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Abstract
Background: We previously reported that the NLRP3 inflam-
masome played an important role in mediating the podo-
cyte injury induced by aldosterone. However, more studies 
on the role of the NLRP3 inflammasome in the pathogenesis 
of podocytopathy are still required. The present study was 
undertaken to study the role of the NLRP3 inflammasome in 
angiotensin II (Ang II)-induced podocyte injury, as well as the 
potential mechanisms. Methods: In this study, we used an 
Ang II infusion model in NLRP3–/– mice. In cultured podo-
cytes, we used siRNA to silence NLRP3; then we treated the 
podocytes with Ang II. Results: Following Ang II treatment, 
we found that the NLRP3 inflammasome was significantly 
activated in line with mitochondrial dysfunction in a dose- 
and time-dependent manner. Silencing NLRP3 by siRNA 
transfection ameliorated podocyte apoptosis, attenuated 
the loss of the podocyte proteins nephrin and podocin, and 
protected mitochondrial function. Ang II infusion activated 
the NLRP3 inflammasome, caused albuminuria, and induced 

podocyte damage, which was all blocked in the NLRP3–/– 
mice. At the same time, NLRP3 deletion also ameliorated the 
mitochondrial dysfunction induced by Ang II infusion. How-
ever, the deletion of NLRP3 did not affect the Ang II hyper-
tension. Conclusion: Taken together, these results demon-
strate an important role of the NLRP3 inflammasome in me-
diating Ang II-induced podocyte injury and mitochondrial 
dysfunction, suggesting that the NLRP3 inflammasome 
might be an effective therapeutic target against podocyto-
pathy. © 2018 S. Karger AG, Basel

Introduction

Angiotensin II (Ang II), a major bioactive product of 
the renin-angiotensin system, plays a critical role in main-
taining blood pressure and fluid homeostasis [1, 2]. How-
ever, Ang II also contributes to the pathogenesis of vari-
ous diseases, mainly by inducing oxidative stress, inflam-
mation, cholesterol accumulation, and fibrosis [3–5]. 
Moreover, accumulating evidence shows that inflamma-
tion plays an important role in the development and pro-
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gression of renal diseases [6–8]. For example, a previous 
study reported that Ang II could induce inflammation in 
renal tubular cells [9].

The NLRP3 (NOD-like receptor 3) inflammasome is 
well characterized among the members of the NLR fam-
ily. A functional inflammasome complex is formed 
through CARD-CARD interaction of ASC (apoptosis-as-
sociated speck-like protein containing carboxy-terminal 
CARD) with procaspase-1. Activation of the NLRP3 in-
flammasome finally triggers the maturation of IL-1β and 
IL-18 via activated caspase-1 [10, 11]. Studies from our 
and other groups suggest that activation of the NLRP3 
inflammasome is involved in renal tubular and podocyte 
injury induced by albuminuria or aldosterone [12–15]. 
However, the role of the NLRP3 inflammasome in Ang 
II-induced podocyte injury has not been defined.

Mitochondria are complex intracellular organelles that 
are responsible for various metabolic activities including 
energy production via oxidative phosphorylation. Mito-
chondrial dysfunction is characterized by increased reac-
tive oxygen species production, the accumulation of im-
paired mtDNA, and progressive respiratory chain dys-
function. Growing evidence indicates that mitochondrial 
dysfunction is involved in podocyte injury [16]. In agree-
ment with these results, we found in our previous study 
[17] that mitochondrial dysfunction is an early event in 
podocyte injury. Recently, a study reported Ang II could 
induce mitochondrial dysfunction in skeletal muscle [18]. 
However, the role of mitochondrial dysfunction in Ang 
II-induced podocyte injury remains elusive.

In the present study, using a siRNA approach and 
NLRP3–/– mice, we show that NLRP3 inflammasome ac-
tivation contributes to Ang II-induced podocyte injury 
and mitochondrial dysfunction. These findings not only 
reveal a novel mechanism mediating Ang II-induced 
podocyte injury but also offer a new target for the treat-
ment of podocytopathy.

