phenologl.cal phases are also important
University of Cincinnati, 219 Braunstein Hall, Cincinnati, proxies in contemporary climate research, such that
OH, 45221, USA phenological data are commonly used in the reconstruction
3 Institute of Meteorology and Water Management - National of long-time temperature time-series due to its longer
Research Institute, Podlesna 61, 01 673 Warsaw, Poland coverage compared to instrumental observations (Schleip

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00484-018-1534-2&domain=pdf
http://orcid.org/0000-0001-6496-1386
mailto:nwp@amu.edu.pl

1298

Int J Biometeorol (2018) 62:1297-1309

et al. 2008; Aono and Kazui 2008; Bradley 2013; Zheng
et al. 2015).

This regularity is also confirmed in the case of Poland
where the oldest discovered local records of phenological
observations are dated back to the fifteenth or sixteenth
century (Cybulski 1886). The modern and more reliable
observations started after the World War II when the
Polish Institute of Meteorology and Water Management
established a nationwide phenological network. However,
due to financial reasons, the network was abandoned from
1993 to 2005, while the newly established network of
ground observations in 2006 was in several cases moved
into new locations, thereby causing not only gap in the
dataset but also inhomogeneities (Czernecki and Jabtoniska
2016).

Partially, reconstruction of missing data is possible with
the use of commonly applied statistical models based on
meteorological features (McMaster and Wilhelm 1997).
On the other hand, today’s observed rapid development
of satellite-derived vegetation metrics may give a more
reliable spatio-temporal pattern of particular phenophases
and thus, may help in filling the gap on missing
or erroneous observations. However, the phenological
observations currently made by two different approaches
(i.e., satellite-derived and ground-based observations) are
often not treated as complementary sources of information
because of differences between the point-wise and spatial
approaches (Fisher and Mustard 2007). In spite of that,
some previous research show varying potential for linking
traditional observational phenology with satellite-derived
vegetation metrics (Studer et al. 2007), although the
potential for applying machine learning techniques in
improving the accuracy of phenological models is still being
underestimated or used only occasionally (Almeida et al.
2012).

Keeping the aforementioned in mind, the main aim of this
study is to create and evaluate different statistical models
for reconstructing and predicting the day of the year for
the occurrence of selected phenological phases. The authors
have also decided to evaluate the possibilities of using a
wide range of statistical modeling techniques to create a
synthetic archive dataset using only free of charge remote
sensing and meteorological data as predictors. Therefore,
it was also possible to (1) distinguish the amount of
information provided by both sources of data and (2) define
whether they are unrelated and contain possible sources
of non-overlapping information, (3) and thus may (or may
not) robustly contribute to aerobotanical and phenological
research, especially in terms of phenological modeling
where no long-term ground observations are available.
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Data and methods
Phenological data

The study period covers the years 2007-2014 and contains
dataset of ground observations of 10 species and 13
phenophases at 52 stations in Poland (Figs. 1 and 2 and
Table 1). The phenological ground observation dataset
used in this study originates from the newly re-established
observational network run by the Institute of Meteorology
and Water Management - National Research Institute
(IMGW-PIB) and constitutes an important part of the
national climate monitoring.

The phenological observational network follows the
BBCH methodology (abbr. from German: “Biologische
Bundesanstalt, Bundessortenamt und CHemische Indus-
trie”’), which was akin to most European countries with
similar growth stages of plant species (Meier 1997; Koch
et al. 2009).

To account for different levels of reliability in the data
records at individual stations (due to the subjective nature
of this kind of observations), and the fact that they were
collected at different locations, the GIS-based kriging with
external drift (Hudson and Wackernagel 1994), together
with expert knowledge, was applied to detect observational
outliers. Additionally, the database was revised according to
several proposals regarding phenological data quality issues
made by Schaber and Badeck (2002).

