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Abstract
Background: Wnt/β-catenin, an evolutionary conserved sig-
naling pathway, plays an essential role in modulating kidney 
injury and repair. Our previous studies demonstrated that 
Wnt/β-catenin signaling could stimulate macrophage M2 
polarization and contribute to kidney fibrosis. However, 
whether canonical Wnt signaling activation leads to macro-
phage proliferation during kidney fibrosis remains to be de-
termined. Methods: In this study, a mouse model with mac-
rophage-specific β-catenin gene deletion was generated 
and a unilateral ureter obstruction (UUO) model was creat-
ed. Results: In a mouse model with UUO nephropathy, dele-
tion of β-catenin in macrophages attenuated macrophage 
proliferation and accumulation in kidney tissue. Wnt3a, a 
well-known canonical Wnt signaling stimulator, could mark-
edly promote macrophage proliferation, whereas blocking 
canonical Wnt signaling with ICG-001 or ablating β-catenin 
could largely inhibit macrophage colony-stimulating factor-
stimulated macrophage proliferation. Wnt3a treatment 
could time-dependently upregulate cyclin D1 protein ex-
pression and blocking β-catenin signaling could downregu-

late it. Conclusion: These results demonstrate that Wnt/ 
β-catenin signaling is essential for promoting macrophage 
proliferation during kidney fibrosis. © 2018 S. Karger AG, Basel

Introduction

Chronic kidney disease (CKD), defined as kidney dam- 
age and glomerular filtration rate < 60 mL/min/1.73 m2 for 
more than 3 months, affects more and more people around 
the world [1]. Regardless of the multitudinous causes for 
CKD, patients suffering from it all come to one common 
pathway, namely renal destruction characterized by chron-
ic inflammation and interstitial fibrosis [2]. Therefore, it is 
of great importance to decipher the cellular and molecular 
mechanisms of renal fibrosis and to identify an efficient 
therapeutic strategy for patients with CKD.

Chronic inflammatory reaction in kidney tissue is one 
of the major pathologic characteristics of CKD. Among 
all the inflammatory cell types accumulated in the fibrot-
ic kidneys, macrophage is the pivotal one that participates 
in renal fibrosis [2, 3]. It is well known that macrophage 
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accumulation and its phenotypic switch are two major 
decisive factors for renal fibrosis [4]. Macrophage prolif-
erative expansion in situ leads to macrophage accumula-
tion during kidney injury. Zhang et al. [5] reported that 
colony-stimulating factor 1 (CSF-1) is important for pro-
liferative expansion of tissue macrophages. Blocking col-
ony-stimulating factor receptor (c-fms) with anti-c-fms 
monoclonal antibody reduces macrophage proliferation 
in mice with unilateral ureter obstruction (UUO) or dia-
betic nephropathy [6, 7]. Besides CSF-1, IL-4 is also able 
to drive the proliferation of tissue macrophages [8–10]. 
As macrophage expansion is crucial for kidney fibrosis, 
the other mechanisms regulating macrophage prolifera-
tion during kidney fibrosis need to be further explored.

Wnt signaling is categorized into the canonical and non-
canonical signaling pathways based on whether β-catenin 
is activated or not. The canonical Wnt signaling cascade 
controls many biological events such as cell differentiation, 
proliferation, and polarization, all of which are involved in 
kidney injury and repair [11, 12]. In adult kidneys, Wnt/ 
β-catenin signaling is relatively silenced. However, upon 
occurrence of renal injury, aberrant activation of Wnt/ 
β-catenin signaling can be observed. It has been reported 
that Wnt ligands secreted into the extracellular environ-
ment bind to the Frizzled/LRP receptors on the cell mem-
brane, thereafter stabilize β-catenin in the cytoplasm, accu-
mulate β-catenin in the cytoplasm, then translocate into the 
nucleus and bind TCF/LEF, which stimulates the transcrip-
tion of many target genes, such as cyclin D1 and c-myc, and 
drive cell proliferation [13, 14]. Our previous study showed 
that during kidney fibrosis, Wnt/β-catenin activation may 
drive macrophage alternative activation and contribute to 
kidney fibrosis [15]. However, whether canonical Wnt sig-
naling activation leads to macrophage proliferation during 
kidney fibrosis remains to be determined.