Methods

Reagents and Antibodies
Newborn bovine serum was purchased from Gibco (Gibco, 

USA). Ang II and murine interferon-γ were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Antibodies against NLRP3, podo-
cin, and nephrin were from Abcam (Cambridge, MA, USA). Anti-
caspase-1 and anti-β-actin antibodies were from Santa Cruz Bio-
technology (Santa Cruz, CA, USA).

Podocyte Culture
Conditionally immortalized murine MPC5 podocyte clonal 

cells (kindly provided by Peter Mundel at the Icahn School of Med-

icine at Mount Sinai through Dr. Jie Ding at Peking University) 
were cultured and induced to differentiate as described previously 
[19]. The cells were maintained in RPMI 1640 medium containing 
10% heat-inactivated fetal calf serum, 100 U/mL penicillin G, 10 
U/mL recombinant murine interferon-γ, and 100 mg/mL strepto-
mycin in a 5% CO2 atmosphere at 33  ° C. Podocytes were main-
tained without interferon-γ at 37  ° C for 10–14 days to induce dif-
ferentiation before the experiments.

siNLRP3 Transfection
NLRP3 siRNA and vehicle siRNA were from GenePharma 

(China). Podocytes were cultivated to 40–60% confluence in cul-
ture medium containing no penicillin or streptomycin. The cells 
were transfected with 50 nM NLRP3 siRNA or control siRNA 24 h 
before Ang II treatment using siRNA-Mate (GenePharma) ac-
cording to the manufacturer’s instructions. The siRNA sequences 
were as follows: siNLRP3, 5′-CGGCCUUACUUCAAUCU-
GUTT-3′ and 5′-ACAGAUUGAAGUAAGGCCGTT-3′.

Animals
The study protocols were reviewed and approved by the Insti-

tutional Animal Care and Use Committee at Nanjing Medical Uni-
versity, China. Nlrp3–/– mice on a C57BL/6J background were pur-
chased from The Jackson Laboratory (Sacramento, CA, USA). In 
brief, heterozygous littermates were bred to generate homozygous 
KO mice and wild-type (WT) littermate controls; 10- to 12-week-
old male mice (22–26 g) were used in our study. All mice were 
maintained on a 12-h light-dark cycle in a temperature-controlled 
(19–21 ° C) room and were fed standard rodent chow.

Animal Model of Ang II Infusion
Male NLRP3–/– (KO) and WT mice aged 10–12 weeks and 

weighing 22–26 g were treated with Ang II using subcutaneously 
implanted osmotic minipumps (ALZET; DURECT, Cupertino, 

Table 1. Primer sequences for quantitative real-time PCR

Gene symbol Primer sequence 5′–3′

NLRP3 GTGGTGACCCTCTGTGAGGT
TCTTCCTGGAGCGCTTCTAA

Caspase-1 ACAAGGCACGGGACCTATG
TCCCAGTCAGTCCTGGAAATG

Nephrin ATGGGAGCTAAGGAAGCCACA
CCACACCACAGCTTAACTGTC

Podocin TGCTACTACCGCATGGAAAATG
CTGCATCTAAGGCAACCTTTACA

mtDNA ATCCTCCCAGGATTTGGAAT
ACCGGTAGGAATTGCGATAA

18S rRNA TTCGGAACTGAGGCCATGATT
TTTCGCTCTGGTCCGTCTTG

GAPDH AATGGATTTGGACGCATTGGT
TTTGCACTGGTACGTGTTGAT
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CA, USA). The pumps were placed by making an incision in the 
right flank region under light anesthesia with 3% isoflurane; they 
delivered a continuous infusion of Ang II (300 ng/kg/min) for 28 
days. All mice were maintained on a 12-h light-dark cycle in a 
temperature-controlled (19–21 ° C) room. They were fed standard 
rodent chow and had free access to drinking water.

Apoptosis Analysis
Hoechst 33258 Staining. Podocytes were grown on glass cover-

slips for measurement of apoptosis. After treatment, the podocytes 
were stained with Hoechst 33258 and viewed by fluorescence mi-
croscopy.