Predictor variables

Three types of data sources, commonly applied in
phenological modeling, were tested as potential predictors
in this study:

— Preprocessed gridded meteorological data
— Satellite-derived products
— Spatial (geographical) features of monitoring sites

The rationale behind this grouping was to determine the
skillful scale for each of these groups of predictors for
the near-surface plant phenological modeling. The selected
phenological phases might not be equally reflected in every
dataset due to a different physiological reaction of plant
species in selected phenophases, and hence, the different
sensitivity given by remote sensing, meteorological, and
spatial data. Moreover, a wide range of possible data sources
with varying spatio-temporal resolution led the authors to
use only free-of-charge and easy-to-access data in order to
make this modeling approach applicable in all areas with
similar phenological stages (e.g., in other Central European
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Table 1 Selected phenological phases, corresponding phenological seasons and abbreviations used

Species (Latin) Species (English) Phenophase Phenological No. of Abbr. BBCH
season observations scale

Corylus avellana L. Hazel Flowering Earliest spring 377 Fl.Cor. BBCH 60
Tussilago farfara L. Coltsfoot Flowering Earliest spring 377 FL.Tus. BBCH 60
Betula pendula Roth Silver birch Leaf unfolding Early spring 377 Lu.Bet. BBCH 11
Taraxacum officinale FH. Wigg. Dandelion Flowering Early spring 377 Fl.Tar. BBCH 60
Prunus padus L. Hackberry Flowering Early spring 377 Fl.Pad. BBCH 60
Aesculus hippocastanum L. Horse chestnut Flowering Late spring 377 Fl.Aes. BBCH 60
Syringa vulgaris L. Lilac Flowering Late spring 377 FL.Syr. BBCH 60
Robinia pseudoacacia L. Black locust Flowering Early summer 377 FL.Rob. BBCH 60
Tilia cordata Mill. Small-leaved lime Flowering Summer 347 FLTil. BBCH 60
Aesculus hippocastanum L. Horse chestnut Fruit ripening Mid autumn 298 Ri.Aes. BBCH 86
Aesculus hippocastanum L. Horse chestnut Leaf coloring Late autumn 287 Co.Aes. BBCH 94
Betula pendula Roth Silver birch Leaf coloring Late autumn 288 Co.Bet. BBCH 9%4
Betula pendula Roth Silver birch Leaf falling Late autumn 288 Lf.Bet. BBCH 97

conditions, and therefore, it is the most common strategy
for correlating the plant phenophase with the weather
conditions (Yan and Hunt 1999). To detect plant reactions
to changes in the atmospheric environment, archive station
measurements are normally used. However, in this study,
the authors decided to use the high-resolution (ca. 27 km)
E-OBS gridded dataset provided by the European Climate
Assessment & Dataset (ECA&D, Haylock et al. (2008)).
The application of gridded dataset instead of in situ
measurements allowed to reduce any potential problems
with data inhomogeneity or situations where phenological
observations were done in quite a distance from the nearest
measurement stations. Moreover, E-OBS dataset (Hofstra
et al. 2009) assures high quality for the applied data and
renders further developed phenological model assumptions
usable in other European regions.

A wide group of agrometeorological indices derived from
the E-OBS temperature and precipitation gridded data were
used as potential predictors. In this study, we decided to
calculate a set of cumulative growing degree days (GDD)
from O to 8 °C with an interval of 1 °C (calculated
from January 1st) to account for a wide range of thermal
sensibilities in particular plant species. Similarly, we also
took into account the different water needs of plants for
different phenophases which should be reflected in the
cumulative growing precipitation days (GPD) calculated
from January 1st onwards. Complementary thermal and
pluvial conditions were represented by seasonal and
monthly air temperature averages, seasonal and monthly
sums of precipitation for each month of the current
and previous year. Altogether, 42 meteorologically based
features were created.
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Moderate-Resolution Imaging Spectroradiometer-derived
products