In this study, we report that Wnt/β-catenin signaling 
activation can promote macrophage proliferation. Block-
ing canonical Wnt signaling downregulates cyclin D1 ex-
pression and attenuates cell proliferation in cultured 
macrophages. In mice with UUO nephropathy, deletion 
of β-catenin in macrophages diminishes macrophage 
proliferation and accumulation, which is accompanied by 
less kidney fibrosis.

Materials and Methods

Cell Culture and Treatment
Raw 264.7 cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) containing 10% (v/v) fetal bovine serum (FBS) 
(Invitrogen, Grand Island, NY, USA) and 1% (v/v) antibiotics  

(100 U/mL penicillin) at 37  ° C in 5% CO2. Bone marrow-derived 
macrophages (BMMs) were isolated from the bone marrow as pre-
viously described [16]. BMMs were cultured in DMEM containing 
10% (v/v) FBS, 10 ng/mL of mouse macrophage colony-stimulat-
ing factor (M-CSF) (cat: 416-ML-050, R&D), and 1% (v/v) antibi-
otics for 9 days. The medium was changed every other day. To 
generate BMMs with β-catenin gene deletion, BMMs isolated from 
Csf1r-Cre+/–, β-cateninfL/fL mice were treated with 1 μM 4-hy-
droxytamoxifen (4-OHT) (H6278, Sigma-Aldrich) at the begin-
ning of the culture. BMMs isolated from Csf1r-Cre–/–, β-cate- 
ninfLl/fLl mice were treated with 4-OHT as control [15].

Mice and Animal Models
Male C57BL/6 mice weighing approximately 18–20 g were ac-

quired from the specific Pathogen-Free Laboratory Animal Center 
of Nanjing Medical University. Homozygous β-catenin floxed 
mice (022775, B6 [Cg]-Ctnnb1tm1Knw/J) and mice expressing 
tamoxifen-inducible MerCreMer fusion protein under the control 
of macrophage-specific mouse Csf1r promoter (019098, FVB-
Tg[Csf1r-cre/Esr1*]) were ordered from Jackson Laboratories 
(Bar Harbor, ME, USA) [15, 17]. FVB-Tg(Csf1r-cre/Esr1*) mice 
were crossed with C57BL/6J mice for eight generations to get  
Csf1r-Cre transgenic mice on a C57BL/6J background. All animals 
were housed in the specific pathogen-free laboratory animal center 
of Nanjing Medical University according to the guidelines of the 
Institutional Animal Care and Use Committee of Nanjing Medical 
University, Nanjing, China. The generation of the mice with ge- 
notyping Csf1r-Cre+/–, β-cateninfL/fL and the same gender lit- 
termates with genotyping Csf1r-Cre–/–, β-cateninfL/fL were per-
formed. Csf1r-Cre+/–, β-cateninfL/fL mice and control littermates 
were intraperitoneally injected with tamoxifen (T5648, Sigma-Al-
drich) at 25 mg/kg for 5 consecutive days, and 2 days after the last 
injection the mice were subjected to UUO operation as previously 
reported [15, 18].

Western Blot Analysis
Raw 264.7 cells and BMMs were lysed in 1× SDS sample buffer. 

The kidneys were lysed with RIPA buffer containing 1% NP-40, 
0.1% SDS, 100 mg/mL of PMSF, 1% protease inhibitor mixture, 
and 1% phosphatase I and II inhibitor mixture on ice. The super-
natants were collected after centrifugation at 13,000 g at 4  ° C for 
30 min. The primary antibodies used were anti-cyclin D1 (cat: RB-
9041-P0; Thermo) and anti-PCNA (cat: sc9857; Santa Cruz Bio-
technology). Quantification was performed by measuring the in-
tensity of the signals with the aid of the National Institutes of 
Health Image software package.

