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ABSTRACT This study evaluated the geospatial distribution of fecal indicator bacte-
ria (FIB) (i.e., Escherichia coli, Enterococcus spp.) and the alternative fecal indicator
pepper mild mottle virus (PMMoV) in tropical freshwater environments under differ-
ent land use patterns. Results show that the occurrence and concentration of micro-
bial fecal indicators were higher for urban than for parkland-dominated areas, con-
sistent with land use weightage. Significant positive correlations with traditional FIB
indicate that PMMoV is a suitable indicator of fecal contamination in tropical catch-
ments waters (0.549 � rho � 0.612; P � 0.01). PMMoV exhibited a strong significant
correlation with land use weightage (rho � 0.728; P � 0.01) compared to traditional
FIB (rho � 0.583; P � 0.01). In addition, chemical tracers were also added to evalu-
ate the potential relationships with microbial fecal indicators. The relationships be-
tween diverse variables (e.g., environmental parameters, land use coverage, and
chemical tracers) and the occurrence of FIB and PMMoV were evaluated. By using
stepwise multiple linear regression (MLR), the empirical experimental models sub-
stantiate the impact of land use patterns and anthropogenic activities on microbial
water quality, and the output results of the empirical models may be able to predict
the sources and transportation of human fecal pollution or sewage contamination.
In addition, the high correlation between PMMoV data obtained from quantitative
real-time PCR (qPCR) and viral metagenomics data supports the possibility of using
viral metagenomics to relatively quantify specific microbial indicators for monitoring
microbial water quality (0.588 � rho � 0.879; P � 0.05).

IMPORTANCE The results of this study may support the hypothesis of using PMMoV
as an alternative indicator of human fecal contamination in tropical surface waters
from the perspective of land use patterns. The predictive result of the occurrence of
human fecal indicators with high accuracy may reflect the source and transportation
of human fecal pollution, which are directly related to the risk to human health, and
thereafter, steps can be taken to mitigate these risks.

KEYWORDS fecal indicators, land use, chemical tracers, freshwater environments,
regression models

Fecal indicators are used to detect the presence of fecal pathogens in diverse
environments. Ideal indicators satisfy the following criteria: presence in the same

warm-blooded animal’s intestinal tract; presence only in fecally contaminated environ-
ments and absence in uncontaminated ones; presence in greater numbers than patho-
gens; absence of growth and proliferation in the environment; survival patterns similar
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to those of pathogens; easy detection, cost-effectiveness, and low pathogenic risks (1,
2). To date, numerous studies have correlated the occurrence of traditional fecal
indicator bacteria (FIB), most notably Escherichia coli and Enterococcus spp., with fecal
pollution in water (3–5). However, the application of traditional FIB in determining
recreational water safety has been challenging due to their observed growth and
persistence in natural environments (1, 3). In addition, they cannot differentiate the
source of fecal contamination between humans and animals (6, 7).

Recently, the pepper mild mottle virus (PMMoV) has been proposed as an alterna-
tive indicator for human fecal pollution, as it has been detected at high concentrations
in human fecally contaminated surface waters (104 to 107 gene copies/liter) and
wastewaters (106 to 1010 gene copies/liter) in Bolivia, Vietnam, Germany, Japan, Sin-
gapore, Australia, and the United States (8–14). PMMoV is a plant-pathogenic virus
commonly found in human intestinal tracts (8), as it is consumed with peppers in
human diets, passing relatively unharmed through the digestive tract, and excreted in
feces at concentrations between 105 and 1010 gene copies/gram dry weight feces (8,
10, 15, 16). In terms of specificity, PMMoV has been found in nearly all human samples
but was detected in only a minority of chicken, gull, and cow feces at low concentra-
tions (10, 11). Also, this virus has shown great persistence, with a half-life of approxi-
mately 1.5 days (11, 17) in seawater and relatively low reduction from conventional and
advanced wastewater treatment (8, 10). As such, PMMoV may be used as a conservative
marker of sewage contamination (17), though it might overestimate viral pathogens to
some extent through wastewater treatment. However, Symonds et al. (18) revealed that
PMMoV detection in marine surface waters contaminated with untreated wastewater
did not overestimate the risk of gastrointestinal (GI) illness. PMMoV overcomes the
false-negative issues caused by reference viral pathogens due to its high concentrations
(10, 18).

Most studies related to fecal indicators focus on their detection and occurrence in
diverse water environments. However, investigations on the driving factors in the
distribution and occurrence of these indicators and associated models are limited.
Among the driving factors, environmental (e.g., pH, temperature, salinity, turbidity, UV,
etc.) and hydrologic (rainfall runoff) conditions have been well studied, previously using
empirical models to predict target microbial concentrations in marine and temperate
freshwater systems (6, 19, 20). Predictive models have been applied in the Great Lakes
to provide timely information in beach notification programs (21).

Even though the application of site-specific statistical models has recently been
promoted by the U.S. Environmental Protection Agency (EPA), many site-specific
models have focused on limited predictors and have neglected potential factors (e.g.,
land use) (21). Land use, due to its difficulty in classification, quantification, and
surveillance, has rarely been included in metadata correlation. However, human-
induced land use changes are the key drivers in transmitting many infectious diseases
and are associated with fecal pollution (22). It is hypothesized that land use change will
influence the characteristics of tropical water cycles and would further influence the
occurrence of different microbial pathogens and indicators, as well as the distribution
patterns of chemical tracers. Previous studies have begun to address the impacts of
land cover on the distribution of pathogens in human-impacted water bodies. For
example, the occurrence of human viruses showed a distinct pattern determined by
land cover for studies conducted in the Milwaukee River watershed, Michigan River,
coastal rivers of southern California, and the Great Lakes (23–26). Paule-Mercado et al.
(27) revealed that land use and anthropogenic activities influenced intraevent variabil-
ity of FIB through multiple linear regression (MLR) models in different monitoring sites.
However, the studies failed to quantify the land use categories into predictive variables
to assess the relationship between indicators and land use (27, 28).

Apart from land cover factors, chemical tracers (e.g., pharmaceuticals and personal
care products, fecal sterols, fluorescent whitening agents) are also closely associated
with possible wastewater pollution in surface waters (29, 30). A recent study showed
that acetaminophen (ACT), salicylic acid (SA), and carbamazepine (CBZ) were suitable
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chemical markers of raw wastewater contamination in surface water and groundwater
for highly urbanized catchment areas (30). These studies have enabled progress in our
comprehension of how land cover factors and chemical tracers can influence water
quality in the urban water cycle. The challenge moving forward is to derive data-based
empirical models between predictors (i.e., environmental parameters, land use cover,
and chemical tracers) and the concentration and distribution patterns of fecal indica-
tors to predict fecal contamination in future scenarios. Until now, only one such study
has been documented. This study predicted the concentration of fecal coliforms in the
Wachusett Reservoir by the combined impacts of temperature, rainfall, and land use
characteristics using the approach of Bayesian overdispersed Poisson models (31).
However, a single microbial fecal indicator may not be sufficient in identifying the
contamination sources in surface waters (32).