Observing vegetation from space poses a number of
challenges related to many sophisticated effects such as
atmospheric and soil effects, pixel aggregating techniques,
and observation geometry (Testa et al. 2014). All of them
affect the obtained data in a different way and become
especially problematic in high and mid-latitudes (Hird and
McDermid 2009). Despite such limitations, many previous
studies have proven that remotely sensed observations may
still be a robust tool for monitoring seasonal cycle of
vegetation, even in areas not particularly approachable
for satellite imagery (Karlsen et al. 2008). Moderate-
Resolution Imaging Spectroradiometer (MODIS) level-3
vegetation products were used for detecting onset dates
of particular phenophases. The following indices were
used: Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), Leaf Area Index (LAI),
and Fraction of Photosynthetically Active Radiation (fPAR)
(Knyazikhin et al. 1999; Huete et al. 2002). NDVI and
EVI contain information about live green vegetation and are
delivered as MYD13Q1 and MOD13Q1 MODIS products
with sinusoidal projection at 250-m resolution and 16-
day intervals. Using interleaved Terra and Aqua sensors
simultaneously makes it possible to couple them into an 8-
day temporal resolution product. Due to the rather noisy
NDVI and EVI data, especially in the colder part of the year
(Hird and McDermid 2009), the authors then decided to take
into account pixel values aggregated within a commonly
applied in a national-scale geobotanical research a 10 x 10-
km AtPol grids (Fig. 1, (Zajac 1978; Komsta 2016)). To
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Table 2 Summary of predictor variables used for machine learning modeling

No. Product and its description Predictor’s Data Data
type source resolution
1 Altitude as derived from digital elevation model (DEM) Spatial SRTM-3 ca. 1 km
2-3 Geographical coordinates (in the projected coordinate system) Spatial -
4 Distance to the Baltic Sea coast Spatial -
5-16 Monthly mean air temperatures (Jan—Dec) Meteo E-OBS ca. 27 km
17 Monthly mean air temperatures of previous’ year December Meteo E-OBS ca. 27 km
18-21 Seasonal mean air temperatures of previous’ year Meteo E-OBS ca. 27 km
22-23 Mean air temperatures of winter and spring seasons Meteo E-OBS ca. 27 km
24-35 Total monthly precipitations (Jan—Dec) Meteo E-OBS ca. 27 km
36 Total monthly precipitations of previous’ year December Meteo E-OBS ca. 27 km
3745 Cumulative growing degree days (GDD) Meteo E-OBS ca. 27 km
from 0O to 8 °C with an interval of 1 °C
46 Cumulative growing precipitation days (GPD) Meteo E-OBS ca. 27 km
47 Presence of snow cover (0-1) MODIS IMS 4 km
4849 Consecutive number of days with and without snow cover MODIS IMS 4 km
50 Number of days with snow cover in a month MODIS IMS 4 km
51 Day of year with the last snow cover MODIS IMS 4 km
NDVI, EVI, LAI and fPAR means aggregated in AtPol 10 x 10-km grid: MODIS MYDI13Q1/ 0.25-1 km
MOD13Q1
52-55 - For all available values MODIS -1 - 0.25-1 km
56-59 - Based only on the highest pixel reliability (i.e., flagged as “0”) MODIS -1 - 0.25-1 km
60-63 - Based only on the highest and average pixel reliability (“0-1") MODIS -1 - 0.25-1 km
64-67 - Based on all available except the lowest pixel reliability (“0-2") MODIS -1 - 0.25-1 km
68-79 - 1-week rolling mean group by pixel reliability (“0,” “0-1,” “0-2") MODIS -1 - 0.25-1 km
- The rate of change grouped by pixel reliability (“0,” “0-1,” “0-2") between:
80-91 — Monthly and 10-day average MODIS -1 - 0.25-1 km
92-103 — 10-day average and one-week rolling mean MODIS -1 - 0.25-1 km
104-115 - Normalized for particular pixel’s location and MODIS -1 - 0.25-1 km

grouped by pixel reliability (“0,” “0-1,” “0-2")

smoothen the raw MODIS data into daily time-series, a
spline algorithm was applied.

