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Synopsis

The knowledge on the molecular and genetic causes of Cushing’s syndrome (CS) has greatly 

increased in the recent years. Somatic mutations leading to overactivation of the 3′,5′-cyclic 

adenosine monophosphate (cAMP)/protein kinase A (PKA) and wingless-type MMTV integration 

site family (WNT)/beta-catenin (CTNNB1) pathways are the main molecular mechanisms 

underlying adrenocortical tumorigenesis causing CS. In the pituitary gland, corticotropinomas are 

characterized by resistance to glucocorticoid negative feedback, dysregulation of pathways 

controlling cell cycle progression and overexpression of pathways that sustain overactive ACTH 

production and secretion. Most of the patients with CS present sporadically, while isolated or 

syndromic familial forms of CS are quite infrequent. Nevertheless, recognizing the germline and 

somatic genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for 

tailoring the clinical management of the patients and for designing strategies for genetic 

counselling and clinical screening to be applied in the routine medical practice.
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Introduction

Characterized by multisystemic manifestations of hypercortisolemia, endogenous Cushing’s 

syndrome (CS) is caused in two-thirds of cases by an ACTH-secreting pituitary adenoma 

(corticotropinoma), and in up to one-quarter of cases by benign adrenal lesions, while other 

causes are more infrequent.1 CS may have a familial presentation, as part of various 

syndromes of multiple neoplasia, or present sporadically in the presence of specific germline 

and/or somatic gene defects (Table 1). A vast progress has been achieved in the recent years 
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on identifying the molecular and genetic causes of CS of adrenal and pituitary (Cushing’s 

disease, CD) origin. In this review, we have compiled and summarized the most relevant 

genetic causes of adrenal and pituitary CS so far described.

Genetic alterations in Cushing’s syndrome of adrenal origin

Somatic activating CTNN1B mutations

In mice, beta-catenin (Ctnn1b) has an important role in driving embryonic adrenocortical 

cell proliferation, and its constitutive activation results in adrenocortical hyperplasia.2 

Nuclear and cytoplasmic accumulation of the CTNN1B protein are common findings in 

human benign and malignant adrenocortical tumors of various types, and these lesions often 

display somatic mutations in the CTNNB1 gene (located on chromosome 3p22.1).3–6 Within 

cortisol-producing adenomas (CPAs), the frequency of CTNN1B mutations is around 15%, 

while two-thirds of nonfunctioning adenomas and one-third of adrenocortical carcinomas 

carry these genetic defects, which are apparently associated with a more aggressive 

phenotype.3, 4, 7 Most of the patients carry a missense mutation affecting the residue S45, 

which prevents phosphorylation of the protein by the “destruction complex” (see below), 

resulting in protein accumulation and activation of its target genes, and therefore resulting in 

constitutive activation of the wingless-type MMTV integration site family (WNT)/CTNNB1 

pathway.7 Beyond CTNNB1 sequence mutations, CTNN1B accumulation may also be due 

to overactivation of the 3′,5′-cyclic adenosine monophosphate (cAMP)/protein kinase A 

(PKA) pathway, as it occurs in most adrenocortical lesions.3

Familial adenomatous polyposis

Germline loss-of-function mutations in the APC gene (on chromosome 5q22.2) are 

associated with adrenocortical adenomas or primary macronodular adrenal hyperplasia 

(PMAH) in patients with familial adenomatous polyposis; however, this gene does not seem 

to play a significant role in sporadic CS.8, 9 APC-mutated tumors display cytoplasmic and 

nuclear CTNNB1 accumulation. The APC protein forms part, together with other tumor 

suppressors and protein kinases, of the “destruction complex”, which regulates the WNT/

CTNNB1 signaling pathway by targeting and directing CTNNB1 to proteasomal 

degradation.2 Therefore, APC loss-of-function results in constitutive activation of the WNT/

CTNNB1 pathway, in a way that is similar to that of CTNNB1 mutations.