Immunofluorescent Staining
Kidney cryosections at 3 μm thickness were fixed for 15 min 

with 4% paraformaldehyde, followed by permeabilization with 
0.2% Triton X-100 in 1× PBS for 5 min at room temperature. After 
blocking with 2% donkey serum for 60 min, slides were immune-
stained with the antibodies anti-F4/80 (cat: 14–4801; eBioscience, 
San Diego, CA, USA) and anti-Ki67 (cat: ab15580; Abcam, Cam-
bridge, UK). Raw 264.7 cells or BMMs cultured on coverslips were 
washed with cold 1× PBS and fixed with cold methanol/acetone  
(1: 1) for 10 min at –20  ° C. After three extensive washings with 1× 
PBS, cells were treated with 0.1% Triton X-100 for 5 min and 
blocked with 2% normal donkey serum in 1× PBS buffer for 40 min 
at room temperature and incubated with anti-Ki67 (cat: ab15580; 
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Abcam), followed by staining with fluorescein isothiocyanate or 
tetramethylrhodamine-conjugated secondary antibodies. Cells 
were also stained with 4′,6-diamidino-2-phenylindole to visualize 
the nuclei. Slides were viewed with a Nikon Eclipse 80i Epi-fluo-
rescence microscope equipped with a digital camera. The F4/80- 
and Ki67-positive macrophage number was counted from ten ran-
domly selected fields in the cortical area for each sample under a 
400× microscope and an average number of positive cells for each 
section was calculated.

Macrophage Proliferation Assay
For cell counting, Raw 264.7 cells or BMMs were seeded in 24-

well plates at 5 × 104 cells per well and cultured with DMEM con-
taining 10% FBS and M-CSF. The culture medium was changed 
every day. Cells were counted on days 1, 3, 5, and 7 after plating. 
For the 3-(4,5-dimethylthiazol-2-yl)-2–5-diphenyltetrazolium 
bromide (MTT) assay, macrophages were seeded in 96-well plates 
at 3 × 104 cells per well and cultured with complete DMEM con-
taining M-CSF. The culture medium was changed every day. Ten 
microliters of MTT reagent (5 mg/mL) (Sigma Chemical Co., St. 
Louis, MO, USA) per well was added and incubated for 4 h at 
37  ° C. The culture medium was taken out and cells were washed 
with cold 1× PBS three times. One hundred microliters of dimeth-
yl sulfoxide was added to lyse the cells and solubilize colored crys-
tals, and optical density was read at 560 nm wavelength.

Flow Cytometry
Single-cell suspensions were prepared from kidneys as de-

scribed previously [15] and incubated with anti-CD45-FITC 

(103107; Biolegend), anti-CD11b-APC (101220; Biolegend), and 
anti-Ki67-PE (652403; Biolegend). Fixation/permeabilization dil-
uent (00–5223–56; eBioscience) was used for fixation and permea-
bilization according to the manufacturer’s instruction. For cell cy-
cle analysis, the Cell Cycle Assay Kit (A411–01/02; Vazyme) was 
used according to the manufacturer’s instruction. Cells were ac-
quired on a BD Canto II Flow Cytometer with the FlowJo software.

Statistical Analyses
All data examined are presented as mean ± SEM. Statistical 

analysis of the data was performed using the SigmaStat software 
(Jandel Scientific Software, San Rafael, CA, USA). Comparison be-
tween groups was made using one-way ANOVA followed by the 
Student-Newman-Keuls test. For cell counting and MTT assay, 
comparison between groups was made using two-way ANOVA 
followed by the Student-Newman-Keuls test. The Student paired 
or unpaired t test was used to compare two groups. A p value ≤0.05 
was considered statistically significant.