Annexin V-Fluorescein Isothiocyanate Conjugated with Prop-
idium Iodide. After treatment, the podocytes were seeded into 
6-well plates, and apoptosis was quantified by flow cytometry us-
ing annexin V-fluorescein isothiocyanate and propidium iodide 
double staining (annexin V-fluorescein isothiocyanate apoptosis 
Q18 detection kit; BD Biosciences), according to the manufactur-
er’s instructions.

TUNEL Assay in Cultured Podocytes. Apoptotic cell death was 
determined using TUNEL staining with an In Situ Cell Death De-
tection Kit (Roche Molecular Biochemicals, Mannheim, Germa-
ny), following the manufacturer’s protocol. Morphological chang-
es in podocytes undergoing apoptosis were then detected by coun-
terstaining them with Hoechst 33258. The slides were examined by 
confocal microscopy.
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Fig. 1. Angiotensin II (Ang II) activated the NLRP3 inflammasome 
and induced podocyte injury. Cells were grown on 6-well plates 
until 80% confluence, then treated with different doses of Ang II 
(10–8, 10–7, and 10–6 mol/L) for 24 h. a Western blotting analyses 
of NLRP3, caspase-1, nephrin, and podocin expression. b, c qRT-

PCR analysis of NLRP3 and caspase-1 expression. d ELISA analy-
sis of IL-18 levels in the supernatant of cultured cells. e, f qRT-PCR 
analyses of nephrin and podocin expression. Data are presented as 
means ± SE (n = 6). * p < 0.05 vs. control (0 mol/L).
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Western Blotting
Podocytes or renal tissue were lysed in protein lysis buffer (50 

mmol/L Tris, 150 mmol/L NaCl, 10 mmol/L EDTA, 1% Triton 
X-100, 200 mmol/L sodium fluoride, and 4 mmol/L sodium or-
thovanadate as protease inhibitors; pH 7.5) for 15 min on ice. Pro-
tein was extracted. Immunoblotting was performed with primary 
antibodies against NLRP3 (1: 500), nephrin (1: 1,000), podocin (1: 

1,000), caspase-1 (1: 250), or β-actin (1: 1,000), followed by the ad-
dition of horseradish peroxidase-labelled secondary antibodies. 
The blots were visualized with Amersham ECL Detection Systems 
(Amersham, UK). Densitometric analysis was performed using 
Quantity One Software (Bio-Rad).

Quantitative Real-Time PCR and Reverse Transcription PCR
Total RNA was isolated from MPC cells and the renal cortex 

using a TRIzol Total RNA Isolation Kit (Invitrogen) according to 
the manufacturer’s protocol. The RNA was eluted with RNase-free 
water. Reverse transcription was performed using the Superscript 
III RT Kit (Invitrogen) according to the manufacturer’s protocols. 
Briefly, the reactions were incubated at 65  ° C for 5 min and then 
at 50  ° C for 60 min. Total DNA from cultured podocytes and renal 
tissue were extracted with a DNeasy Tissue Kit (QIAGEN Science). 
Oligonucleotides were designed with Primer3 software (available 
at http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) 
and synthesized at Invitrogen (the primer sequences are shown in 
Table 1). Real-time PCR amplification was performed using the 
SYBR Green Master Mix (Roche) and the Prism 7500 Real-Time 
PCR Detection System (Applied Biosystems). The cycling condi-
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Fig. 2. Angiotensin II (Ang II) induced podocyte apoptosis and 
mitochondrial dysfunction. Cells were grown on 6-well plates un-
til 80% confluence, then treated with Ang II (10–6 mol/L) for dif-
ferent periods of time (0, 2, 4, 6, 12, and 24 h) or at different doses 
of Ang II. a Hoechst 33258 staining. The arrows indicate chroma-

tin condensation and fragmentation. b Cell apoptosis after Ang II 
treatment detected by flow cytometry. c, f qRT-PCR analysis of 
mtDNA copy number. d, g ATP production. e, h Quantitation  
of JC-1 fluorescence by flow cytometry. Data are presented as 
means ± SE (n = 6). * p < 0.05 vs. control (0 mol/L).
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tions were 95  ° C for 10 min followed by 40 repeats of 95  ° C for 15 
s and 60  ° C for 1 min. Relative amounts of mtDNA copy numbers 
were normalized to 18S ribosomal RNA levels encoded by the nu-
clear DNA, and mRNA was normalized to GAPDH and calculated 
using the delta-delta method from threshold cycle numbers.