Activating somatic PRKACA hotspot mutations

Adrenal CS is most often caused by CPAs and one to two-thirds of these tumors bear the 

somatic recurrent mutation p.L206R in the PRKACA gene (on chromosome 19p13.12), 

encoding the catalytic subunit alpha of PKA.10–13 The functional effect of the L206R 

mutation is constitutive activation of the cAMP/PKA molecular pathway and therefore 

increased steroidogenesis, given that these mutations affect a site of the protein that is 

essential for its interaction with the regulatory subunits of PKA.10, 11, 13 The mutation 

p.L199_C200insW, found in one CPA case, has a similar effect.10 In addition, germline 

amplification of the 19p13.2-p13.12 chromosomal region was identified in five cases of CS 

from four different families.10 In these patients, an apparent dosage-dependent effect on the 

phenotype was observed, as gene triplications were associated with a younger age at disease 
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onset, compared with duplications. These patients developed different types of 

adrenocortical lesions, including primary pigmented nodular adrenocortical disease 

(PPNAD), isolated micronodular adrenocortical disease (iMAD) and PMAH, and one 

patient developed breast cancer.14

Germline defects in phosphodiesterases

Phosphodiesterases are negative regulators of cAMP and 3′, 5′-cyclic guanosine 

monophosphate (cGMP)-dependent intracellular signaling, with multiple isoforms that 

display differential tissue and substrate specificity. A genome-wide association study 

identified germline inactivating mutations in the phosphodiesterase 11A gene (PDE11A, 
2q31.2) in four patients with CS due to iMAD, including two affected individuals from the 

same kindred.15 Later on, a germline missense mutation in the PDE8B gene was identified 

in an additional iMAD patient. PDE11A is a dual-specificity phosphodiesterase (i.e., it 

hydrolyzes both cAMP and cGMP), while PDE8B is cAMP-specific.16 Both 

phosphodiesterases are highly expressed (although not exclusively) in the adrenal tissue, and 

the mutations found in iMAD lead to increased cAMP signaling, in a similar way than 

PRKACA gain-of-function and other cAMP defects identified in adrenal tumors.17

Germline and somatic ARMC5 mutations

Loss-of-function mutations in the armadillo repeat containing 5 gene (ARMC5) are the most 

common genetic cause of CS due to PMAH. Around 26–55% patients bear ARMC5 
mutations (on chromosome 16p11.2) at both the somatic and the germline levels; within the 

PMAH tissue, different ARMC5 mutations can be found in each nodule18–21 ARMC5 
encodes a ubiquitously expressed pro-apoptotic protein, with an additional role as a 

regulator of steroidogenesis, as demonstrated in vitro.18, 22 In mice, Armc5 is required for 

gastrulation and its knockout is lethal, while haploinsufficiency leads to late-onset CS.23 

Presentation in ARMC5 mutation-associated PMAH may be sporadic or familial (autosomal 

dominant).24, 25 Patients with ARMC5 mutations have higher midnight serum cortisol, as 

well as higher urinary 17-hydroxycorticosteroids and free cortisol levels during the 6-day 

test Liddle, and their nodules are larger and more numerous, compared with other PMAH 

patients.19, 20

Hereditary leiomyomatosis and renal cell carcinoma

Fumarate accumulation, as a result of fumarate hydratase (FH) deficiency, leads to 

pseudohypoxia, a well-known pro-tumorigenic stimulus.26, 27 Loss-of function mutations in 

the FH gene (1q43) cause an autosomal dominant syndrome characterized by the association 

of cutaneous leiomyomatosis and renal cell carcinoma. Other tumors less frequently 

observed in these patients are leiomyosarcomas, uterine leiomyomas and papillary renal 

carcinomas, and, occasionally, PMAH (8% of patients).28, 29 Loss of the normal allele has 

been demonstrated in the PMAH tissue, supporting the causative role of FH in these lesions; 

however, FH mutations have not been associated to sporadic PMAH.8, 28
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Somatic GIPR microduplications