To address these gaps, the specific aims of this study were to (i) investigate and
compare the spatial variation of E. coli, Enterococcus spp., and PMMoV in tropical surface
waters and (ii) evaluate the relationships between land use patterns, chemical markers,
and environmental parameters on the distribution of traditional FIB and the alternative
fecal indicator, PMMoV, for a tropical urban watershed. Along with molecular (quanti-
tative real-time PCR [qPCR]) and enzyme-based (Idexx Quanti-Tray method) assays for
quantifying the concentrations of microbial fecal indicators, viral metagenomics was
used to provide insights into the viral community and diversity, which would not have
been captured by targeted approaches. Ultimately, the predictive result of the occur-
rence of human fecal indicators with high accuracy could reflect the source and
transportation of human fecal pollution, which are directly related to the risk to human
health, and thereafter, steps can be taken to mitigate these risks.

RESULTS AND DISCUSSION
Geospatial analysis of sampling sites. Table S1 in the supplemental material

details the specified land use subcategories under four main land use categories
(residential, urban, green, and agriculture). Table S2 in the supplemental material shows
a summary of the land use coverage percentage classified under 4 main categories (e.g.,
residential, urban, green, and agriculture), land use weightage, and general character-
istics for each sampling point (i.e., sites A to G). According to the land use assessment,
sites A, B, and C were regarded as urban-use-dominated areas, as they included more
than 65% of residential and urban areas, and site D was regarded as an agriculturally
dominated area, as it was the only sampling location with a reasonable percentage (11
to 67%) of agricultural area. Sites E and G were parkland-dominated areas, as they had
more than 95% green areas. Site F had 80% of residential and urban categories;
however, there was no drain directly linked to the reservoir at this site, and the chance
for possible fecal contamination was relatively small. Hence, site F was regarded as a
parkland-dominated area as well. For catchment sampling, only the catchments of sites
A, B, and D were sampled. Note that upstream water catchments feed their corre-
sponding water body.

Environmental parameters. A total of 171 water samples were collected from
surface waters in Singapore. The minimum, maximum, and mean of water quality
parameters from different sampling locations are summarized in Table S3 in the
supplemental material. The water temperature and pH remained relatively stable
throughout the sampling period. Other water quality parameters varied widely,
especially in catchments, including conductivity (3 to 955 �S), salinity (0 to 1 practical
salinity unit [PSU]), dissolved oxygen (DO; 1.04 to 10.3 ppm), total dissolved solids (TDS;
0.15 to 477 ppm), and turbidity (0 to 824 nephelometric turbidity units [NTU]).

Quantitative detection of microbial targets and chemical tracers in freshwater
samples. E. coli and Enterococcus spp. were detected in approximately 90% of the
samples, with geometric mean counts of 79 most probable number (MPN)/100 ml and
41 MPN/100 ml, respectively (Table 1). In Singapore, the microbial water quality
guideline for recreational freshwater is 200 MPN/100 ml Enterococcus spp. or lower for
95% of the time. All the reservoir sites met the Singapore recreational water criteria.
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qPCR results for PMMoV showed a lower detection frequency (69%) than those of the
bacteria, with a geometric mean concentration of 763 log of standard plasmid con-
centration (GC)/100 ml of all the samples. This result is similar to that of a previous
study conducted in Japan, in which PMMoV had a 76% detection frequency in surface
water with a mean concentration of 550 GC/100 ml (16). Elsewhere, PMMoV had a 100%
detection frequency (5 � 105 to 1.07 � 105 GC/100 ml) in river waters containing
wastewater treatment plant (WWTP) effluent in Germany, a 94% detection frequency in
surface water in Vietnam, and an 85% detection frequency in groundwater in Mexico
(1.79 � 103 to 1.04 � 103 GC/100 ml) (10, 33). Another study conducted in Florida, an
area with a climate similar to that of Singapore, showed a 60% detection frequency in
coastal waters, with the highest concentrations reaching 8.73 � 104 GC/100 ml (18). In
Singapore, there is no pepper farming or harvesting in the vicinity of the sampling sites,
indicating that our samples containing PMMoV were likely impacted by fecal contam-
ination from possible sewage or anthropogenic activities. Nonetheless, there is a
possibility that improper disposal of processed food containing peppers could be a
contributor as well, since such food products containing peppers are known to contain
PMMoV (9).

Three of the four selected chemical tracers were detected in more than 95% of
samples, while the chemical ACT was detected in only 49% of the samples. Their
geometric mean concentrations varied widely, with acesulfame (ACE) and cyclamate
(CYC) having higher concentrations (100 ng/liter and 44 ng/liter, respectively) than did
CBZ, which had a concentration of 0.9 ng/liter, and ACT, which had a concentration of
11 ng/liter. The relatively low detection frequency of ACT in collected samples indicated
low raw wastewater contamination in urban surface waters, as ACT is biodegradable
and has been utilized for detecting raw wastewater contamination in urban surface
waters (30).

Distribution of microbial fecal indicators and chemical tracers at different
sampling sites. The concentrations of microbial fecal indicators and chemical tracers
were generally lower in water bodies (sites A, B, and D) than those in their correspond-
ing catchments (sites A, B, and D) (Mann-Whitney U test, P value � 0.05), suggesting
that the contamination occurs in the upstream catchments for these sites (Fig. 1 and 2),
as upstream water catchments feed their corresponding water bodies. For the other
sites, the concentrations of microbial fecal indicators and chemical tracers were lower
in water bodies E, F, and G than in water bodies A, B, and C (Mann-Whitney U test,
P � 0.05). From the land use assessment, sites A, B, and C were classified as urban-
use-dominated areas, while E, F, and G were classified as parkland-dominated areas.
These results confirm the fecal contamination on water quality by anthropogenic
activities or sewage contamination possibly caused by sewage at the urban-use-
dominated sites A, B, and C. In addition, concentrations of microbial fecal indicators in
water body D (an agriculture-dominated area) were higher than the concentrations in
parkland-dominated areas but lower than the concentrations in urban-use-dominated
areas, indicating that agricultural runoff may have a moderate impact on human fecal
contamination due possibly to poultry, aquaculture, and vegetable farming. In general,

