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Abstract

Mammalian genomes are folded in a hierarchy of compartments, topologically associating 

domains (TADs), subTADs and looping interactions. Here, we describe 3DNetMod, a graph 

theory-based method for sensitive and accurate detection of chromatin domains across length 

scales in Hi-C data. We identify nested, partially overlapping TADs and subTADs genome wide by 

optimizing network modularity and varying a single resolution parameter. 3DNetMod can be 

applied broadly to understand genome reconfiguration in development and disease.

Principles from the field of mathematics known as graph theory have emerged as powerful 

tools for quantifying connectivity patterns within complex systems1. Networks are graphs 

consisting of nodes connected by edges that can be used to represent the underlying 

structure of biological, social, physical and information systems. Complex networks often 

exhibit hierarchical patterns of connectivity across length scales2. Interacting nodes can form 

small subnetworks arranged in distinct recurrent configurations termed motifs. Subnetworks 

can in turn hierarchically aggregate into higher-order modules (or communities)2. 
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Communities are important functionally because they can promote resilience to individual 

node failure within a network.

A complex system exhibiting hierarchical structure is the higher-order folding of chromatin 

in the 3D nucleus. The approximately two-meter-long genome is arranged in complex 

higher-order configurations to fit inside a mammalian nucleus that is 5–10 µm in 

diameter3,4. Individual chromosomes aggregate into higher-order ‘A’ and ‘B’ 

compartments5, which are further partitioned into Megabase (Mb)-sized TADs and smaller, 

nested subTADs6–10. Distal genomic segments connect to create long-range looping 

interactions within and between TADs and subTADs7. The functional role for TADs and 

subTADs, and the extent to which they change across biological conditions, remains poorly 

understood, in part because of the paucity of methods for sensitive and accurate detection of 

sub-Mb-scale domains. Two recent comparative analyses reported that existing domain-

calling methods accurately identify TADs but show poor ability to capture the full nested 

hierarchy of partially overlapping subTADs11,12. Thus, there is a great need for 

computational tools that accurately and sensitively detect the full nested hierarchy of 

chromatin domains across length scales.

Here, we hypothesize that nested, partially overlapping TADs and subTADs can be identified 

with a community detection method based on the maximization of network modularity13. 

We abstracted Hi-C data as a square, symmetric adjacency matrix, A, of size N × N with N 
adjacent, equally spaced bins representing nodes and interaction frequencies between nodes 

representing edges (Supplementary Fig. 1). To identify communities, we maximized the 

modularity quality index, Q (equation (1)):

Q = 1
m ∑i, j Ai, j − γ

kik j
m δ(gi, g j) (1)

where Ai,j is the edge weight representing interaction frequency between nodes i and j, ki is 

the sum of all edge weights for node i, m is the sum of all nondiagonal edge weights in the 

network A, and γ is the resolution parameter (discussed below). Nodes i and j are assigned 

to communities gi and gj, respectively. The Kronecker delta, δ(gi,gj), is 1 if gi = gj and 0 

otherwise. A modularity value close to 1 indicates strong community structure and a high-

quality division of the network into communities, whereas a Q value close to 0 indicates that 

the strength of within-community connections is no higher than would be expected by 

chance.

To identify the optimal division of the network into communities, we employed a Louvain-

like, locally greedy algorithm to maximize network modularity14 (3DNetMod-modularity 

maximization (MM); see Online Methods). The 3DNetMod-MM algorithm was chosen 

because it does not require a priori knowledge of the number of communities that will be 

detected15, and it offers the critical capability of identifying nested communities through the 

variation of a resolution parameter. The output from a single run of 3DNetMod-MM is an 

‘optimal’ partition of nodes into communities.
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We first assessed the performance of 3DNetMod-MM in 40-kb-binned Hi-C data from 

human embryonic cortical plate tissue16 (Fig. 1a and Supplementary Table 1). To address 

boundary variation due to 3DNetMod-MM convergence on local maxima, we sampled the 

landscape of community partition solutions by applying 3DNetMod-MM 20 times (hereafter 

referred to as a ‘partition block’ with dimensions 20 × N) (Fig. 1b). We then identified the 

‘consensus partition’ that is most similar to the other partitions (Fig. 1c; see Online 

Methods). We found that up to 1,000 partitions led to nearly the same consensus, which 

suggested that 20 partitions yields an acceptable balance of accuracy and speed 

(Supplementary Fig. 2). Thus, we address fluctuations in partitions due to algorithmic 

convergence on local versus global maxima by computing a consensus community partition. 

We hereafter refer to 3DNetMod-MM coupled with consensus community partitioning as 

‘3DNetMod-MMCP’.

We next hypothesized that communities of different sizes can be identified with 3DNetMod-

MMCP through modification of the resolution parameter. When γ > 1, the algorithm is 

biased toward detection of smaller communities, whereas the bias is toward detection of 

larger communities when γ < 1. By varying only a single resolution parameter, we detected 

a wide size range of hierarchically nested chromatin domains with 3DNetMod-MMCP (Fig. 

1).

We next sought to comprehensively identify high-confidence domains genome wide. 