The next vegetation indices, LAI and fPAR, are 1-km
products provided on a daily basis (Knyazikhin et al. 1999)
and were also re-calculated for a wider extent of 10 x 10-
km grids. LAI was used as an index to define an important
structural property of a plant canopy, namely the one-sided
leaf area per ground area unit. The fPAR index measures the
proportion of available radiation in the photosynthetically
active wavelengths (400 to 700 nm) that a canopy absorbs
(Knyazikhin et al. 1999).

Additionally, the Interactive Multisensor Snow and Ice
Mapping System (IMS) 4-km daily products derived from
the National Snow and Ice Data Center were chosen to
detect occurrence of snow cover (Brubaker et al. 2005).
In the case of detecting occurrence of snow cover, the
original vegetation indices in a corresponding time-series
were replaced with zeros. In situations where the surface

was not visible for the MODIS sensors (mostly due to cloud
cover), the original MODIS values, often providing the
mean climatology, were replaced by linearly interpolated
valid values from the previous and following periods.

Besides the most probable NDVI, EVI, LAI, and fPAR
values for each day, the authors also distinguished a set of
derivative predictors consisting of the following: normalized
values of MODIS indices for every single station, raw and
corrected indices accounting for different pixel reliability,
rate of change in an index value between monthly and 10-
day measurements, and 1-week rolling mean. A conjunction
of all selected variables gives a total of 64 MODIS-derived
plant phenology indices.

This set of phenological products were supported by the
operational IMS snow products. On the basis of the nearest
grid value to the stations’ location, five measures were
calculated: occurrence of snow cover (as 0—1 binary form),
consecutive number of days with and without snow cover,
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number of days with snow cover in a month, and day of the
year with the last snow cover.

Spatial features

To find spatial dependencies for the analyzed locations,
four geographical variables were used including longitude
and latitude calculated in the projected coordinate system,
altitude based on the corrected Shuttle Radar Topography
Mission (SRTM-3) dataset (Reuter et al. 2007), and the
distance in kilometers to the Baltic Sea coast line for each
of the monitoring sites. The latter feature was added to
capture local processes observed in the Baltic Coastal zone
that make this area climatologically unique (Czernecki and
Mietus 2017), but are not fully reflected by temperature- or
precipitation-related indices. Adding this variable aimed to
improve overall quality of the created models for stations
located up to about 100 km from the coast line.

Model development

Six commonly used statistical methods were tested and
evaluated against the observed onset dates of the selected
phenophases:

1. multiple linear regression (Im)

2. multiple linear regression with stepwise selection
(ImAIC)

least absolute shrinkage and selection operator (lasso)
principal component regression (pcr)

generalized boosted models (gbm)

random forest (rf)

oWk W

This study splits the previously described total number of
102 potential predictors into four sub-groups that might be
applied according to the needs of statistical modeling:

(i) consisting only of meteorologically derived variables
and locations’ features (meteo)

(ii)) MODIS-derived predictors (modis)

(iii) all available variables preprocessed with the use of
Boruta algorithm to find all relevant features (Kursa
and Rudnicki 2010). The role of the Boruta algorithm
is to remove features that show to be less important
than a random variable (boruta)

(iv) all available variables without any preselection (all)

To avoid situations where a “future” dataset would
be applied according to the needs of predictive model
building, only predictors that could be calculated by the
typical onset date of a particular phenophase were used.
For example, Corylus avellana flowering phase, observed
typically in March, could have been modeled with the use
only of indices obtainable before and during this month.
Such a solution assures that created models may also
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be applied as supplementary information supporting the
national phenological network or for further investigation
related to the spatial prediction of phenological phases.

A k-fold cross-validation strategy was used to avoid
overfitting and to estimate the accuracy of the models. For
that purpose, the dataset was divided into eight 1-yearly
subsets (2007-2013). Next, the model was trained on seven
(k-1) years, and the held-out subset (1 year) was used
to evaluate the model. This procedure was repeated eight
times. The overall performance was obtained by averaging
the k estimates of the performance (Kuhn and Johnson
2013).