TABLE 1 Frequencies and occurrence of fecal indicators (E. coli, Enterococcus spp., and
PMMoV) and chemical tracersa

Microorganism or chemical tracer
(unit for geometric mean or SD
or for detection limit)

No. of
samples

Detection
frequency (%)

Geometric
mean

Geometric
SD

Detection
limit

E. coli (MPN/100 ml) 171 90 79 34.44 1
Enterococcus spp. (MPN/100 ml) 171 89 41 24.64 1
PMMoV (GC/100 ml) 171 69 763 42.86 16
ACE (ng/liter) 119 100 100 2.90 1
ACT (ng/liter) 118 49 11 29.26 1
CBZ (ng/liter) 119 95 0.90 4.20 0.01
CYC (ng/liter) 118 98 44 3.60 0.5
aAbbreviations: ACE, acesulfame; ACT, acetaminophen; CYC, cyclamate; CBZ, carbamazepine.
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the concentrations of selected targets were consistent with land use weightage, except
for sampling site WB-F, where there were no direct drain connections and relatively
small chances for fecal contamination from the surrounding environment (Fig. 1 and 2).
These results substantiate the high correlations observed between the selected targets
and land use weightage, implying that land use patterns and anthropogenic activities
greatly influence the distribution patterns of microbial fecal indicators and chemical
markers.

In terms of detection frequency, there was a statistically significant association
between the different sampling locations from different land use categories for E. coli
[�2(9) � 26.13; P � 0.002], Enterococcus spp. [�2(9) � 39.91; P � 0.0001], PMMoV
[�2(9) � 112.95; P � 0.0001], and ACT [�2(9) � 65.33; P � 0.0001] (see Table S4 in the
supplemental material). In particular, a robust strength of association was observed
between the different sampling locations from different land use categories and
detection frequency of PMMoV (� value � 0.813; P � 0.0001) and ACT (� value �

0.771; P � 0.0001). This indicates that the detection frequencies of PMMoV and ACT
were largely influenced by different sampling locations from different land use cate-
gories.

As mentioned before, ACT is used to indicate raw wastewater contamination and
has been reported to be present in groundwater and surface waters near sewage
systems (30). PMMoV has also been observed at high concentrations in untreated
and/or inadequately treated wastewaters (9, 34). Within our sampling areas, used water
from both domestic and nondomestic sources is collected through a combination of
gravity sewers and pumping stations leading to four water reclamation plants. The final
effluent is also further treated using advanced membrane and reverse osmosis tech-
nologies to high-grade water (35). Hence, it is likely that urban-use-dominated areas
received wastewater contamination (possibly from sewage), as they showed the pres-
ence of both ACT and PMMoV.

Correlations between molecular methods and metagenomics analysis. In the
parallel project with the same batch of samples, significant Spearman’s rank correla-
tions were observed between molecular methods (qPCR) and metagenomics analysis

FIG 1 Box plot concentrations of E. coli, Enterococcus spp. (ENT), and PMMoV in different water bodies
and catchments (different sampling points within the same location are merged for simplicity). The
median value is represented by the line inside the box, which indicates the range (25% to 75%). The solid
line (�) shows the land use weightage at different sampling points. The higher weightage of land use
category means that the areas are more impacted by anthropogenic activities. All the samples, including
the nondetect samples with reactive oxygen species (ROS) imputed values, are shown in the plots.
Numbers in parentheses show the detection frequency of different targets at different sampling sites as
the number of positive samples over the total number of samples at each site. IQR, interquartile range.
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for the occurrence of PMMoV (36). The results showed a strong significant correlation
between PMMoV data (continuous, not binary variables) from qPCR and metagenomics
(i.e., PMMoV contig 1-6, PMMoV-sum, and PMMoV-mapped reads to reference genome)
(0.588 � rho � 0.879; P � 0.01), indicating that the relative abundance of PMMoV from
metagenomics was aligned with the absolute abundance from qPCR (36). With the
widespread application of next-generation sequencing, the NCBI SRA databases have
recently expanded. In the future, with access to shared viral metagenomics data sets in
such databases, the relative abundance of the alternative fecal indicator PMMoV may
be obtained by viral metagenomics across different samples from diverse water envi-
ronments. However, metagenomics is still unable to provide absolute quantification
and as such cannot be used for quantitative microbial risk assessment (QMRA). In
QMRA, risks are estimated based on the absolute concentrations of specific pathogens
in the environment and the infectivity of those pathogens to humans (37). Furthermore,
due to high sequencing costs, relatively long sequencing time, and extensive bioinfor-
matics analysis of metagenomics, qPCR is still the preferable approach to detect the
presence of fecal contamination. In addition, the relative abundance of E. coli and
Enterococcus metagenomics data did not show a significant correlation with results
from the Idexx Quanti-Tray method (P � 0.05) (see Table S5 in the supplemental
material). This lack of correlation could be due to disparities in the detection methods
used and the uneven biodiversity across all the samples. The Idexx Quanti-Tray method
is based on the presence of enzymes from E. coli (�-glucuronidase) and Enterococcus
spp. (glucosidase) (38, 39), while the metagenomics data rely on sequence detection
assays. Further examination of bacterial samples shows that our samples are dominated
by other bacterial classes (i.e., Betaproteobacteria, Actinobacteria, Cyanobacteria, and
Acidimicrobiia), suggesting a poor coverage for E. coli and Enterococcus spp. Rarefaction
curves also showed that the samples from catchments and urbanized reservoirs did not
reach the plateau on genus and species levels (see Fig. S1 and S2 in the supplemental
material). More sequencing reads were needed to sufficiently represent the environ-

FIG 2 Box plot concentrations of selected chemical tracers in different water bodies and catchments
(different sampling points within the same location are merged for simplicity). The median value is
represented by the line inside the box, which indicates the range (25% to 75%). The solid line (�) shows
the land use weightage at different sampling points. The higher weightage of land use category means
that the areas are more impacted by anthropogenic activities. All the samples, including the nondetect
samples with ROS imputed values, are shown in the plots. Numbers in parentheses show the detection
frequency of different selected chemicals at different sampling sites as the number of positive samples
over the total number of samples at each site.
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ment from which the samples were taken. Therefore, E. coli and Enterococcus metag-
enomics data were not included in our later analysis. This also indicates the intrinsic
limitation of metagenomics: the relative abundance data might be skewed if the
sequencing depth is not sufficient to cover the low relative abundance of targets in
each library.