3DNetMod-MM is estimated to run in time O(n)14, and the addition of 3DNetMod-MMCP 

and a sweep of γ values would make the method computationally intractable for identifying 

genome-wide domains. We devised a strategy in which we split the genome into overlapping 

regions and called nested domains on all regions in parallel (Supplementary Fig. 3a). Region 

size is provided as a user parameter and should be tuned to the resolution of the Hi-C library 

and the biological question of interest (Supplementary Fig. 4a–c). Thus, each genomic 

region can be run in parallel, significantly cutting down on the runtime and making it 

feasible to explore the range of γ values required to detect TADs and subTADs genome 

wide (Supplementary Table 2).

We devised a method, ‘gamma plateau sweep’ (3DNetMod-GPS), to select γ values that 

lead to high-confidence domains. To find the informative γ range, we generated random 

graphs with preserved weight, degree and strength distributions17 (Supplementary Figs. 3b 

and 5a,b). We noticed that modularity of the real network diverges from the random network 

at low γ and converges again at high γ (Supplementary Figs. 3c and 5c). We computed the 

3DNetMod-GPS endpoint as the maximum γ across five representative regions where 

modularity converges between real and random networks. We also uncovered plateaus in 

which adjacent γ values gave rise to the same consensus partition and average number of 

communities (Supplementary Figs. 3d and 5d). Additionally, we noticed that some γ values 

did not belong to a plateau and gave rise to low-confidence partitions (Supplementary Fig. 

6a–c). We observed that γ values resulting in a plateau size of 3 lead to robust domain calls 

in high-read-depth, 40-kb-binned Hi-C data (Supplementary Fig. 5d–f). Overall, 

3DNetMod-MMCP and 3DNetMod-GPS coupled with our region-splitting strategy 

(Supplementary Fig. 3e–g) result in a large, diverse set of nested domains across length 

scales genome wide.
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TADs and subTADs are known to interact in higher-order structures termed compartments5. 

Compartments appear in Hi-C maps as long-range, plaid patterns of alternating strong and 

weak interacting segments between groups of domains. By contrast, TADs and subTADs are 

thought to be structurally and functionally distinct from compartments, and defined as 

contiguous genomic intervals in which all pairs of loci exhibit elevated contact frequency7. 

To dissect higher-order compartments from domains, we devised a new ‘hierarchical spatial 

variance minimization’ (3DNetMod-HSVM) method (Supplementary Fig. 3h–l). We noticed 

that domains with continuously high interaction signal for the majority of bin pairs exhibit 

highly consistent partition blocks from 3DNetMod-MMCP (Supplementary Fig. 7a). By 

contrast, communities exhibiting a nonuniform, alternating interaction pattern characteristic 

of compartments tended to exhibit greater variability in boundary assignment across the 20 

partitions (Supplementary Figs. 7b and 8a–e).

We posited that community assignment degeneracies in the partition blocks could represent 

(i) low-confidence boundaries indicative of ‘soft’ community structure18 and/or (ii) longer 

range compartments with nonuniform, alternating high/low signal. We computed a spatial 

variance for each domain boundary (see Online Methods). Spatial variance distributions 

were dependent on the length scale of the domain (Supplementary Fig. 8e). By instituting 

length-scale-specific spatial variance thresholds, we removed many communities exhibiting 

alternating interaction patterns indicative of compartments (Supplementary Fig. 8f–i). High-

confidence domain boundaries passing the spatial variance thresholds exhibited enrichment 

for occupancy of the architectural protein CTCF, whereas communities with high spatial 

variance did not show enrichment (Supplementary Table 3 and Supplementary Fig. 9). 

Spatial variance distributions are widely variable among data sets (Supplementary Table 1); 

thus, we recommend tuning thresholds on a Hi-C-library-specific basis (Supplementary Figs. 

10–12). These results indicate that 3DNetMod-HSVM has utility in dissecting high-

confidence domains with corroborative enrichment of known epigenetic marks from low-

confidence communities and higher-order compartments.

To compare the performance of 3DNetMod to other leading domain-calling methods, we 

generated TAD and subTAD simulations. We first simulated a network of nonoverlapping, 

nonhierarchical domains. We observed that 3DNetMod, TADtree19 and the Directionality 

Index-Hidden Markov Model (DI-HMM) method8 accurately identify nonoverlapping 

domains (Supplementary Fig. 13a,b). Next, to simulate a network with partially overlapping 

domains resembling subTADs, we created a construct of nested subtriangles derived from a 

Sierpinski triangle (Fig. 2a and Supplementary Fig. 13c,d). 3DNetMod outperformed DI-

HMM and TADtree in capturing simulated domains with nested, partially overlapping 

structure, even when we added a full sweep of DI windows to the DI-HMM method (Fig. 

2b). Finally, we compared the performance of 3DNetMod to Arrowhead7, TADtree and the 

full DI-HMM parameter sweep on Hi-C data from human cortical plate tissue (Fig. 2c–e). 

3DNetMod outperformed current leading genome-wide domain-calling methods for 

sensitive and accurate detection of nested, partially-overlapping subTADs within TADs.

3DNetMod’s ability to sensitively and accurately quantify chromatin domains may shed new 

light into how genome structure governs function across development and during the onset 
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and progression of disease. Code, sample input data and usage instructions are freely 

available at https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17.