Results

Wnt3a Promotes Macrophage Proliferation
To investigate the role of Wnt/β-catenin in regulating 

macrophage proliferation, we treated Raw 264.7 cells, a 
mouse monocyte/macrophage cell line, with Wnt3a for 7 
days. As shown in Figure 1a, Wnt3a (100 ng/mL) largely 
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Fig. 1. Wnt3a stimulates macrophage proliferation. a, b Cell 
counting (a) and MTT assay (b) in Raw 264.7 cells. * p < 0.05 ver-
sus cells at day 0, n = 5; # p < 0.05 versus cells without Wnt3a treat-
ment at the respective time, n = 5. c, d Cell counting (c) and MTT 
assay (d) in BMMs. * p < 0.05 versus cells at day 0, n = 5; # p < 0.05 
versus cells without Wnt3a treatment at the respective time, n = 5. 
e Representative immunofluorescent staining images (left) and 
quantitative analysis (right) for Ki67 in Raw 264.7 cells. * p < 0.05 
versus cells treated with vehicle alone, n = 4. Cells were stained 

with DAPI to visualize the nuclei. f Representative immunofluo-
rescent images (left) and quantitative analysis (right) for Ki67 in 
BMMs. * p < 0.05 versus cells treated with vehicle alone, n = 4;  
# p < 0.05 versus cells stimulated with M-CSF for 24 h, n = 4. BMMs, 
bone marrow-derived macrophages; DAPI, 4′,6-diamidino-
2-phenylindole; M-CSF, macrophage colony-stimulating factor; 
MTT, 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bro-
mide.
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increased the cell number from day 3 to 7 in Raw 264.7 
cells compared to those treated with vehicle. MTT assay 
revealed similar results (Fig. 1b). In BMMs, Wnt3a (100 
ng/mL) markedly stimulated BMM proliferation com-
pared to those treated with M-CSF alone (Fig. 1c, d). In 
addition, Wnt3a also significantly upregulated Ki67 ex-
pression in both Raw 264.7 cells and BMMs (Fig. 1e, f). 
Together, these results demonstrated that Wnt/β-catenin 
activation is able to stimulate macrophage proliferation.

Blockade of β-Catenin Signaling Reduces Macrophage 
Proliferation
The data above demonstrated that Wnt/β-catenin ac-

tivation can promote macrophage proliferation. To fur-
ther investigate whether β-catenin activation is required 
for macrophage proliferation, we first treated Raw 264.7 
cells and BMMs with ICG-001, a small molecule that spe-
cifically inhibits T-cell factor/β-catenin transcription in a 
cyclic AMP response-element binding protein (CBP)-de-
pendent fashion, to block β-catenin signaling. Raw 264.7 
cells were starved with serum-free medium overnight, 
then cultured with DMEM containing 10% FBS to stim-
ulate cell proliferation. Macrophage proliferation was 

markedly increased from day 3 to 7 after stimulation, 
whereas ICG-001 (10 μg/mL) markedly inhibited it 
(Fig. 2a, b). BMM proliferation was markedly stimulated 
by M-CSF from days 3, 5, and 7 after plating, and ICG-
001 (10 μg/mL) largely decreased M-CSF-stimulated 
macrophage proliferation (Fig. 2c, d). Furthermore, im-
mune staining of Ki67 showed that ICG-001 largely de-
creased FBS and M-CSF-induced Ki67 protein expres-
sion in Raw 264.7 cells and BMMs, respectively (Fig. 2e, 
f).

We also created primary cultured mouse BMMs with 
tamoxifen-inducible β-catenin deletion. BMMs were iso-
lated from Csf1r-Cre+-β-cateninfL/fL and Csf1r-Cre-β-
cateninfL/fL mice, respectively. Beta-catenin gene deletion 
was induced in BMMs from Csf1r-Cre+-β-cateninfL/fL 
mice after 4-OHT treatment as shown in our published 
study [15]. BMM proliferation was stimulated at days 3, 
5, and 7 after M-CSF treatment in β-catenin+/+ BMMs, 
whereas deletion of β-catenin remarkably diminished cell 
proliferation (Fig. 3a, b). Immune staining showed that 
the number of macrophages staining positive for Ki67 
was also much less in β-catenin–/– BMMs compared to 
those in β-catenin+/+ BMMs (Fig.  3c). FACS analysis 
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Fig. 2. Blockade of β-catenin signaling reduces macrophage prolif-
eration. a, b Cell counting (a) and MTT assay (b) in Raw 264.7 
cells. * p < 0.05 versus cells at day 0, n = 5; # p < 0.05 versus cells 
without ICG-001 treatment at the respective time, n = 5. c, d Cell 
counting (c) and MTT assay (d) in BMMs. * p < 0.05 versus cells 
at day 0, n = 5; # p < 0.05 versus cells without ICG-001 treatment at 
the respective time, n = 5. e Representative immunofluorescent 
images (left) and quantitative analysis (right) for Ki67 in Raw 264.7 
cells. * p < 0.05 versus control, n = 4. Cells were stained with DAPI 