Correlations between fecal indicators (E. coli, Enterococcus spp., and PMMoV),
environmental parameters, and chemicals. Spearman’s rho correlation analysis was
performed to assess the empirical relationships between traditional FIB (E. coli, Entero-
coccus spp.) and PMMoV as an alternative human fecal indicator. The results showed
that there were moderate to strong significant positive correlations between all of the
microbial fecal indicators (0.549 � rho � 0.888; P � 0.01) (Table 2). The highest
correlation (rho � 0.888; P � 0.01) was observed between the PMMoV metagenomics
data (i.e., PMMoV_reads mapped to reference genome) and the PMMoV qPCR data. In
addition, a strong significant positive correlation was observed between E. coli and
Enterococcus spp. from the culture-based method (rho � 0.859; P � 0.01). The signif-
icant positive correlations between PMMoV and traditional indicators (0.549 � rho �

0.612; P � 0.01) are in agreement with the results of Haramoto et al. (16) (P � 0.05) but
contrast with other results indicating that the PMMoV concentration did not correlate
well with FIB in groundwater from a karst aquifer in Mexico (P � 0.05) (33) and from the
Ruhr and Rhine rivers in Germany (P � 0.01) (10). In our study, PMMoV had positive
correlations with traditional FIB E. coli and Enterococcus spp., suggesting that the virus
might be used as a fecal indicator, especially if there is no pepper farming or harvesting
in the surrounding sampling environment, which is the case in Singapore. However,
past studies have shown that FIB are not always correlated with enteric viruses (3, 6, 34),
causing false-positive signals, especially in tropical regions due to the longer survival

TABLE 2 Spearman’s rank correlation between microbial indicators and environmental parameters, chemical tracers, and land use
categoriesa

Correlation parameter

Correlation coefficient

E. coli (MPN/100 ml)
Enterococcus spp.
(MPN/100 ml)

PMMoV by qPCR
(GC/100 ml) PMMoV _contig1

PMMoV_ reads mapped
to reference genome

Microbial indicators
E. coli (MPN/100 ml) 0.554 0.599
Enterococcus spp. (MPN/100 ml) 0.859 0.588 0.541
PMMoV (GC/100 ml) 0.612 0.549 0.788 0.888

Environmental parametersb

Temp (°C) �0.344 �0.426 �0.209
pH 0.432 0.394
EC 0.521 0.588 0.394 0.565 0.543
TDS (ppm) 0.507 0.585 0.358 0.516 0.495
Salinity (PSU) 0.515 0.595 0.371 0.525 0.518
DO (ppm) �0.345 �0.333 �0.440 �0.356
Turbidity (PFU) 0.503 0.572 0.379

Chemical tracers
ACE (ng/liter) 0.590 0.638 0.658 0.721 0.549
ACT (ng/liter) 0.631 0.727 0.473 0.638 0.642
CBZ (ng/liter) 0.530 0.717 0.712
CYC (ng/liter) 0.564 0.590 0.609 0.811 0.792

Land use categories
Residentialb 0.421 0.412 0.678 0.728 0.608
Urban 0.497 0.503 0.473
Green �0.588 �0.585 �0.702 �0.757 �0.705
Weightage 0.583 0.583 0.728 0.766 0.713

aOnly significant correlations are shown (with Bonferroni correction, 2-tailed t test). All correlations were significant at P values of �0.01, except for values in boldface,
for which P values were �0.05. Abbreviations: TDS, total dissolved solids; DO, dissolved oxygen; PSU, practical salinity units; ACE, acesulfame; ACT, acetaminophen;
CYC, cyclamate; CBZ, carbamazepine.

bFor environmental parameters oxidation-reduction potential [ORP] (in millivolts), 24-h rainfall and 5-day rainfall (in millimeters), and antecedent dry period (in days)
and for land use category “Agriculture,” no significant correlation was found; therefore, these parameters are not included in the table.
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time and natural occurrence of FIB (40). Therefore, these results support PMMoV as an
indicator in tropical regions.

Among all the environmental variables, the microbial fecal indicators had moderate
to strong significant positive correlations (0.358 � rho � 0.595) with conductivity, TDS,
and salinity. The traditional FIB had higher correlation coefficients (0.507 � rho � 0.595;
P � 0.05) with conductivity, TDS, and salinity than with PMMoV (0.358 � rho � 0.394;
P � 0.05). This is similar to the results reported by Hamza et al. (10), which showed that
PMMoV had moderate positive correlation with conductivity in a river in Germany, with
a correlation coefficient, rho, of 0.33 (P � 0.0053, n � 72). Galdino Pereira et al. (41) also
reported a possible association between conductivity and FIB in surface water in Brazil
and concluded that the higher value of conductivity, indicating large amounts of ions,
was associated with organic matter decomposition (rho � 0.42; P � 0.05). The signif-
icant positive correlation between TDS and traditional fecal indicators could be due to
the fact that TDS provides the suitable medium for microbial fecal indicators to grow,
carrying supportive nutrients (27, 42). A previous study conducted by Lian et al. in
tropical surface waters in Singapore in 2015 showed that there was no significant
correlation between microbial fecal indicators, conductivity, and salinity (6). The differ-
ence could be due to different types of catchments studied. In our study, samples were
collected from many different environments, including urbanized, agricultural, and
parkland areas, whereas the samples analyzed by Liang et al. (6) originated from highly
urbanized catchments. The positive correlation between turbidity and all the microbial
fecal indicators (0.333 � rho � 0.440), except PMMoV metagenomics data, was
expected, and a similar correlation was also found in the earlier study by Liang et al. (6).
The exception of PMMoV metagenomics data could be caused by the limited metag-
enomics sample size (n � 38) in our study compared to the total sample size (n � 171).

The microbial fecal indicators measured by culture-based or molecular methods had
weak to strong significant negative correlations (�0.440 � rho ��0.202) with tem-
perature and DO, similar to results from Liang et al. (6). This negative correlation
between microbial fecal indicators and temperature is different from results from
previous studies in temperate countries, where the temperature range is very large,
spanning winter to summer temperatures (27, 43). Although warmer temperature does
lead to higher growth rates (27), in equatorial Singapore the temperature range is very
small (27 to 29.4°C; mean value, 28.6°C), and the warmer temperature could also result
in higher decay rates of bacteria due to increased solar UV irradiation (44–46). The low
DO levels may be caused by a fecal contamination event, since an increased fecal
indicator concentration would increase oxygen demand and result in decreased DO
levels (27).