ONLINE METHODS

Hi-C mapping, normalization and binning

Mapped, normalized and 40-kb-binned Hi-C matrices from human fetal cortical plate and 

germinal zone tissue generated in Won et al.16 were downloaded because raw reads were not 

readily available from GEO (Supplementary Table 1). Because the three central diagonals of 

the normalized data were all zero, we filled in these pixels with values drawn from the first 

off-diagonal of bins containing nonzero values. Mapped and 20-kb-binned Hi-C data from 

wild-type and Setdb1-deficient mouse neural cells generated in Jiang et al.20 were 

downloaded from GEO (Supplementary Table 1). Raw sequencing reads from two mouse 

embryonic stem (ES) cell replicates and two mouse cortical tissue replicates from Dixon et 
al.8 were downloaded from GEO (Supplementary Table 1). Dixon et al.8 paired-end reads 

were aligned independently to the mm9 mouse genome using bowtie2 (global parameters:–

very-sensitive −L 30 −score-min L, −0.6, −0.2 −end-to-end–reorder; local parameters:–very-

sensitive −L 20 −score-min L, −0.6, −0.2 −end-to-end–reorder) through HiC-Pro21. 

Unmapped reads, nonuniquely mapped reads and PCR duplicates were filtered, and uniquely 

aligned reads were paired. Hi-C maps were generated at 40 kb matrix resolution and 

balanced using the iterative correction and eigenvector decomposition (ICED) technique22. 

The resulting genome-wide Hi-C data is represented in a matrix of the format Aij, where the 

ijth element represents the interaction frequency between bins i and j. For all data, counts ≥1 

were log transformed.

Hi-C data network construction

Hi-C data at 40 kb matrix resolution from mouse ES cells and cortical tissue8 and human 

cortical plate germinal zone tissue16 were parsed into 6-Mb regions with 4 Mb of overlap 

between adjacent regions. Hi-C data at 20 kb matrix resolution from Jiang et al.20 were 

parsed into 3-Mb regions with 2 Mb of overlap. Regions overlapping centromeres or 

telomeres were discarded. Additionally, low-information-content regions were discarded if 

they exhibited either (i) severe count sparsity, as indicated by a high percentage of pixels 

with zero values along the diagonal of the counts matrix (>5%) or (ii) >3 consecutive bins 

along the diagonal with zero counts.

Community detection with network modularity maximization and consensus partitioning

To partition genome-folding networks into communities, we employed a Louvain-like, 

locally greedy algorithm14 to maximize modularity. We first computed the modularity 

matrix, M, according to equation (2):

Mxy = (Axy − γ
kxky
m )/m (2)
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where M is a C × C matrix, C is the total number of communities, Mx,y is the normalized 

interaction frequency between x and y communities, kx is the sum of all edge weights for 

community x, γ is the resolution parameter (discussed below), and m is the total sum of all 

edge weights in network A (i.e., the sum of all interaction counts in the matrix excluding the 

i = j diagonal). For the first iteration of the algorithm (discussed in detail below), each 

individual node is an independent community; thus, indices for communities x and y 
correspond to the indices for nodes i and j. For any given γ, Axy/m is the normalized edge 

strength connecting communities x and y, and kxky /m2 is the expected normalized strength 

of edges at communities x and y if edges are placed at random. From the modularity matrix, 

M, the modularity, Q, is computed according to equation (3):

Q = ∑x, y [Mx, y]δx, y (3)

where Mx,y is the interaction frequency between x and y communities normalized to the 

expected interaction probability (equation (2)). To ensure that only edges within 

communities are added to the summation, δx,y is 1 if x and y are assigned to the same 

community (i.e., x = y) and 0 otherwise (i.e., x ≠ y).

The assumption of the Louvain-like algorithm is that the optimal community structure can 

be resolved by maximizing Q. The algorithm relies on an iterative, dynamic programming 

approach to rapidly converge on a local maximum in Q without comprehensively examining 

the entire search space. For each iteration t, individual nodes are given the opportunity to 

move into a new community placement that yields a locally maximal gain in Q, ΔQ, for the 

M network according to equation (4):

ΔQ = Qt − Qt − 1 = ∑x, y [Mx, y]δx, y t = t
− ∑x, y [Mx, y]δx, y t = t − 1

(4)

In the first iteration, t = 0, matrix M has the same dimensions as matrix A such that every 

node is assigned to its own community (i.e., C = N and x = i). Each node is given the chance 

to merge; and at the end of the iteration, if ΔQ ≤ 10−10, the algorithm terminates based on 

the assumption that no further moves will lead to a notable increase in Q. If ΔQ > 10−10, 

then the algorithm proceeds to the next iteration and resizes the modularity matrix, M, to C 
× C dimensions (where C is the number of communities computed in the previous t = t − 1 

iteration, and (Mx,y)t=t is the sum of all previous (Mx,y)t=t−1 constituent edges that are 

merged into (Mx,y)t=t). The intuition for the iterations is that with increasing t the average 

size of communities increases with the gain in modularity. The algorithm terminates when 

no further single community merge leads to an improvement in modularity. Because 

modularity-maximization algorithms can converge on local maxima23, the Louvain-like 

algorithm was applied 20 times to sample the landscape of local maxima for each resolution 

parameter value (Supplementary Fig. 3e). To ensure random sampling of the landscape of 

possible maximum Q values, a randomized node selection with a unique seed value was 

used to run each of the 20 partitions.