to visualize the nuclei. f Representative immunofluorescent im-
ages (left) and quantitative analysis (right) for Ki67 in BMMs.  
* p < 0.05 versus cells treated with vehicle alone, n = 4; # p < 0.05 
versus cells stimulated with M-CSF, n = 4. Cells were stained with 
DAPI to visualize the nuclei. BMMs, bone marrow-derived mac-
rophages; DAPI, 4′, 6-diamidino-2-phenylindole; M-CSF, macro-
phage colony-stimulating factor; MTT, 3-(4,5-dimethylthiazol-
2-yl)-2-5-diphenyltetrazolium bromide.
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showed that the percentage of G0/G1 cells in β-catenin–/– 
BMMs was much higher than that in β-catenin+/+ BMMs, 
indicating that deletion of β-catenin prevents cells from 
entering the cell cycle by stopping them in the G0/G1 
phase (Fig. 3d). Thus, it may be concluded that β-catenin 
signaling activation is both sufficient and required for 
promoting macrophage proliferation.

Beta-Catenin Signaling Regulates the Expression of 
Cyclin D1 in Macrophages
Cyclin D1, one of the critical genes involved in cell 

proliferation, is the target gene of Wnt/β-catenin signal-
ing [14, 19]. In this study, we found that Wnt3a upregu-
lated cyclin D1 protein expression in both Raw 264.7 cells 
and BMMs in a time-dependent manner (Fig. 4a, b). Sim-
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ilarly, Western blotting assay and quantitative analyses 
showed that cyclin D1 protein abundance was induced at 
1, 6, 12, and 24 h in both Raw 264.7 cells (Fig. 4c) and 
BMMs (Fig.  4d) after stimulation with 10% FBS and  
M-CSF, respectively. ICG-001 significantly inhibited cy-
clin D1 expression at 6, 12, and 24 h after stimulation in 
both cell types. In addition, Western blot analyses re-
vealed that cyclin D1 and PCNA protein expression  
was induced at 6 and 12 h after M-CSF treatment in 
β-catenin+/+ BMMs, while β-catenin deletion largely 
downregulated M-CSF-stimulated cyclin D1 and PCNA 
expression (Fig. 4e).

Ablation of β-Catenin in Macrophages Diminishes 
Macrophage Proliferation in UUO Kidneys
Macrophage accumulation within the fibrotic kidneys 

is determined by macrophage infiltration, proliferation, 

and cell death [20]. Our previous study showed that dele-
tion of β-catenin in macrophages attenuated UUO ne-
phropathy in mice [15]. In order to further clarify the role 
of β-catenin in regulating macrophage proliferation dur-
ing kidney fibrosis, we first performed co-immune stain-
ing with Ki67 and F4/80 to identify macrophage prolif-
eration in the kidneys. Few F4/80 and Ki67 costaining 
positive cells were found in sham kidneys. At day 14 after 
UUO, about 2.7% of the F4/80-positive cells expressed 
Ki67 in Mac-β-catenin+/+ kidneys, which was less in the 
knockout kidneys (Fig. 5a, b). Furthermore, we examined 
macrophage proliferation by flow cytometric assay. As 
shown in Figure 5c, CD11b+/Ki67+ cells were much less 
in the knockout kidneys after UUO compared to those 
from control littermates. Together, these data suggest 
that ablation of β-catenin in macrophages attenuates 
macrophage proliferation in UUO kidneys.
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Discussion

We report here that Wnt/β-catenin signaling activa-
tion is essential for promoting macrophage proliferation. 
In UUO kidneys, targeting β-catenin leads to less macro-
phage proliferation and kidney fibrosis. Thus, it may be 
concluded that Wnt/β-catenin-promoted macrophage 
proliferation contributes to macrophage accumulation 
and kidney fibrosis in mice with UUO nephropathy.