The models’ performances were characterized using the
coefficient of determination (R%) and root-mean-square
error (RMSE). An R2 value is the squared correlation
coefficient between the observed and predicted values.
RMSE is the difference between predicted values and
observed values. Additionally, the model’s distribution
errors for selected cases were presented as histograms and
scatterplots.

The general effect of the independent variables on
gradient boosted models was determined using a variable’s
“relative influence” (Friedman 2001). Values of variable
influence/importance were obtained separately for the
models based on all data from each phenophase. The
ten best predictors were then selected and divided into
meteorological, MODIS-derived, and spatial categories.
Afterwards, for each category of predictors, the mean
variable importance was calculated and scaled so as to
estimate which predictors contribute in the highest degree
to a model’s prediction (Fig. 6). All calculations were
carried out using R programming language (R Core Team
2016) and its packages such as “Boruta,” “ranger,” or
“caret” supporting machine learning techniques (Venables
and Ripley 2002; Kuhn 2008; Kursa and Rudnicki 2010;
Wright 2015).

Results

Ground observations of 10 plant species yielding 13
phenophases (Table 1) at 52 phenological stations in Poland
were analyzed. Their temporal range varied from the earliest
spring (flowering of hazel occurring on 70 days of the
year on average), to late autumn (leaf falling of silver
birch occurring on 301 days of the year on average)
(Fig. 2). Additionally, the timing of phenological phases
significantly differed between species, both in space and
in particular years. The largest standard deviation was
found for the flowering of hazel (about 17 days) and the
smallest one was observed for the horse chestnut’s flowering
(about 6 days) (Fig. 2). In general, the characteristics
of phenological phases presented in this study stay in
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agreement with very detailed (i.e., based on larger number
of stations) nationwide phenological patterns observed in
the past decades (Tomaszewska and Rutkowski 1999),
although the acceleration of particular phenological phases
is clearly visible and follows trends described in other
research studies for this part of Europe (Menzel et al. 2006;
Czernecki and Jabtoriska 2016; Templ et al. 2017).

Models’ performance

Calculation of 416 final models (13 phenophases x 6
modeling techniques x 4 groups of predictors) was carried
out (Fig. 3). Final models varied distinctly between modeled
phenophases, as well as between tested modeling techniques
and group of predictors used. On average, horse chestnut
flowering and lilac flowering models gave the best RMSE
values of about 5 days. In contrast, the largest RMSE values
of about 12 days were obtained for silver birch leaf falling
and flowering of hazel. Standard deviation of RMSE was
between about 1 (horsenut flowering) and 3 days (silver
birch leaf coloring) for most of the models. Distinctly higher
numbers were noted for the flowering of small-leaved lime
(5.5 days) and birch leaf falling (7 days).

Models were built using four groups of predictors: (i)
meteorological, (ii) MODIS-derived, (iii) filtered predictors
using the Boruta algorithm, and (iv) all groups combined.
On average, RMSE values were 7.6 for MODIS-derived
predictors, 7.7 for predictors preselected using Boruta, 9.1
for all predictors, and 11.0 for meteorological predictors.
Their standard deviations were respectively 2.1, 2.6, 3.9,
and 5.6. The impact of the predictors’ groups was different
for each taxon and model. MODIS-derived predictors
proved to be the best in models of horse chestnut fruit
ripening, horse chestnut leaf coloring, and leaf falling of
silver birch. The best models of black locust flowering,
small-leaved lime flowering, and silver birch leaf coloring
were based on predictors preselected using the Boruta
algorithm. In the rest of the phenophases (flowering
of hazel, coltsfoot, dandelion, hackberry, lilac, and leaf
unfolding of silver birch), all predictors combined were
used. Only the meteorologically derived predictors were not
used in the best model.