ATP Content Measurement
ATP levels in the podocytes were determined with a luciferase-

based bioluminescence assay kit (Sigma-Aldrich) in a FLUOstar 
Optima reader according to the manufacturer’s instructions.

Mitochondrial Membrane Potential
The mitochondrial membrane potential (MMP) of podocytes 

was monitored using JC-1, a MMP-sensitive fluorescent dye, as 
described previously [20]. Briefly, podocytes were washed twice 
with PBS and incubated in the dark with JC-1 probe (7.5 mmol/L; 
30 min at 37  ° C). The cells were washed with JC-1 washing buffer, 

and fluorescence was detected by flow cytometry. The relative 
MMP was calculated using the ratio of J-aggregate/monomer 
(590/520 nm). Values are expressed as fold change in J-aggregate/
monomer fluorescence over control cells.

Blood Pressure Measurement
Systolic blood pressure of the mice was measured by the tail-

cuff method, using a Visitech BP-2000 Blood Pressure Analysis 
System (Visitech Systems, Apex, NC, USA).

Transmission Electron Microscopy
Fresh kidney tissues were fixed in 1.25% glutaraldehyde/0.1 

mol/L phosphate buffer and postfixed in 1% OsO4/0.1 mol/L phos-
phate buffer. Ultrathin sections (60 nm) were cut on a microtome, 
placed on copper grids, stained with uranyl acetate and lead citrate, 
and examined under an electron microscope (JEM-1010; JEOL 
Ltd., Tokyo, Japan).
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Fig. 3. Silencing NLRP3 protected angiotensin II (Ang II)-induced 
podocyte injury. Cells were grown on 6-well plates until 30% con-
fluence and transfected with siNLRP3 for 24 h, then treated with 
Ang II (10–6 mol/L) for another 24 h. a Western blotting analysis 
of NLRP3 and nephrin. b qRT-PCR analysis of NLRP3. c ELISA 
analysis of the IL-18 concentration in the medium of cultured cells. 

Podocytes were incubated with Ang II for 24 h, and the medium 
was collected to detect IL-18 by ELISA. d qRT-PCR analysis of cas-
pase-1. e qRT-PCR analysis of podocin. f qRT-PCR analysis of 
nephrin. Data are presented as means ± SE (n = 6). * p < 0.05 vs. 
vehicle group; # p < 0.05 vs. Ang II-treated group.
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Analysis of Urinary Albumin
The urinary concentration of albumin was determined using 

enzyme-linked immunosorbent assay kits from Exocell (Philadel-
phia, PA, USA).

Statistical Analysis
Data are presented as means ± SE. Statistical analysis was per-

formed using ANOVA followed by a Bonferroni posttest or un-
paired Student t test. p < 0.05 was considered statistically signifi-
cant.

Results

Ang II Activated the NLRP3 Inflammasome and 
Induced Podocyte Injury
We firstly examined the effect of Ang II on activation 

of the NLRP3 inflammasome. As shown by the data, Ang 
II induced NLRP3 inflammasome activation as evidenced 

by the increments in NLRP3, active caspase-1, and IL-18 
in a dose-dependent manner (Fig. 1a–d). Meanwhile, Ang 
II dose-dependently downregulated the expression of the 
podocyte proteins nephrin and podocin (Fig. 1e, f) accom-
panied by enhanced podocyte apoptosis (Fig. 2a, b). These 
results suggest that NLRP3 inflammasome activation 
might be involved in Ang II-induced podocyte injury.

Ang II Induced Mitochondrial Dysfunction  
in Podocytes
To evaluate the effect of the Ang II challenge on mito-

chondrial function, we assessed the MMP, ATP levels, 
and mtDNA copy number. As shown in Figure 2c–h, Ang 
II could induce a reduction in mtDNA copy number, 
ATP content, and MMP in podocytes in a dose- and time-
dependent manner. These results demonstrate that Ang 
II induced mitochondrial dysfunction in podocytes.
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Fig. 4. Silencing of NLRP3 attenuated angiotensin II (Ang II)-in-
duced podocyte apoptosis. Cells were grown on 6-well plates until 
30% confluence and transfected with siNLRP3 for 24 h, then treat-
ed with Ang II (10–6 mol/L) for another 24 h. a TUNEL staining. 