Wnt signaling can be divided into canonical (β-catenin-
dependent) and noncanonical (β-catenin-independent) 
pathways [21]. Canonical Wnt signaling is essential for 
embryogenesis and organogenesis. In the fetal kidneys, 
Wnt/β-catenin drives branching nephrogenesis [22]. Al-
though the Wnt pathway is important in embryonic de-
velopment, aberrant activation of the Wnt pathway is as-
sociated with the pathogenesis of many kinds of disease 
[23]. Familial adenomatous polyposis, in which aberrant 
Wnt/β-catenin signaling activation leads to increased cell 
proliferation and adenomatous lesions, is the best-known 
example [24]. In addition, aberrant Wnt/β-catenin sig-
naling activation also participates in the carcinogenesis of 
colorectal and liver cancer [12, 25]. Recently, an increas-

ing number of evidence revealed that sustained Wnt/ 
β-catenin signaling activation is related to fibrotic disease 
in many types of tissue and organ [26–29]. Wnt3a, a ca-
nonical Wnt pathway stimulator, is reported to induce 
lung fibroblast migration and proliferation, thus contrib-
uting to pulmonary fibrosis [26]. In addition to the fi-
brotic disease mentioned above, many experiments using 
gain- and loss-of-function of Wnt signaling clearly dem-
onstrated that hyperactive Wnt/β-catenin signaling is 
pivotal for promoting the progression of CKD [30]. In 
animal models with CKD, most of the Wnt proteins are 
upregulated. Upregulated Wnt proteins may trigger pod- 
ocyte injury or interstitial fibrosis in mice with Adria-
mycin nephropathy or UUO nephropathy [30, 31]. In ad-
dition to animal models, the relationship of Wnt/β-catenin 
signaling activation with CKD has also been reported in 
patients with IgA nephropathy, HIV-induced nephropa-
thy, diabetic kidney disease, and focal segmental glomer-
ulosclerosis [32, 33]. A microarray analysis study revealed 
that the expression profile of a subset of 21 Wnt-related 
genes may differentiate patients with IgA nephropathy 
from healthy controls. It is of note that the upregulation 
of Wnt genes is associated with enhanced peripheral 
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blood mononuclear cell proliferation and activation in 
patients with IgA nephropathy [34].

Macrophages participate in interstitial fibrosis and 
hence contribute to the initiation and progression of 
CKD. Sustained accumulation and activation of macro-
phages in kidney tissue may result in the production of 
multiple profibrotic cytokines and kidney fibrosis [35]. It 
has been reported that blockage of Wnt secretion by a 
small-molecule inhibitor of porcupine C59 or treatment 
with ICG-001 can ameliorate UUO nephropathy in mice 
[36, 37]. Our previous study reported that Wnt/β-catenin 
signaling activation in macrophages promotes macro-
phage accumulation and leads to kidney fibrosis in a 
mouse model with UUO nephropathy. In addition, Wnt/
β-catenin signaling can stimulate macrophage M2 polar-
ization [15]. It is well known that the accumulation of 
macrophages in the diseased kidneys may result from the 
infiltration of circulating monocytes and proliferation of 
macrophages in situ [38, 39]. In this study, we found that 
Wnt3a markedly stimulated cyclin D1 protein expression 
and cell proliferation in cultured macrophages. Cyclin D1 
is one of the target genes of canonical Wnt signaling, 
which drives cell proliferation in many cell types [40, 41]. 
Therefore, it may be concluded that the induction of cy-
clin D1 mediates β-catenin-promoted macrophage pro-
liferation. In mice with macrophage β-catenin gene de-
letion, macrophage accumulation and proliferation in 
UUO kidneys were less compared to those in control lit-
termates, which further demonstrated that β-catenin is 
essential for driving macrophage proliferation during 
kidney fibrosis.

Together, in addition to promoting macrophage M2 
polarization as we previously reported, this study showed 
that Wnt/β-catenin signaling activation can promote 
macrophage proliferation and macrophage accumula-
tion, which may participate in kidney fibrosis in mice 
with UUO nephropathy.
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