On average, multiple linear regression models gave the
worst RMSE value of around 10 days (Fig. 3). Multiple
linear regression with stepwise selection and principal
component regression average value was only slightly
lower at 9.5 and 9, respectively. However, the worst
average models differ between phenophases. Multiple linear
regression models were the worst for seven phenophases,
multiple linear regression with stepwise selection for four
phenophases, and principal component regression for two
phenophases. Generalized boosted models, random forest,
and lasso have the lowest average values of RMSE, between
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7.25 and 7.89. In four of the phenophases, generalized
boosted models were the best, and lasso had the lowest
average RMSE in the models with nine phenophases.
Additionally, the impact of predictors’ group varied
between modeling techniques. The choice of predictors had
the smallest impact in the case of pcr, random forest, and
gbm; a medium impact on the lasso model; and a large
impact when applying the linear regression techniques (i.e.,
Im and ImAIC models) (Fig. 3).

Best models

Generalized boosted models and lasso were proven to have
the best prediction of the studied phenophases (Fig. 3).
Distribution of errors in these models was compared for
all phenophases and predictors groups (Fig. 4). A direct
comparison showed that errors of lasso were either very
similar to those of the generalized boosted models or more
widespread around zero (perfect) value. Conversely, the
distribution of errors in gbm had smaller tails and was more
dense around zero. The biggest differences between models
were for the silver birch leaf unfolding, and the flowering of
hackberry, horse chestnut, and lilac.

Relations between predicted and observed values of
gbm showed a visible distinction of the used predictors
groups (Fig. 5). Overall, predictions of gbm based on
meteorological variables or MODIS-derived variables were
less accurate than those preselected using Boruta or based
on all data. The quality of meteorologically based gradient
boosted models was comparable only in the case of

flowering of dandelion and black locust. MODIS-derived
predictors worked especially well for gbm in the case of
horse chestnut leaf coloring. Predictors filtered using the
Boruta algorithm gave the most stable gradient boosted
models for flowering of coltsfoot and leaf coloring of horse
chestnut, while all data worked best for the leaf unfolding
of silver birch and dandelion flowering. In the rest of the
phenophases, prediction based on all data or preselected by
the Boruta algorithm proved to have similar accuracy.

Variable importance

Gradient boosted models based on all data gave better
accuracy than models created using only meteorological
or MODIS-derived predictors. Therefore, calculation of
any variable importance was performed for the models
based on all data. A variable’s “relative influence” (variable
importance) was obtained for the top ten predictors of
gradient boosted models for each taxon. Afterwards,
predictors were separated into three groups (meteorological,
MODIS-derived, spatial), averaged, and then scaled (Fig. 6).
The spatial group of predictors had very small impact on
the models probably due to being closely correlated with
meteorological variables. Only in 5 of the 13 models were
the location variables included in the top ten most important
variables, and their influence in most cases was limited (i.e.,
between 4.4 and 8.5%).

On average, MODIS-derived predictors were the most
important for autumn and late autumn modeling cases (leaf
coloring of horse chestnut and silver birch, and leaf falling
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of silver birch) with one exception: flowering of hackberry 7.4 days. If all available datasets are together overlapped and
which is usually observed in April. In all other phenological ~ preprocessed with the Boruta algorithm, the RMSE value
phases, meteorological variables proved to be the most  decreases to 6.4 days.
influential factors for phenological modeling needs.

In general, MODIS-related metrics provide more infor-
mation for phenological modeling compared to the tra-  Discussion
ditional meteorological indices (see Figs. 4 and 5). For
example, the most promising gradient boosted models based =~ The subjective nature of ground-based phenological obser-
only on meteorological data have RMSE of 8.4 days, while  vations has always been an issue in contemporary phenolog-
for MODIS vegetation metrics, this value decreases to  ical research (Schaber and Badeck 2002; Fisher et al. 2007;
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Fig.6 Variable importance
according to group of predictors
applied in generalized boosted
models (gbm). For each
phenological seasons values
scaled up to 1 (values given in
%). Detailed description in the
“Model development” and

Meteo

37.6 27.7 19.6

43.0 39.7 44.5 16.3 13.2

58 4.4 4.7

“Variable importance,” and « ) .
Table 2 SRS R4

Variable importance:

Scheifinger and Templ 2016; Templ et al. 2017). Numer-
ous attempts to cover the gaps by means of airborne sensors
and empirical-statistical models that take into account plant
sensitivity to temperature, precipitation, and photoperiod
indices showed that this problem has yet to be entirely
solved (Studer et al. 2007; Fisher and Mustard 2007; Fisher
et al. 2007; Almeida et al. 2012). However, identification of
the optimal set of factors and selecting the most robust mod-
eling techniques can offer useful approximation of the day
of phenological phases’ occurrence. In this study, satellite
and meteorological products were used as predictor vari-
ables to build models for the reconstruction and prediction
of the selected phenological phases in Poland. Due to rel-
atively limited spatio-temporal coverage of the available
dataset (4524 observations), the cross-validation part was
taken with a special care to avoid overfitting and to ensure
model applicability also for past and future conditions. A
relatively small differences between cross-validation steps
confirms that the developed methodology of phenological
modeling based on simultaneous application of meteorolog-
ical and satellite products may be universal for all areas
sharing the same plant phenological phases and show a high
potential in combining the extensive knowledge generated
by the ground-based phenological modeling community to
satellite data (Fisher and Mustard 2007).

The machine learning algorithms used in this study
(Kuhn 2008; R Core Team 2016) are available free of
charge. They can be run on any modern desktop computer
usually in a time below a few seconds, depending on a
selected model and algorithm’s parallel capabilities. Data
preprocessing and feature engineering of input data (i.e.,
downloading, cropping, reprojecting, cleaning, reshaping,
calculating indices, etc.) are the most time-consuming tasks
in getting ready-to-use models; however, they are crucial
for creating the final database that might be easily applied
for a model’s evaluation. The cross-validation procedures
are also quite computationally demanding. In this case,
several hundreds of a single-core computational hours
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were required in order to avoid overfitting, and therefore,
application of high-performance computing clusters was
needed. However, these procedures need to be run once
before the deployment of models in an operational mode.

The created machine learning models show varying
accuracy of reconstructing and predicting particular plant
phenophases. The model biases given by RMSE values are
in some cases related to the range of possible onset dates of
particular phenophases (see Figs. 2 and 3). This is clearly
seen in the case of earliest spring and autumn phenophases
whose standard deviations of onset dates and RMSE values
obtained for the best models are usually relatively high
(7-10 days) compared to other seasons.

Due to the nonlinear reaction of plant species to thermal
(Sparks et al. 2000; Iler et al. 2013; Jochner et al.
2016) and photoperiod conditions (Cober et al. 2014), the
simplest models based on regression techniques were in
most cases not as robust as more sophisticated gradient
boosted, random forest, and lasso models. However,
while applying a correctly specified (preprocessed) set
of predictors, the differences between particular family
of models became smaller with the average total RMSE
for all phenophases in the range of 8.3 (multiple linear
regression) to 6.4 days (generalized boosted model). The
commonly applied preprocessing approach, such as the AIC
stepwise screening (Sakamoto 1992), hardly influences the
obtained results and, in authors’ opinion, does not redress
the computational time required for applying this procedure.
Significantly better preprocessing results were obtained by
the Boruta algorithm (Kursa and Rudnicki 2010) which
also reduced the computational time needed for running the
created models.

Despite numerous deficiencies in such an approach and
clear limitations of applying modern satellite observation
in plant phenology modeling, it might still be able to give
a reliable proxy for traditional ground observations, espe-
cially in terms of early spring and late spring phenophases
for the best models whose calculated RMSE is below
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3—4 days. However, the calculated contribution of each vari-
able showed rather small or at best moderate influence of
satellite-derived products (especially in terms of early phe-
nological stages), even though higher for meteorological
features. Better fit of meteorological features in case of
spring phenological phases proves significant temperature
dependence for early spring season in opposite to autumn
season (Jabtoriska et al. 2015). The influence of tempera-
ture on plant growth is definitely higher in the spring, when
they start their development cycle after the winter break than
in autumn, when already mature plants are less sensitive
to temperature fluctuations. The largest RMSE values for
flowering of hazel and silver birch leaf falling correspond
to the seasonal dynamics of those phenological phases in
Poland. Each phenological season is characterized by spe-
cific variability. Higher standard deviation for early spring
and autumn seasons is a characteristic feature observed
throughout Europe, which is connected with more variable
solar radiation receipts then (Schwartz 2013).