The arrows indicate TUNEL-positive signals. b Quantitation of 
podocyte apoptosis, which was determined by flow cytometry. 
Data are presented as means ± SE (n = 6). * p < 0.05 vs. vehicle 
group; # p < 0.05 vs. Ang II-treated group.
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Silencing NLRP3 Ameliorated Ang II-Induced 
Podocyte Injury
To define the role of NLRP3 inflammasome activation 

in Ang II-induced podocyte injury, we silenced NLRP3 
through the transfection of siNLRP3 in podocytes. Strik-
ingly, invalidation of NLRP3 significantly reversed the 
downregulation of the podocyte proteins nephrin and 
podocin (Fig. 3e, f) in line with a blockade of NLRP3 in-
flammasome activation in response to Ang II (Fig. 3a–d). 
Meanwhile, as shown in Figure 4, Ang II-induced podo-
cyte apoptosis was markedly attenuated by siNLRP3. 
These results demonstrate that activation of the NLRP3 
inflammasome contributed to Ang II-induced podocyte 
injury.

Silencing NLRP3 Attenuated Ang II-Induced 
Mitochondrial Dysfunction in Podocytes
We then explored the effect of NLRP3 on mitochon-

drial dysfunction in podocytes challenged with Ang II. As 
shown in Figure 5, Ang II strikingly impaired mitochon-
drial function, which was partially but significantly ame-
liorated by siNLRP3 as evidenced by restoration of the 
MMP, ATP content, and mtDNA copy number, indicat-
ing that Ang II-induced mitochondrial dysfunction in 
podocytes might be mediated by activation of the NLRP3 
inflammasome.

Deletion of NLRP3 Improved Ang II-Induced Podocyte 
Injury and Mitochondrial Dysfunction in Mice
We further investigated whether deletion of NLRP3 

could inhibit Ang II-induced podocyte injury and mito-
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Fig. 5. Knockdown of NLRP3 attenuated angiotensin II (Ang II)-
induced mitochondrial dysfunction. Cells were grown on 6-well 
plates until 30% confluence and transfected with siNLRP3 for 24 
h, then treated with Ang II (10–6 mol/L) for another 24 h. a Repre-
sentative images of JC-1 staining. b Quantitation of JC-1 fluores-

cence by flow cytometry. c ATP content was detected as described 
in the Methods section. d qRT-PCR analysis of the mtDNA copy 
number. Data are presented as means ± SE (n = 6). * p < 0.05 vs. 
vehicle group; # p < 0.05 vs. Ang II-treated group.
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chondrial dysfunction in mice. First, we measured the 
blood pressure using the tail-cuff method. As shown in 
Figure 6a, both genotypes displayed a similar hyperten-
sive response after Ang II infusion. At the same time, Ang 
II infusion enhanced the expression of NLRP3 in glo
meruli (Fig. 6b, c) in line with increments in caspase-1 in 
the kidneys (Fig.  6d) and IL-18 in the blood (Fig.  6e). 
Strikingly, NLRP3 deletion blocked the upregulation of 
renal caspase-1 and the increase in blood IL-18 levels 
(Fig. 6d, e), suggesting a blockade of NLRP3 inflamma-
some activation.

Next, we found that the output of urinary albumin was 
significantly blunted in NLRP3–/– mice as compared with 
the WT controls following Ang II infusion for 28 days 
(Fig. 7a). Consistent with the attenuation of albuminuria, 
we observed that the reduction of podocin and nephrin 
was partly reversed in NLRP3–/– mice (Fig. 7c–e), and the 
podocyte foot process fusion determined by electron mi-
croscopy was also mitigated in NLRP3–/– mice following 
4-week Ang II infusion (Fig. 7b).

Finally, we observed the mitochondrial morphology of 
the podocytes in kidneys of mice after 4-week Ang II in-

fusion, as well as the mitochondrial DNA copy number. 
As shown in Figure 8, NLRP3–/– mice exhibited an obvi-
ous improvement of the abnormality of their mitochon-
drial morphology and of the loss in mtDNA copy num-
ber. Taken together, these in vivo data demonstrate that 
deletion of NLRP3 in mice protects the podocytes against 
Ang II-induced injury, possibly to some extent through a 
mitochondrial mechanism.