To assess the potential of chemical tracers as markers of fecal contamination,
correlations with microbial fecal indicators (E. coli, Enterococcus spp., PMMoV, PMMoV-
contig1, and PMMoV-mapped reads) were evaluated for pooled data across all seven
sampling sites. Coefficients of correlations between chemical tracers and microbial fecal
indicators are shown in Table 2. It can be seen that all four chemical tracers showed a
moderate to strong significant positive correlation to microbial fecal indicators, where
two human wastewater-associated chemical markers (i.e., ACE and ACT) exhibited a
moderate to strong correlation to microbial fecal indicators (0.473 � rho � 0.727; P �

0.01). This indicates that human wastewater was likely an important source of fecal
indicator microorganisms (E. coli, Enterococcus spp., PMMoV, PMMoV-contig1, and
PMMoV-mapped reads) in the study area, as ACE and ACT are known to be specific
chemical markers of human fecal wastewater sources (29, 30, 47, 48).

Geospatial distribution of fecal indicators (E. coli, Enterococcus spp., and
PMMoV) and chemicals. To evaluate the influence of land use categories on microbial
fecal indicators/chemical tracers, Spearman’s rank correlations were performed among
all the variables (Tables 2 and S6). There were moderate to strong significant positive
correlations between all of the microbial fecal indicators/chemical tracers and residen-
tial/urban land use categories, while there were significant negative correlations with
green land use categories. This suggests that microbial fecal indicators/chemical tracer
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sources are related to urban/residential runoff and anthropogenic activities. This find-
ing is in agreement with those of Paule-Mercado et al. (27), who reported a positive
association between FIB and urban land use in Korea. Among all of the microbial fecal
indicators, PMMoV had a higher correlation with different land use categories than with
traditional indicators. The strong correlations between PMMoV and residential and
green categories (�rho� � 0.6; P � 0.01) suggest that PMMoV may be a potential
indicator of anthropogenic impacts on the distribution of pathogens in such freshwater
environments. This could be expected, as FIB have their intrinsic limitations. First, FIB
are able to proliferate and/or occur naturally in freshwater environments (1, 40).
However, PMMoV is generally not able to replicate in aquatic environments in Singa-
pore due to the absence of specific hosts (i.e., peppers) needed for proliferation, as
there is no farming or harvesting of peppers. Second, in terms of specificity, E. coli and
Enterococcus spp. cannot differentiate between human and animal feces (49–52),
whereas PMMoV is more human specific (8, 10, 11). In our study, PMMoV has overcome
the limitations of regrowth and specificity associated with traditional FIB; thus, it has
the potential to be a more-suitable indicator of human fecal contamination. In addition,
all of the chemical tracers had moderate to strong positive correlations with residential
and urban land use categories, while exhibiting negative significant correlations with
green land use categories (see Table S6 in the supplemental material).

Regression analysis. In this study, multiple regression models between microbial

fecal indicators and environmental parameters, land use categories, and chemical
tracers were examined, followed by the stepwise variables selection approach (Table 3).
These models will facilitate the prediction of microbial fecal indicators, thus indicating
the potential of fecal contamination and hence, human pathogens. Note that these
models used pooled data from all sampling locations.

The first few models in each microbial fecal indicator group included only either
land use categories or the chemical tracers as variables, with r2 values ranging from 0.37
to 0.65. When land use categories, environmental parameters, and the chemical tracers
were combined in the analysis, the resulting models (i.e., E. coli in model 3, Enterococcus
spp. in model 3, PMMoV in models 3 and 4, PMMoV_contig1 in models 2 and 3, and
PMMoV_reads in model 2) were improved significantly (r2 values � 0.617). In model 4
of PMMoV, 74% of the data variation was explained by green land use, ACE, ACT, and
antecedent dry period (days). In model 3 of the PMMoV_contig1, the relative abun-
dance of PMMoV_contig1 had 80.9% of the data variation explained by ACE, residential
land use, and antecedent dry period (days). These results indicated that the multiple-
linear-regression models had a much better prediction ability (with r2 values of �0.617)
when land use categories (i.e., green, residential, agriculture), environmental parame-
ters (i.e., electrical conductivity [EC], temperature), and/or chemical tracers (i.e., ACE and
ACT) were combined than when the variables were used alone. In particular, PMMoV_
contig1 exhibited the highest r2 value, 0.809 (see Fig. S3 in the supplemental material),
suggesting that metagenomics data could be applied in multiple linear regressions to
predict the relative abundance of PMMoV in freshwater environments.

Paule-Mercado et al. (27) predicted FIB concentrations by using various environ-
mental parameters in different land use categories. Even though higher R2 (0.83 to 0.91)
values were obtained in the MLR models, the results were unable to quantify land use
factors and monitored only FIB that might be limited for fecal source tracking. To date,
there have been no studies on the relationship between microbial fecal indicator data
(both traditional FIB and the alternative, PMMoV) and the addition of land use cate-
gories and chemical tracers. Our study showed that with the addition of land use
categories (green, agriculture, and residential) and chemical tracers (i.e., ACE and ACT),
the model performance significantly improved for the prediction of microbial fecal
indicators (r2 values � 0.69). This analysis has evaluated the impacts of different natural
and human-induced changes (i.e., land use patterns) on microbial water quality, which
is of significance to devise urban development planning to protect human health (53).
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The models of E. coli, Enterococcus spp., and PMMoV in terms of absolute quantification
might be applied to assess human health risks in recreational waters.

Evaluation of fecal indicators in terms of their correlation with different enteric
viruses. The empirical relationships between fecal indicators and selected microbial
pathogens were evaluated in other studies. Significant associations between PMMoV
and viruses (i.e., human adenovirus [HAdV] and human polyomavirus) were observed
by Hamza et al. (10) in river water in Germany, where PMMoV had a moderately
significant correlation coefficient with HAdV (rho � 0.42; P � 0.0001; n � 102).
Significant cross-correlations were also observed between PMMoV and all human-
associated MST markers in coastal waters from southeastern Florida (rho was not given)
(18).