This regularity is also reflected in remote sensing data,
which tend to contain noisy information (Hird and McDer-
mid 2009), and thus are often omitted when applying
preprocessing procedures for modeling of spring and sum-
mer phenophases. Therefore, most of the created phenology
models are primarily based on meteorological metrics (i.e.,
usually GDD) with only slight improvements when using
satellite-derived products. This situation changes in favor
of airborne sensors for late autumn phenophases where
the calculated variable importance of this features varies
from 62.4 to 80.4% (Fig. 6). On average, the application
of remote sensing products improves the accuracy of cre-
ated phenological models for 1.8 days in terms of obtained
RMSE values, and in the case of autumn phenophases for
2.9 days.

The improvement in the models’ performance for later
phenophases when applying satellite vegetation products
should not come as surprise as the physiological plant
reaction to atmospheric conditions is related more to
summer and autumn seasons’ conditions than for instance
GDD that are usually calculated from the beginning of
the year, and thus, may not reflect the most recent
autocorrelation signal, lagged by 1-2 months. The analysis
of national phenological trends in Europe proved that air
temperature in the autumn does not have such a clear effect
on coloring and falling of leaves (Menzel et al. 2006). It
must also be remembered that the applied aerial approach
with aggregating sparse areas near to the station’s location
covers usually a complex mosaic of different plant species
with significant contribution of green and forest areas.
These ecosystems clearly react in the autumn season via
changing leaf pigments and are thus sharply reflected in
changes in NDVI and EVI values, providing a clear and
valuable signal for phenological models.

Conclusions and future work

Historically, most of statistical and mechanistic phenology
models were developed for tree species, rather than
non-woody species (Chuine et al. 2013). Despite huge
progress in phenological modeling in the recent decades,
the potential of modeling non-woody and non-agricultural
plants with estimation of cross-scalar phenology was
still underestimated or applied sporadically (Fisher and
Mustard 2007; Xin et al. 2015). The approach presented
in this paper shows the moderate-to-high potential of
using machine learning models to fill temporal and spatial
gaps in ground-based observations as well as forecasting
selected phenological phases by means of remotely sensed
and meteorologically based products. This allows for the
possibility of reconstructing the Polish phenological dataset
for the years 2000-2005 using the MODIS vegetation
products, while Landsat scenes may be used for the missing
period of 1994-1999, as they give comparable results to the
MODIS products (Fisher and Mustard 2007).

In the authors’ opinion, the developed strategy shows
potential for estimating phenology from remote sensing
using machine learning algorithms. It could be done
by applying larger database and thus spatio-temporal
extension of cross-validation periods that would include
a wider response to climatological forcing. There is also
a possible improvement in application of other satellite-
derived products, especially if they are complementary to
rather low time frequency of MODIS vegetation products.
To some extent, the created models also indicate factors
that are responsible for accurate modeling of particular
phenophases and help in better understanding of vegetation
dynamics to climate variability, even though it must be
kept in mind that non-mechanistic approach may fail in
terms of facing a physiological limits of particular plants
(Zhao et al. 2013). This limitations certainly need to be
addressed if cross-scalar machine learning (i.e., statistical)
models would be used in improving national networks of
phenological observations.

The created empirical-statistical phenological models
may not only be used as a reliable proxy for ground-
based measurements but may also have the applicable
potential for operational forecasting needs. Moreover, since
aerobiological data have a high correlation with plant
phenological phases (Kasprzyk 2003; Estrella et al. 2006;
Bogawski et al. 2014), further improvements in airborne
pollen allergy modeling may benefit from the synergy
of satellite and meteorological data, as well as machine
learning algorithms.
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