The finding of local ACTH production and aberrant GPCR expression as stimuli driving 

steroidogenesis in PMAH brings attention to the role of ectopic hormone signaling in 

adrenal tumorigenesis.27, 30 Glucose-dependent insulinotropic polypeptide (GIP)-dependent 

CS is a rare condition in which ectopic GIP receptor (GIPR) expression in PMAH or CPA 

tissue leads to hypercortisolemia in response to the physiological posprandial release of GIP 

by the small bowel. A recent study identified somatic duplications of the 19q13.32 

chromosomal region, including the GIPR gene, in 3/14 patients with GIP-dependent CS.31 

In two of these cases, rearrangements favoring the monoallelic expression of GIPR were 

identified, and among the genes contained in the amplified region, only GIPR was 

consistently overexpressed in the adrenocortical lesions. GIPR overexpression leads to 

increased steroidogenesis via overactivation of the cAMP/PKA pathway.

Gain-of-function germline MC2R mutations

A germline mutation (p.F278C), in the MC2R gene (on chromosome 18p11.21), encoding 

the ACTH receptor MC2R, was identified in a single patient with PMAH and resulted in 

constitutive receptor activation in vitro.32 Two additional MC2R mutations (p.C21R and 

p.S247G) found in a patient with hypersensitivity to ACTH, had the same effect.33 MC2R 
mutations appear to be a very rare cause of CS, if at all contributory.

Genetic alterations common to Cushing’s syndrome of adrenal and 

pituitary origin

Mosaic or somatic GNAS mutations

Early postzygotic mutations in GNAS (on chromosome 20q13.32) affecting the amino acid 

201 of the best-known product of GNAS, the G stimulatory protein subunit alpha, cause the 

McCune-Albright syndrome (MAS).34 MAS consists of monostotic or polyostotic fibrous 

dysplasia presenting together with one or more manifestations of endocrine hyperfunction 

(most frequently, primary precocious puberty) and/or dermal café-au-lait spots. Such 

mutations cause loss of the GTPase function of the protein, resulting in constitutively active 

GNAS (gsp oncogene).35 Cushing’s syndrome is an infrequent component of MAS (4% of 

patients), occurring most often in patients with multiple other manifestations of the 

syndrome.34, 36 Hypercortisolism in this setting is due to bilateral primary bimorphic 

(diffuse/nodular hyperplasia and cortical atrophy with apparent zona glomerulosa 
hyperplasia) adrenocortical disease.37 Besides MAS, somatic mutations in GNAS codons 

201 or 227 (which have the same functional effects) can also be found as somatic changes in 

4–15% of CPAs.11–13 The same mutations are a common finding in sporadic pituitary 

adenomas, (mainly somatotropinomas), although they are rarely found in 

corticotrotropinomas, with only three cases reported so far.38, 39

Multiple endocrine neoplasia type 1

The syndrome of multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant 

condition characterized by the development of tumors in multiple endocrine and non-

endocrine organs.40 Primary hyperparathyroidism (the most constant feature of the 
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syndrome), gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and pituitary 

adenomas are the three main components or MEN1.41 Eighty five percent of the MEN1 

patients have familial presentation and penetrance is age and organ-specific, and almost 

complete by the fifth decade of life.42 Ninety percent of the MEN1 cases bear loss-of-

function germline mutations or deletions in the MEN1 gene (on chromosome 11q13.1), 

encoding the tumor suppressor menin, a scaffolding protein that regulates the expression and 

function of proteins involved in transcriptional regulation, genome stability and cell 

proliferation.43–46 In mice, Men1 full knockout is lethal in utero, but hypomorphic models 

develop a syndrome resembling the human phenotype.41

CS in the setting of MEN1 can be due to a corticotropinoma (79%), primary adrenal disease 