In terms of PMMoV performance, although PMMoV shares with enteric viruses
similar viral replication modes, fates (i.e., adsorption, sedimentation, resuspension, and
inactivation), and detection methods (i.e., qPCR) (54), the moderately weak significant
correlations could have been caused by differences in morphological properties and

TABLE 3 MLR models of E. coli, Enterococcus spp., and PMMoV concentration and PMMoV metagenome relative abundancea

Model (unit) r2

Model
significance

Independent
parameter Coefficient

95% confidence interval

Significance ConstantLower bound Upper bound

E. coli (MPN/100 ml)
1 0.406 0 Green �0.028 �0.037 �0.02 �0.0001 3.445
2 0.552 0 Green �0.027 �0.035 �0.019 �0.0001 3.124

Agriculture 0.032 0.017 0.046 �0.0001
3 0.758 0 Green �0.017 �0.023 �0.01 <0.0001 2.029

Agriculture 0.039 0.028 0.049 <0.0001
ACE 0.002 0.002 0.003 <0.0001

Enterococcus spp. (MPN/100 ml)
1 0.37 0 ACE 0.002 0.002 0.003 �0.0001 1.096
2 0.63 0 ACE 0.002 0.002 0.003 �0.0001 �0.282

EC 0.004 0.003 0.006 �0.0001
3 0.69 0 ACE 0.002 0.001 0.003 <0.0001 10.166

EC 0.004 0.003 0.005 <0.0001
Temp (°C) �0.347 �0.551 �0.142 0.001

PMMoV (GC/100 ml)
1 0.65 0 Green �0.042 �0.05 �0.034 �0.0001 5.273
2 0.68 0 Green �0.038 �0.047 �0.029 �0.0001 4.848

ACE 0.001 0 0.002 0.03
3 0.72 0 Green �0.038 �0.046 �0.029 �0.0001 4.759

ACE 0.002 0.001 0.003 0.001
ACT �6.87E�05 0 0 0.005

4 0.74 0 Green �0.039 �0.047 �0.031 <0.0001 5.055
ACE 0.002 0.001 0.003 <0.0001
ACT �5.91E�05 0 0 0.014
Antecedent dry

period (days)
�0.099 �0.186 �0.012 0.027

PMMoV_contig1 (relative
abundance)

1 0.641 0 ACE 0.001 0.001 0.001 �0.0001 0.035
2 0.733 0 ACE 0.001 0 0.001 0.001 �0.129

Residential 0.009 0.001 0.017 0.038
3 0.809 0 ACE 0.001 0 0.001 <0.0001 �0.083

Residential 0.013 0.005 0.021 0.004
Antecedent dry

period (days)
�0.041 �0.079 �0.004 0.033

PMMoV_reads mapped to
reference genome

1 0.558 0 Green �0.027 �0.036 �0.018 �0.0001 �4.774
2 0.617 0 Green �0.025 �0.034 �0.016 <0.0001 �8.832

pH 0.529 0.004 1.054 0.048
aDependent variables of the MLR models have been log10 transformed; the best-fit model under each category is highlighted in bold.
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origins. First, the capsid structure of PMMoV is more robust than that of enteric viruses
(9, 10). The log10 reduction of PMMoV was 1.1, whereas the log10 reduction of HAdV
was 3.7 after a 21-day incubation experiment in river water (25°C) (10). Second, PMMoV
is of dietary origin and is not well correlated to human enteric infection (9, 10). The high
prevalence of PMMoV (106 to 109 viruses/g dry weight of human feces) was observed
in 12 of 18 healthy human feces samples by metagenomics RNA sequencing in the
United States and Singapore (8) and in 19 of 20 healthy human feces samples in
Germany by reverse transcription (RT)-qPCR (10). One exception was noted in a study
conducted in France, which showed that only 22 of 304 (7.2%) stool samples tested
positive for PMMoV; however, the samples were from adult hospitalized patients
instead of healthy adults (15) and these disparities could have been caused by dietary
habits in hospital patients (10).

Singapore cuisine typically contains fresh peppers (Capsicum spp.) or manufactured
pepper-containing products (e.g., chili sauces or curry), indicating a higher chance of
PMMoV presence in the healthy human gut. In other countries with a high prevalence
of PMMoV in surface waters, such as Germany (100%, n � 111), Japan (76%, n � 140),
and Vietnam (94%, n � 17), fresh and processed peppers might make contributions to
high occurrences as well (10, 13, 16). High concentrations of PMMoV indicating high
levels of human fecal pollution might not imply the presence or high concentrations of
enteric viruses, as the gastrointestinal tract of healthy people does not necessarily
contain a high density of enteric viruses. In addition to enteric viruses, a few more other
pathogens could be present in human stool samples, such as Campylobacter jejuni,
Giardia lamblia, Shigella, and toxic strains of E. coli (55). To further evaluate the human
feces specificity of PMMoV, the investigation of cooccurrence between PMMoV and
those pathogens should be conducted in the future. Nonetheless, in our study of
tropical urban and rural catchments, PMMoV appeared to be sensitive to land use
patterns and anthropogenic activities, thus making it appropriate for tracking human
fecal pollution. Likewise, previous studies reported the high human feces specificity of
PMMoV in the United States, Germany, and Singapore (8, 10, 11). This study evaluates
the land use impacts on the occurrence and distribution of traditional FIB and
PMMoV in tropical surface waters. To summarize, this finding would support the
hypothesis of using PMMoV as an alternative indicator of human fecal contamina-
tion in tropical surface waters from the perspective of land use patterns. However,
due to patterns similar to those of traditional FIB in terms of variable correlations
with enteric viruses, PMMoV may not be suitable as an indicator of viral contami-
nation (3, 6).

Conclusion. This work characterized the geospatial distribution of traditional FIB

and an alternative fecal indicator (PMMoV) at seven sampling locations with varied land
use categories. Diverse land use in different water bodies across Singapore is one of the
key factors impacting the occurrence and concentration of fecal indicators, i.e., con-
centrations were found to be higher in an urban-use-dominated catchment than a
parkland-dominated one. Correlations between traditional FIB and the alternative fecal
indicator suggest that PMMoV can be used as a suitable indicator of fecal pollution in
tropical surface waters. The strong correlations between the occurrence and concen-
tration of PMMoV and residential and green categories (�rho� � 0.6; P � 0.01) suggest
that PMMoV has potential as an indicator of human impact and hence, the possible
incidence of pathogens in urban freshwater environments. The empirical models to
predict the concentrations of traditional and alternative fecal indicators were improved
with the inclusion of land use and chemical tracers as independent variables compared
to the use of environmental parameters alone. These models can be applied to identify
the impacts of anthropogenic activities and land use patterns in surface water quality.
They also can be used to reflect sources and transportation of human fecal pollution or
sewage contamination, offering valuable information for devising management strat-
egies for public health.
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MATERIALS AND METHODS
Sampling sites and land use studies. This study was conducted in Singapore, which has a land area

of 719.1 km2 and a population of 5.61 million people as of 2016 (56). Sampling sites and land use
categories were mapped with ArcGIS version 10.3.1 software (ESRI, Redlands, CA, USA). Land use shape
files were obtained from the Singapore Land Authority (SLA) and PUB (Singapore’s National Water
Agency) where the land use subcategories were defined by the Urban Redevelopment Authority (URA).
However, to reduce the number of parameters, subcategories were merged into 5 main categories: (i)
residential, (ii) urban, (iii) green, (iv) agricultural, and (v) water body.