Norton et al. Page 6

Nat Methods. Author manuscript; available in PMC 2018 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To determine a consensus partition among the set of 20 partitions (Supplementary Fig. 3f), 

we identified the partition most similar to the 19 other partitions through use of a similarity 

metric: the adjusted RAND (aRAND) index24,25 from the sklearn toolbox 

sklearn.metrics.adjusted_rand_score. For perfectly matched partitions, aRAND is equal to 

unity. For partitions that are no more similar than would be expected by random chance, 

aRAND is close to 0 or slightly negative. The aRand was computed between all pairs of 

partitions within the set, and the partition with the highest average aRand, representing the 

partition that is most similar to all other partitions, was selected as the consensus 

partition26,27.

3DNetMod splitting and stitching approach to improve genome-wide Hi-C runtimes

A critical challenge in the application of 3DNetMod-MMCP to genome-wide Hi-C data is 

the runtimes. Although the Louvain-like locally greedy algorithm for modularity 

maximization scales linearly with network size14, computing the consensus partition with 

the aRAND index is a pairwise combinatorial algorithm that is nonpolynomial in scaling. 

Therefore, using chromosome-wide networks would give computationally intractable 

runtimes on Hi-C data binned at 40 kb matrix resolution in a genome-wide network of more 

than 75,000 nodes. High-resolution Hi-C data binned at 1–20 kb resolution would be 

computationally infeasible on a chromosome-wide network. Moreover, to find the optimal γ 
range (see below), 3DNetMod requires the random rewiring of genome-folding networks. 

The computational time to randomly rewire a network scales nonlinearly in time with 

network size, which also makes chromosome-wide 3DNetMod computationally intractable. 

We solved the time scaling issue by splitting the genome into defined 3-or-6 Mb regions and 

performing all domain-calling computations on each region in parallel.

Determining structural resolution parameter values with a γ plateau sweep

We developed 3DNetMod-GPS to determine the γ values that provide high-confidence 

domain calls across a range of length scales. To determine the maximum γ value for a given 

chromosome of a given Hi-C sample of interest, we first selected a representative subset of 

five evenly spaced regions of sufficient counts across a given chromosome. We constructed a 

randomly rewired network for each representative region by reshuffling the edge weights in 

a manner that preserves the symmetric nature of the adjacency matrix as well as preserving 

node degree while approximately preserving node strength17,28 (Supplementary Fig. 3b). To 

create randomly rewired networks, we implemented a python version of 

null_model_und_sign.m from the Brain Connectivity Toolbox (https://sites.google.com/site/

bctnet/). Briefly, the expected weight, Ei,j, for all edges is computed as ki * kj, where ki is the 

degree of node i, and kj is the degree of node j. Observed (Ai,j) and expected (Ei,j) edge 

weights are then rank ordered in two independent lists. We then proceed with the following 

randomization steps: (i) a specific edge i,j (where i ≠ j) is randomly selected, (ii) the rank of 

that edge in the expected list is noted, (iii) the observed edge weight at the noted expected 

rank is then assigned to edge Ai,j, and (iv) the expected and observed values are then 

removed from their respective lists. New sets of remaining expected values and remaining 

observed values are computed and then ranked to reflect edge removal, and (v) steps i–iv are 

repeated until all observed edge values have been assigned. For each selected representative 

region and its accompanying randomly rewired network, modularity, Q, was computed 
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beginning at γ = 0 and increasing in increments of 0.1 until the curves of Q versus γ for the 

real and randomly rewired networks converged (Supplementary Fig. 3a). The maximum γ 
value was selected as the largest γ value from the five regions at the convergence point 

between real and random networks. Max γ values were determined for all Hi-C data sets and 

all chromosomes.

To determine the subset of γ values that lead to high-confidence domain calls in a region-

specific manner, we developed a gamma plateau selection method. First, the number of 

communities detected with a single application of the Louvain-like locally greedy algorithm 

for each γ value between 0 and the computed maximum value in increments of 0.01 was 

determined (Supplementary Fig. 3d). Next, ≥ n consecutive γ values with the same number 

of communities detected were grouped into ‘plateaus’, where n is a user-defined parameter. 

Notably, n = 3 was used for Won et al.16 Hi-C (Supplementary Fig. 6), n = 3 was used for 

Jiang et al.20 Hi-C, and n = 8 was used for Dixon et al.8 with lower sequencing depth. The 

median γ value in each plateau was then used for all subsequent domain-calling 

computations. Finally, 3DNetMod-MMCP (Supplementary Fig. 3e,f) was then applied for 

each selected γ value for each region to detect the nested hierarchy of domains 

(Supplementary Fig. 3g).