(21%) or very, rarely, ACTH secretion from a GEP-NET (a few case reports).47 

Approximately 30–40% of MEN1 patients develop pituitary adenomas, and these tumors are 

the first disease manifestation in 17–29% of patients, usually arising at a young age.48–50 

Pituitary adenomas in MEN1 patients are significantly larger and more invasive than those 

occurring in non-MEN1 sporadic patients (76–85% are macroadenomas), but there is no 

increased prevalence of carcinomas.48, 51 Two-thirds of the patients with clinically evident 

pituitary disease have prolactinomas, while corticotropinomas represent only 3–10% of the 

MEN1-related pituitary adenomas.48, 50–52 Around 10% of MEN1 patients develop adrenal 

tumors (most of them nonfunctioning), but the incidence of adrenal enlargement is much 

higher; the prevalence of adrenal cancer is 1%. Nevertheless, CS is relatively infrequent (5% 

of MEN1 patients with adrenal tumors).53

Carney complex

Carney complex (CNC) is a rare syndrome composed of multiple endocrine neoplasia and 

cardiocutaneous manifestations, with autosomal dominant inheritance.54, 55 Three-quarters 

of CNC cases are caused by loss-of-function mutations in the PRKAR1A gene (on 

chromosome 17q24.2), 6% are due to deletions in 17q24.2-q24.3, and a triplication of the 

PRKACB gene was identified as the cause of disease in a single patient, while other cases 

are linked to an uncharacterized defect in 2p16.56–59 More than half of the cases display 

familial presentation, with almost full penetrance.60 No germline or somatic PRKAR1A 
mutations have been identified in sporadic pituitary adenomas.61–63 PRKAR1A loss-of-

function causes unopposed activation of the cAMP/PKA pathway due to uncontrolled 

catalytic subunit activity.55, 64 One-quarter of CNC patients develop CS due to PPNAD, 

although histological evidence of PPNAD has been detected in almost all CNC individuals 

at autopsy.65 Patients develop hypercortisolism with insidious progression over the years, 

that characteristically displays a paradoxical rise during the six-day Liddle test.66 

Histologically, PPNAD consists of normal-sized or slightly enlarged adrenals with irregular 

contour, due to small subcapsular dark nodules and cortical atrophy.67 So far, only three 

cases of CD have been reported among CNC patients, all of them with frameshift 

PRKAR1A mutations, although the corticotropinoma was highly suspected but not fully 

proven in one of the patients.68, 69 Loss of heterozygosity (LOH) in the corticotropinoma 

tissue was demonstrated in two cases.69, 70 In the setting of CNC, CD represents a diagnostic 

challenge in CNC, due to the possible coexistence of CS of adrenal origin.57, 68
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Genetic alterations in Cushing’s disease

Somatic gain-of-function USP8 mutations

Mutations in the exon 14 of the USP8 gene (15q21.2), encoding the ubiquitin-specific 

protease 8, have been reported in 31–60% of corticotropinomas occurring in children and 

adults in tumor-extracted DNA, accounting for the most common somatic gene alteration in 

CD.71–74 Such gene defects affect highly conserved residues localized in a hotspot within 

the 14-3-3 binding motif (residues 715–720). Under physiological conditions, USP8 binds 

and deubiquitinates target ubiquitinated proteins to prevent their proteasomal degradation. 