Four different layers of maps were used for the analysis: (i) catchment land use shape files, (ii) river
shape files, (iii) subcatchment shape files, and (iv) drain line maps. WGS_1984_Web_Mercator_
Auxiliary_Sphere was used as the projection coordinate system, while GCS_WGS_1984/SVY21 Singapore
was used as the geographic coordinate system.

The percentage area of land cover around each sampling point was calculated based on the drains
into the sampling sites. However, when there were no direct drains into the specific water body, the
effect of land use was calculated based on a 2-km buffer around the site. In order to reduce the number
of parameters, the weightage of land use (which is the combination of different land use categories) was
calculated. For the calculation of weightage, numbers 4, 3, 2, and 1 were assigned to residential, urban,
agriculture, and green, respectively. A final weightage number was calculated according to the contri-
bution of each land use category to each sampling site. The formula for calculating final weightage was
as follows: weightage � (residential PA � 4) 	 (urban PA � 3) 	 (agriculture PA � 2) 	 (green PA �
1), where PA (as a percentage) is the fraction of area devoted to a particular use.

Sample collection and measurement of physical-chemical parameters. A total of 171 water
samples were collected from 7 different sampling zones in Singapore (A to G) with 10 sampling sites in
7 different water bodies (WB-A to WB-G) and 9 sampling sites in 3 different upstream catchment zones
(C-A, C-B, and C-D) over a period of 14 months (November 2014 to January 2016) (see Table S7 in the
supplemental material). Water samples were collected during the Northeast Monsoon (sample size [n] �
61, collected in November 2014, December 2014, January 2015, December 2015), Southwest Monsoon
(n � 36; July 2015 and August 2015), pre-Northeast Monsoon (n � 18; October 2015), and pre-Southwest
Monsoon (n � 56; March 2015, April 2015, January 2016).

Water samples from each site were collected in a 5-liter sterilized carboy for quantification of
traditional FIB (e.g., E. coli and Enterococcus spp.) and target chemical tracers and in three 10-liter
sterilized carboys for concentration of viral particles (e.g., PMMoV). Physiochemical parameters, including
temperature, conductivity, turbidity, salinity, pH, dissolved oxygen (DO), and total dissolved solids (TDS),
were measured in situ using the HI9828 multiparameter meter (Hanna Instruments). All the physiochemi-
cal environmental parameters were measured according to the American Public Health Association
(APHA) standard methods (57), and rainfall information (i.e., 24-hour rainfall, 5-day rainfall, and the
antecedent dry period) for each sampling site was obtained from a Singapore government-linked
website (58).

Sample concentration and analysis. Viral particles in 30-liter water samples were concentrated
using hollow fiber ultrafiltration (Hemoflow HF80S; Fresenius Medical Care, Gad Homburg, Germany) to
obtain a final volume of 600 ml (59). Samples spiked with bacteriophage MS2 indicated a recovery
efficiency of 70 to 80%. Briefly, the water sample was recirculated until the final volume reached
approximately 200 to 250 ml. Elution was carried out by recirculating 300 ml of elution buffer (0.1 g of
sodium polyphosphate [NaPP], 5 ml of Tween 80, and 10 �l of Antifoam in 1 liter of Nanopure water) for
5 min. Both retentate and eluent were combined to a final volume of 600 ml. Meanwhile, bacterial nucleic
acids were extracted from 10 ml of primary concentrate according to the PowerSoil DNA isolation kit
instructions (Mo Bio Laboratories, Inc., Carlsbad, CA). A secondary concentration of virus particles was
performed using polyethylene glycol (PEG) precipitation, followed by Ultra-15 Amicon ultrafiltration (60,
61). Briefly, the pH of primary concentrate was adjusted to 7.2, followed by the addition of 0.3 M NaCl
and 0.8% (wt/vol) of PEG powder to the sample. The mixture was then incubated at 4°C with 100-rpm
agitation for about 24 h. After the incubation, the sample was centrifuged at 14,000 � g for 45 min at
4°C to pellet the virus particles. The virus particles were resuspended by adding 10 ml of phosphate-
buffered saline (PBS). Subsequently, the virus particles were separated from the suspended solids by
adding an equal volume (
10 ml) of chloroform, followed by 45 min of centrifugation at 3,000 � g at
4°C. The aqueous phase (containing virus particles) was collected and filtered through a 0.22-�m filter.
An Ultra-15 centrifugal tube with a molecular weight cutoff of 30 kDa (Amicon Merck, Germany) was used
to further concentrate the sample to a final volume of 1 ml (centrifuged at 4,000 � g at 4°C). Samples
were stored at �80°C until further analysis. After primary and secondary concentrations, viral nucleic
acids (DNA and RNA) were extracted from 140 �l of the final concentrate using the QIAamp viral RNA
minikit (Qiagen, Hilden, Germany) and then stored at �80°C (62).

Quantification of PMMoV. The extracted viral nucleic acids were reverse transcribed using the
ImProm-II reverse transcription system (Promega) following the manufacturer’s instructions. qPCRs for
the samples were performed in 20 �l of reaction mixture containing a 2.5-�l aliquot of cDNA mixed with
17.5 �l of qPCR mixture containing 10 �l of FastStart Universal Probe Master (Rox; Roche Diagnostics,
Basel, Switzerland) and 10 pmol forward and reverse primers and TaqMan probe (16, 63). Duplicate qPCR
amplification was performed in a StepOnePlus real-time PCR system under the following thermal
conditions: 95°C for 30 s and 45 cycles of 95°C for 5 s and 60°C for 60 s. Both positive-control (kindly
provided by the Charles Gerba lab at the University of Arizona) and negative-control (nuclease-free
reagent grade water and cDNA negative control) assays were performed for quality control. Serial
dilutions of plasmid DNA (101 to 107 gene copies per reaction mixture) containing the PMMoV target
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sequence (68 bp) were used to generate the standard curve. The standard curve equation with R2 of 0.9
to 0.99 was obtained by plotting the cycle threshold (CT) value against the log of standard plasmid
concentration (GC/reaction) (see Table S8 in the supplemental material). The detection limit of PMMoV
was 16 GC/100 ml, which was calculated based on 1 GC per reaction mixture.