Processing filters for initial domain call set from 3DNetMod-GPS and 3DNetMod-MMCP

The initial full set of domains detected through 3DNetMod-GPS and 3DNetMod-MMCP 

was then processed to remove small communities and edge cases. Domains smaller than a 

user-defined size based on the resolution limit of the HiC data were removed. For all data 

sets, domains smaller than five genomic bins were removed. Thus, for 40-kb-binned Dixon 

et al.8 and Won et al.16 data, the minimum domain size was 200 kb. For 20-kb-binned Jiang 

et al.20 data, minimum domain size was 100 kb. Second, domains with at least one boundary 

within four bins of the edge of the region were removed. Third, redundant domains with 

exact match start and stop coordinates that were identified at multiple γ values or in multiple 

adjacent overlapping regions were merged into one domain. Finally, we observed that lower 

sequencing depth Hi-C data from Dixon et al.8 was prone to egregiously wrong domain calls 

that were driven by the high spatial noise and high number of outlier pixels. Thus, we 

developed an optional ‘trash’ community filter that identifies and discards domain calls with 

very sparse counts (less than 80% of counts along the domain edge are greater than the 

lowest 1% of total counts for the region). This filter was only applied to the low-sequencing-

depth Dixon et al.8 data.

Hierarchical spatial variance minimization to refine domain calls

To identify high-confidence domains across length scales, we developed and applied a new 

hierarchical spatial variance minimization method (3DNetMod-HSVM). We first stratified 

communities by size: (i) minimum domain size to 400 kb (Level 1), (ii) 401 to 800 kb (Level 

2), (iii) 801 to 1,600 kb (Level 3), (iv) 1,601 kb to 3 Mb (Level 4) and (v) greater than 3 Mb 

(Level 5). We then quantified the variability of a community boundary call across the 20 

partitions by computing a boundary spatial variance. Specifically, we computed the spatial 

variance per boundary across the 20 partitions according to equation (5):
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θ2 =
∑i

n (xi − x)2

n − 1 (5)

where xi is the coordinate of the boundary in partition i (in units of nodes), x̅ is the 

coordinate of the consensus boundary, and n is the number of partitions in the set. 

Boundaries with perfect agreement across the set of 20 partitions will have a variance of 

zero, whereas boundaries with large fluctuations in position across the set of partitions will 

have a higher variance. Boundary spatial variance values were then pooled for all 

communities of a given size stratum across a given chromosome.

A size-stratum-specific variance threshold can be selected to minimize false positive domain 

calls and inadvertent detection of compartments as domains (Supplementary Fig. 3h–l). For 

Won et al.16 human cortical plate and human germinal zone tissue Hi-C, we selected 

thresholds of L1: 70% area under the curve (AUC), L2: 100% AUC, L3: 100% AUC, L4: 

60% AUC, L5: 0 variance (Supplementary Fig. 10). For Dixon et al.8 mouse cortical tissue, 

we selected thresholds of L1: 0 variance, L2: 70% AUC, L3: 60% AUC, L4: 100% AUC, 

L5: 0 variance (Supplementary Fig. 11). For Jiang et al.20 wild-type mouse neural cells, we 

selected thresholds of L1: 0 variance, L2: 35% AUC, L3: 30% AUC, L4: 100% AUC, L5: 0 

variance (Supplementary Fig. 12). Communities with a boundary that did not pass their size-

stratum-specific variance threshold were considered low confidence and were removed from 

the list of domain calls. The resulting communities represent the high-confidence list of 

domains identified for a given cell type and replicate (Supplementary Fig. 3l).

Postprocessing chaos filter to remove domains called in regions with minimal 
substructure

To allow users to remove domains called in regions where there is minimal structure, we 

developed and implemented an optional ‘chaos filter’. This filter is based on the observation 

that segments of the genome with nested substructure have greater maximum counts and 

variance in the band 2–10 bins from the diagonal compared to regions with no nested 

substructure (or regions of ‘chaos’). To identify regions with minimal structure, each 

chromosome (excluding regions that were previously discarded for having low counts or 

being at centromeres or telomeres) is evaluated in a sliding window of 20 bins with a one-

bin increment. For each 20-bin window, Wi, the maximum count and variance of each n off-

diagonal, where n ranges from 2 to 10, is computed. These metrics are then compared to the 

corresponding off-diagonal chromosome-wide average of maximum and variance across all 

W. If none of the metrics for window Wi exceed a user-defined percentage of the 

corresponding chromosome-wide average, Wi is considered to have no nested substructure, 

and domains identified within Wi are discarded after variance thresholding. For Won et al.16 

and Jiang et al.20 Hi-C data, we used a chaos filter percentage of 85%. For Dixon et al.8 Hi-

C data, we used a more stringent chaos filter percentage of 92%. Domain calls post-chaos 

filter for Won et al.16 and Jiang et al.20 were used for comparison of methods in Figure 2 and 

Supplementary Figures 14 and 15.
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Assembly of final domain calls

To assemble the list of final domain calls, highly similar domains identified within the same 

sample were merged together. Two domains were considered ‘highly similar’ if the distance 

between their start coordinates was less than or equal to a user-defined allowance (typically 

equivalent to one genomic bin), and the distance between their stop coordinates also fell 

within the user-defined allowance. The new merged domain has boundary coordinates that 

encompass the constituent domains (i.e., the upstream boundary extends from the first 

upstream boundary coordinate to the last boundary coordinate of the constituent domains). 