Discussion

Podocyte injury occurs in all glomerular diseases [21]. 
In the present study, using cells and animals, we investi-
gated the contribution of the NLRP3 inflammasome in 
the pathogenesis of podocyte injury and mitochondrial 
dysfunction resulting from Ang II infusion. The findings 
indicated that NLRP3 inflammasome activation was at-
tributable to the Ang II-induced podocyte apoptosis, loss 
of the slit diaphragm proteins nephrin and podocin, and 
mitochondrial dysfunction, which would lead to protein-
uria.
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Ang II, as the strongest effector molecule in the RAS 
system, was reported to be involved in the pathogenesis 
of various kidney diseases through inducing renal inflam-
mation [22, 23]. Recent evidence demonstrated that the 
NLRP3 inflammasome played a detrimental role in kid-
ney diseases [24–26]. Our previous study also showed 
that the NLRP3 inflammasome was involved in aldoste-
rone-induced podocyte injury and 5/6 nephrectomy- 
related renal tubular damage [12, 13, 27]. In the present 
study, we found that Ang II activated the NLRP3 inflam-
masome in podocytes and that NLRP3 silencing attenu-
ated the Ang II-induced podocyte apoptosis and loss of 
the podocyte-specific proteins nephrin and podocin. In 
vivo, albuminuria was partly mitigated in NLRP3–/– mice, 
which is in agreement with the finding by Wen et al. [28]. 
We further found that the loss of nephrin and podocin 
and the podocyte foot process fusion were ameliorated in 
NLRP3–/– mice. These data highly suggest a pathogenic 
role of the NLRP3 inflammasome in Ang II-mediated 
podocyte injury. However, systemic deletion of NLRP3 

could not fully address the contribution of podocyte 
NLRP3 in mediating the Ang II-induced podocyte injury. 
In the future, studies in animals with podocyte-specific 
deletion of NLRP3 are still needed.

Over the past decade, many studies have shown that 
Ang II can activate NADPH oxidases and increase reac-
tive oxygen species production to further participate in 
different pathophysiological processes including the pro-
motion of mitochondrial dysfunction [29–31]. However, 
the exact mechanism is not yet conclusively elucidated. 
Previous studies from our and other groups demonstrat-
ed that albumin-induced mitochondrial dysfunction was 
mediated by NLRP3 inflammasome activation in tubular 
epithelial cells [14, 32]. However, the relationship be-
tween mitochondrial dysfunction and activation of the 
NLRP3 inflammasome in response to an Ang II challenge 
in podocytes remains unclear. In cells, our data showed 
that mitochondrial function was significantly impaired in 
podocytes by Ang II as demonstrated by reduction of the 
mtDNA copy number, ATP content, and MMP. Knock-
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down of NLRP3 by a siRNA approach in podocytes re-
markably mitigated the mitochondrial abnormalities. In 
animals, as expected, systemic deletion of NLRP3 also sig-
nificantly attenuated mitochondrial dysfunction. These 
results suggest that Ang II-induced NLRP3 inflamma-
some activation could promote mitochondrial dysfunc-
tion in podocytes.

In addition, the blood pressure was similarly increased 
in WT and NLRP3–/– mice after Ang II infusion, with no 
difference between genotypes, which is in agreement with 
the data reported by Wen et al. [28]. This result suggests 
that the attenuation of podocyte injury and mitochon-

drial dysfunction in NLRP3–/– mice is independent of the 
hypertension effect.

In summary, in the present study, we presented new 
evidence showing that activation of the NLRP3 inflam-
masome mediated Ang II-induced podocyte injury, pos-
sibly through inducing mitochondrial dysfunction. Based 
on the importance of NLRP3 inflammasome activation in 
the development and progression of renal diseases, our 
findings emphasize the importance of targeting the 
NLRP3 inflammasome and/or mitochondria to develop 
novel strategies for the prevention and treatment of podo-
cytopathy.
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