To avoid false negatives or underestimates due to inhibitions in qPCR, TaqMan exogenous internal
positive control (IPC) reagents were used to assess the level of inhibition in each environmental sample
(64). A sample was considered to be inhibited when the difference between the CT values of IPC with and
without cDNA sample was more than 3 CT units. In this case, cDNA samples were diluted with
double-distilled H2O (ddH2O; sterile ultrapure water) to achieve the difference below 3 CT units (65). In
the current study, the highest dilution factor required to decrease the inhibition level was 4.

Quantification of Enterococcus spp. and E. coli. Colilert-18 and Enterolert (Idexx Laboratories Inc.,
USA) were used to quantify E. coli and Enterococcus spp. in the water samples. Medium powder was
mixed with a volume of 100 ml of water sample and 10-fold serially diluted in the provided sterile bags
before the mixture was poured into a multiwell tray (Quanti-Tray/2000). This enables a wider coverage
of detection range due to high concentrations of FIB at certain locations. Colilert-18 and Enterolert
samples were incubated at 35 � 0.5°C for 18 h and 41 � 0.5°C for 24 h, respectively. After incubation,
the Quanti-Tray was visualized under UV light using a 6-watt fluorescent UV lamp to identify and count
the positive wells. With reference to the most probable number (MPN) table provided, the MPN of that
particular sample was obtained (MPN/100 ml).

Detection and quantification of chemical markers. This study targeted compounds acesulfame
(ACE), acetaminophen (ACT), cyclamate (CYC), and carbamazepine (CBZ), widely used as chemical
markers of human fecal sources in surface waters and groundwater, as previously described (29, 30, 47,
66, 67).

The detection and quantification of the chemical markers were carried out using solid-phase
extraction (SPE) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS) and isotope dilution as discussed by Tran et al. (68), with slight modification. The method
detection limits (MDLs) for the target chemical markers were 1.0 ng/liter for ACE and ACT, 0.5 ng/liter for
CYC, and 0.01 ng/liter for CBZ (Table 1).

Metagenomics sequencing for bacterial and viral samples. Bacterial nucleic acids were extracted
from a total of 36 samples from August and October 2015, and viral nucleic acids were extracted from
a total of 38 samples from January and April 2015. Downstream reverse transcription and amplification
for viral nucleic acids were performed to obtain sufficient quantities of cDNA for sequencing (69–71).
Products were sent to The Singapore Centre on Environmental Life Sciences Engineering (SCELSE), where
the nucleic acids were fragmented to 250-bp lengths and sequenced on two lanes of Illumina Hiseq 2500
platform in a rapid mode run. The Illumina TruSeq Nano DNA library kit was used in library construction.

Processing and analysis of Illumina reads. The sequencing data were trimmed by BBtools
(http://jgi.doe.gov/data-and-tools/bbtools/) to remove adaptors, low-quality reads, reads smaller than 50
bp, and PhiX reads. PhiX reads serve as a quality control and a calibration control in sequencing runs (72).
“Primer B” sequences, which were used in viral random amplification, were also removed in viral
sequencing samples.

Bacterial metagenomes. All the reference genomes of E. coli and Enterococcus spp. were down-
loaded from NCBI (373 E. coli complete genomes and 51 Enterococcus complete genomes as of 8 October
2017). High-quality reads were mapped to the reference genomes in order to obtain the relative
abundance of E. coli and Enterococcus spp. in each library. Mapping was performed using the CLC
Genomics Workbench 8.0.3 based on the default setting (mismatch gap � 2, with the linear gap cost,
length fraction of 0.5, similarity fraction is 99%). The proportion of mapping reads equals the number of
mapping reads in each library divided by the total reads in the library. Metaxa2 2.2 beta 10 was used to
extract 16S rRNA sequences from metagenomics reads and assign bacterial taxonomy with default
parameters (73). A rarefaction curve was obtained using Metaxa2 Diversity Tools based on the generated
bacterial rarefaction tables at level 6 (genera) and level 7 (species) with default parameters (74).

Viral metagenomes. CLC Genomics Workbench version 8.0.3 (CLC bio, Boston, MA, USA) was used
for de novo assembly. The assembly setting was as follows: minimum contig length, 1,000 bp; similarity
fraction, 0.95. All the contigs from the pooled 38 libraries were then uploaded into MetaVir2 pipeline for
taxonomy assignment (75, 76). In order to quantify the relative abundance of PMMoV in different
libraries, reads were remapped to contigs using Novoalign. RPKM (reads per kilobase of transcript per
million mapped reads) was generated by standardizing and quantifying every contig’s relative abun-
dance throughout the 38 libraries (77). RPKM was calculated using the following equation: RPKM � (raw
reads mapped to one contig in one library)/{[total reads mapped to the library (millions)] � [length of
the contig (kbp)]}.

In addition, high-quality reads were mapped to the reference genome of PMMoV (NC_003630.1),
observing the same mapping method as the one stated above.

Statistical analysis. In this study, ProUCL version 5.1.02, the software recommended by the U.S.
Environmental Protection Agency, was used to estimate data for nondetects by using the regression on
order statistics method (78). The method was used to generate imputed values for nondetects. All
statistical tests were performed using IBM SPSS 23 (IBM, Portsmouth, UK). Spearman’s rank correlation
was performed among 25 factors, including all the microbial fecal indicators, environmental parameters,
and chemical tracers. To avoid multiple-comparison problems, the Bonferroni correction was performed
to mitigate false-positive associations. The P value was adjusted to �/n (where n is the number of tests
in the matrix). Different levels of correlation were defined (i.e., strong, rho � 0.7; moderately strong,
0.5 � rho � 0.7; moderately weak, 0.3 � rho � 0.5; and weak, rho � 0.3). A Pearson’s chi-squared test
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of independence and a nominal association with � value was performed to find the significance and
coefficient of association between different sampling locations with different land use categories and the
detection frequency of microbial fecal indicators. MLR analyses, including stepwise variable selection
approaches, were performed to find the significant explanatory variables in fitting the observed microbial
fecal indicators. Spearman’s rank correlation of PMMoV, E. coli, and Enterococcus spp. was performed
between qPCR and metagenomics data (relative abundance) for viral (n � 38) and bacterial (n � 36)
metagenomics samples.

Data availability. Bacterial and viral data sets were deposited in NCBI Sequence Read Archive (SRA)
under accession numbers SRR6423776 to SRR6423811 and SRR5995660 to SRR5995697, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
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