For data sets without biological replicates for a given cellular condition (Won et al.16), the 

merged domain calls (post-chaos filter if chaos filter is used) represent the final 3DNetMod 

domain calls. For data sets with two biological replicates of a given cellular condition 

(Dixon et al.8, Jiang et al.20), an additional set of consistent domains was made containing 

calls that were identified in both biological replicates within the user-defined tolerance 

window (i.e., the distance between the start coordinate of a given domain in replicate one 

and replicate two must be less than or equal to the user-defined allowance, and the distance 

between their stop coordinates must also fall within the allowance).

Final 3DNetMod domain calls for human cortical plate Hi-C data16 as well as mouse neural 

cell Hi-C data20 can be found in the bitbucket repository. Genomic regions that were 

removed from consideration because of count sparsity or gaps in counts can also be found 

within the bitbucket repository.

3DNetMod runtimes

Using a local machine (2.5 GHz Intel Core i7) across four processors, the runtime for 

chromosome 7 of 40 kb binned data from Won et al.16 was 52 min (3,096 s). Genome-wide 

runtime was approximately 22 h (80,640 s) for a quadcore. With access to a high-

performance computing cluster, all chromosomes and regions can be run in parallel, and 

genome-wide domain calls can be identified in ~1 h for 40-kb-binned data.

We found that average runtimes were consistent for regions with the same number of nodes 

but different matrix resolutions (data not shown) when using the same plateau size. For 

small region sizes (i.e., split regions up to 300 nodes instead of chromosome-wide 

networks), we observed that the runtime per region scales linearly with region size. For 

region sizes larger than 300 nodes, 3DNetMod has nonlinear scaling that makes the method 

computationally intractable. The critical aspects of 3DNetMod contributing to the nonlinear 

scaling are: (i) region size (i.e., number of nodes) during 3DNetMod-MMCP, (ii) region size 

during the random wiring step of 3DNetMod-GPS, and (iii) plateau size during 3DNetMod-

GPS (smaller plateaus take significantly longer time to process because of more γ values). 

Thus, we recommend that users split the genome into regions of ~75–300 nodes.

Comparison of domain calls in 3-Mb, 6-Mb and 12-Mb regions

To assess the effect of region size on the quality of domains identified (Supplementary Fig. 

4), Hi-C data from human cortical plate tissue16 were split into 3-Mb regions with 2 Mb 

overlap, 6-Mb regions with 4 Mb overlap and 12-Mb regions with 8 Mb overlap. 

3DNetMod-GPS and 3DNetMod-MMCP were performed with a plateau size of 3 and all 
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other default parameters. 3DNetMod-HSVM was performed with L1: 70% area under the 

curve (AUC), L2: 100% AUC, L3: 100% AUC, L4: 60% AUC, L5: 0 variance. Chaos 

filtering was not performed.

Benchmarking 3DNetMod against leading domain-calling methods in Hi-C

To qualitatively assess the performance of 3DNetMod compared with that of three leading 

domain-calling methods, we identified domains in one or more Hi-C data sets using DI-

HMM8, Arrowhead7 and TADtree19. Across the methods, domains identified in regions with 

low counts or regions overlapping centromeres and telomeres (i.e., regions excluded from 

3DNetMod domain calling) were excluded from further analysis.

To identify domains using the Directionality Index and Hidden Markov Model (DI-HMM) 

method detailed in Dixon et al.8, we created a python implementation of the method. Briefly, 

the DI test statistic used to measure upstream and downstream portions of a topological 

domain was computed according to equation (6):

DI = B − A
|B − A| ∗ (A − E)2

E + (B − E)2

E (6)

where B is the total summation of counts within a 1D horizontal array of length L (a user-

adjustable number of genomic bins) upstream of the diagonal, A is the total summation of 

counts within a 1D horizontal array of length L downstream of the diagonal, and E is the 

mean of A and B. For 40 kb Hi-C, the standard DI A/B length L is 50 bins (2 Mb). DI 

computation was then followed by a mixed Hidden Markov Model (mHMM) using Gaussian 

mixtures to predict ‘upstream bias’, ‘downstream bias’ and ‘no bias’ states using the 

procedure of Dixon et al.8. We used the Baum–Welch expectation-maximization algorithm 

and the Forward–Backward algorithm to estimate posterior marginals and compute the 

maximum likelihood estimate. The mixture with best goodness of fit was chosen by AIC 

criterion (equation (7)):

AIC = 2k − 2ln(L) (7)

where k is the number of parameters in the model, and L is the maximum likelihood 

estimate. mHMM was then followed by a postprocessing step where only regions with 

median posterior probabilities ≥99% or a region comprised of at least 2 bins were selected. 

Domains were initiated at the beginning of a downstream-biased mHMM state and 

continued throughout consecutive downstream states. Domains ended when the last of the 

upstream-biased states was reached.

To identify a nested hierarchy of domains in human cortical plate cells16 using the DI-HMM 

method (Fig. 2e), we used a range of Directionality Index lengths8: 7 bins, 8 bins, 20 bins, 

35 bins and 50 bins. We determined 7 bins to be the lower limit on account of the narrow 

distribution of DI values relative to the number of bins genome wide, resulting in rank 

deficiency during matrix inversion within HMM.
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To call domains using the TADtree method19, we downloaded the TADtree python tool from 

http://compbio.cs.brown.edu/projects/tadtree. TADtree recursively maximizes a boundary 

index that looks for shifts in interaction frequency at TAD boundaries to form an optimal set 

of nested TAD trees19. We kept the default or recommended parameters to identify domains 

in Won et al.16 cortical plate chromosome 7 (Fig. 2e and Supplementary Fig. 14c). For 40 

kb resolution data, these parameters are: s = 50, m = 10, P = 3, q = 12, gamma = 500 and n = 

40019. The TADtree authors recommend 2 Mb as the maximal detected TAD size, which 

translates to s = 50 for 40-kb-binned data. The reported ~O(s5) scaling of the TADtree 

method19 leads to computationally intractable run times for Hi-C data binned lower than 40 

kb matrix resolution. Because Jiang et al.20 wild-type neuron Hi-C is binned at 20 kb 

resolution, we could only run the method on a small individual chromosome (chr 18) with s 
= 50 (1 MB maximal detected TAD size) and default n, m, p, q and gamma values 

(Supplementary Fig. 15b). To detect domains with standard s = 100 (2 Mb maximal detected 

TAD size), we could only run half of chromosome 18 with n scaled to 200 and default m, p, 

q and gamma values (Supplementary Fig. 15c). Per the recommendation of TADtree authors, 

a final set of domain calls was chosen such that at most 2% of all outputted TADs are 

duplicates.

To call domains using the Arrowhead method, Juicer_tools_0.7.0 was installed from https://

github.com/theaidenlab/juicer/wiki/Download. Arrowhead calculates the likelihood that a 

given pixel corresponds to the corner of a domain and is capable of finding a nested 

hierarchy of domains7. For Won et al.16 data, the −n flag was used to indicate that data were 

already matrix balanced, whereas for Jiang et al.20 data, the −n flag was omitted, and default 

matrix normalization was performed. All other default parameters were used to identify 

domains in Won et al.16 (Fig. 2e and Supplementary Fig. 14a) and Jiang et al.20 Hi-C data 

(Supplementary Fig. 15a).

To more appropriately compare domains identified across the methods, domains identified in 

regions with low counts or regions overlapping centromeres and telomeres (i.e. regions 

already excluded from 3DNetMod analysis) were excluded from further analysis.

We compared the run times of 3DNetMod to TADtree on chromosome 18 of Jiang et al.20 

wild-type neurons and chromosome 7 of Won et al.16 cortical plate. We used these single-

chromosome runtimes in combination with the equations provided in Weinreb et al.19 to 

estimate a genome-wide runtime for TADtree (Supplementary Table 2) and compared this 

runtime to actual runtimes of 3DNetMod. We estimate that a genome-wide runtime of 

TADtree on 40-kb-binned data would take ~44.5 h of computation time, whereas a 

3DNetMod takes ~22 h of computation time. Furthermore, we estimate that the genome-

wide computation time of TADtree on 20-kb-binned data using all processors on a quad-core 

computer would take >63 d, whereas 3DNetMod takes ~2 d of computation time.

Benchmarking 3DNetMod against leading domain-calling methods in simulations

To quantitatively compare the performance of DI-HMM, 3DNetMod and TADtree in 

identifying domain structures, we constructed two different network simulations with known 

community structure: (i) binarized (Supplementary Fig. 13a) and (ii) nested overlapping 

(Fig. 2a and Supplementary Fig. 13c,d). A 400 × 400 bin binary network was constructed 
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with three domain sizes of 100, 50 and 10 bins (14 in total). Each pixel within a domain was 

assigned a value of 1,000, while pixels not belonging to a domain were each assigned a 

value of zero. Additionally, we derived a nested overlapping 480 × 480 bin simulation from 

a well-ordered Sierpinski fractal pattern. In the nested construct, the simulated counts within 

the original layered triangles were randomly scrambled within the same layer to form square 

domains with the corners preserved (unscrambled). We constructed five nested layers of 

domains: the first inner layer consisted of 24 total 20-bin-sized domains. The second layer 

consisted of 22 total overlapping domains of size 40 bins offset midway at 20 bins. The third 

layer consisted of six 80-bin-sized domains, and the fourth and fifth layers contained three 

160-bin domains and one 320-bin domain, respectively. The intensity of each layer was set 

to scale with the distance dependence of chromosome conformation capture data. The 

intensity of the domain corners was raised beyond the distance expectation to simulate loops 

anchoring chromatin-folding domains.

We applied DI-HMM, 3DNetMod and TADtree to find domains in our simulated Hi-C 

networks (Fig. 2 and Supplementary Fig. 13). DI A/B lengths L of 20, 30, 40, 60, 80, 120, 

160, 240, 320 and 360 bins were chosen to capture as much nested structure as possible in 

the nested simulation, while L of 100 and 50 bins were chosen for the binary simulation. In 

3DNetMod, we used a convergence threshold of 0.0035 for max γ value determination, 20 

partitions, a plateau size of 1 and a minimal size threshold of two nodes. No variance 

thresholding at any length scale or filtering was applied.

To run TADtree on the nested overlapping simulations, an s value of 200 bins was used on 

account of limitations of O(s5) scaling (TADtree with s = 200 required 433,862 s to detect 

domains in the simulation). Thus, only one domain at the largest scale (320 bins) of the 56 

known simulated domains could not be detected and was omitted from consideration. For 

the other TADtree parameters, m = 5, n = 56, P = 3, gamma = 500 and q = 12 were selected. 

For binary networks, an s value of 100 bins was used and other parameter choices included: 

m = 2, n = 14, P = 3, gamma = 500 and q = 12. We were unable to detect domains in our 

simulations using the Arrowhead method, as our simulation data structure was not readily 

transformed into the format required for the method’s software implementation.

A receiver operating characteristic (ROC) curve was constructed for DI sweep, 3DNetMod 

and TADtree (Fig. 2b and Supplementary Fig. 13b) by comparing a combined test array of 

all nested layers against a combined binary true array of all layers with one at a true domain 

boundary and zero elsewhere. The simulations shown in Supplementary Figure 13a were 

used to construct the ROC shown in Supplementary Figure 13b. The simulations shown in 

Supplementary Figure 13d were used to construct the ROC shown in Figure 2b. To score the 

confidence in the domain calls for the test array for DI sweep, boundaries of domains were 

assigned the domain average probability of each most likely hidden state. For 3DNetMod, 

boundaries of domains were assigned the boundary spatial variance. For TADtree, no metric 

is provided for the confidence in domain calls; thus, the boundaries of domains were 

assigned a confidence of 1. If called boundaries were within 3 bins of the actual boundary, 

and the domain sizes did not differ by more than 4 bins, the call was considered correct, and 

the boundary position in the test array was assigned to the same boundary position in the 

true array. Otherwise, the test boundary was tallied as a false positive.
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Pileups of CTCF at domain boundaries

To assess the enrichment of chromatin marks at domain boundaries identified in wild-type 

mouse neurons at different length scales (Supplementary Fig. 9), we computed the average 

number of wild-type CTCF ChIP-seq peaks per 40-kb genomic interval at increasing 

distances from boundary coordinates.

Spring force diagram visualization

We visualized networks as spring-force diagrams using the MATLAB BGL toolbox 

(Fruchterman and Reingold, Code from MatlabBGL toolbox, David Gleich, Fig. 1). 

Networks were thresholded such that the top 15% of edge weights were visualized. A 

threshold of 15% was chosen because it was stringent enough to improve visualization, but it 

was lenient enough for the graph to remain fully connected. All analyses were performed on 

the fully weighted graphs; ad hoc thresholds were applied to facilitate visualization.

Life Sciences Reporting Summary

Further information regarding the experimental design may be found in the Life Sciences 
Reporting Summary.

Data availability

Code, sample input data and usage instructions are available at the following Bitbucket 

repository: https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17. The data 

analyzed in this study are summarized in Supplementary Tables 1 and 3. Source data for 

Figures 1 and 2 are available online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Network modularity maximization and consensus partitioning (3DNetMod-MMCP) 

identifies nested, partially overlapping chromatin domains across length scales. (a) Hi-C 

heatmaps from human cortical plate tissue16. Domains identified with 3DNetMod-MMCP at 

γ = 1 (left), γ = 1.1 (center) and γ = 1.18 (right) are outlined in green. (b) Community 

partitions from 20 applications of 3DNetMod-MM at γ = 1 (left), γ = 1.1 (center) and γ = 

1.18 (right). (c) Consensus partitions for each γ value from 20 partitions. (d) Spring-force 

diagrams representing network communities in Hi-C data. Node proximity corresponds to 

the relative interaction frequency between the two genomic bins. Node color indicates 
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community assignment. (e) Chromosome-wide distribution (chr7) of domain sizes identified 

with γ = 1.0 (left), γ = 1.1 (center) and γ = 1.18 (right).
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Figure 2. 
3DNetMod outperforms leading domain-calling methods in real and simulated Hi-C data. 

(a) Simulated Hi-C data with nested, partially overlapping domain structure. Expected 

domains (top), DI-HMM + DI sweep domains (center top), TADtree domains (center 

bottom) and 3DNetMod domains (bottom) are shown. The maps shown are a zoomed-in 

view of the full simulations shown in Supplementary Figure 13d. (b) Receiver operating 

characteristic (ROC) curves showing the true positive rate and false positive rate of 

3DNetMod (magenta), DI-HMM + DI Sweep (teal) and TADtree (blue) domain detection 

performance in the simulated Hi-C network with nested, partially overlapping domains. (c,d) 

Distribution of (c) domain sizes and (d) number of domains identified in chromosome 7 of 

human cortical plate tissue Hi-C16 by Arrowhead, DI-HMM + DI sweep, TADtree and 

3DNetMod. (e) Heatmap of a 6-Mb region from human cortical plate tissue Hi-C16. 

Domains identified by Arrowhead (top), DI-HMM + DI sweep (center top), TADtree (center 

bottom) and 3DNetMod (bottom) are outlined in colors corresponding to their sizes: ≤400 

kb (magenta), 401–800 kb (green), 801–1.6 Mb (cyan), 1.6–3 Mb (indigo), >3 Mb (orange).
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