Cleavage of USP8 at a site immediately upstream to the 14-3-3 binding motif by still 

unknown proteases results in enhanced deubiquitinase activity from a C-terminal 40-kDa 

protein fragment.72 Phosphorylation and binding to 14-3-3 proteins regulates USP8 function 

by preventing cleavage, but loss of such interaction results in unrestricted protein function. A 

key target protein for USP8 in corticotroph cells is the epidermal growth factor receptor 

(EGFR), and USP8 gain-of-function mutations are translated into continuous EGFR 

recycling, and therefore increased EGFR signaling, resulting in increased POMC 
transcription.72, 73, 75 Along these lines, corticotropinomas carrying USP8 mutations are 

usually microadenomas that strongly express POMC.76

Although EGFR overexpression is not a consistent finding in USP8 mutation positive 

tumors, in vitro studies have proven that USP8 mutants inhibit the degradation of the ligand-

bound EGFR in EGF-stimulated cells.72, 76 Expression of the somatostatin receptor type 5 

(SSTR5) and O-6-methylguanine-DNA methyltransferase (MGMT) are increased in USP8-

mutated tumors, suggesting that such tumors might be responsive to the pharmacological 

treatment with pasireotide, but not with temozolomide.76 The frequency of USP8 mutations 

is higher in females in all the cohorts reported so far, but there are discrepancies among 

studies regarding other clinical and biochemical features.71–73, 76 Interestingly, the 

frequency of USP8 mutations in a recently reported cohort of patients with Nelson’s 

syndrome (45%), was not higher than what has been reported for CD, although such 

mutations were associated with lower frequency of ACTH normalization after surgery.77

Somatic RASD1 mutation

Originally identified as a gene induced by dexamethasone treatment of AtT20 cells, RASD1 
encodes a glucocorticoid-inducible Ras guanosine triphophatase (RAS GTPase) that might 

have a physiological role in the glucocorticoid negative feedback in corticotrophs, where it 

inhibits cAMP-stimulated secretion.78, 79 By interacting with G inhibitory proteins, RASD1 

exerts a context-dependent activation or suppression of MAPK signaling.80, 81 RASD1 is 

also expressed in other tissues, where it might mediate local responses to glucocorticoids; it 

displays a circadian rhythm of expression in the hypothalamus and has a role as a mediator 

of the photic response of the circadian clock.78, 82 A novel missense mutation in the RASD1 
gene was detected in a small allelic fraction by whole exome sequencing in 

corticotropinoma tissue from a young adult CD female; a coexistent hotspot USP8 mutation 

was identified in the same tumor.83 It was hypothesized that, in this genetically 

heterogeneous tumor, the RASD1 mutation could contribute to cell proliferation and ACTH 

secretion in a small subpopulation of cells.
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Somatic TP53 mutations

Only three CD cases have so far been associated with somatic inactivating missense TP53 
mutations, including two patients with ACTH-secreting pituitary carcinomas (one 

heterozygous and one not specified) and one patient with an invasive corticotropinoma with 

high Ki-67 index and a homozygous mutation.84, 85 Immunostaining for TP53 was positive 

in the three cases, and particularly high for carcinomas (60 and 90% of positive cells). 

Interestingly, accumulation of TP53 protein has been observed in 50% of corticotropinomas, 

suggesting that alternative mechanisms should have a role in the overexpression of this 

tumor suppressor.86

Somatic and germline N3CR1 mutations

Mutations in the N3CR1 gene, encoding the glucocorticoid receptor, have been identified by 

direct sequencing in two cases of CD: a patient with a frameshift somatic mutation and 

Nelson’s syndrome and a case of CD with generalized glucocorticoid resistance and a 

dominant-negative de novo germline mutation.87, 88 Whole-exome sequencing of 12 

corticotropinomas demonstrated an additional case with a somatic nonsense mutation.73 

Loss of function of N3CR1 in the corticotroph cells impairs the response to the negative 

adrenal feedback, rendering the cells resistant to the antiproliferative and antisecretory 

effects of glucocorticoids. Other studies failed to identify further mutations, indicating that 

N3CR1 gene defects are a rare cause of CD.89, 90

Multiple endocrine neoplasia type 2

Activating mutations in the rearranged during transfection protooncogene (RET, 10q.11.2) 

are associated with the syndrome of multiple endocrine neoplasia type 2, an autosomal 

dominant entity that includes three distinctive clinical presentations: familial medullary 

thyroid carcinoma (MTC), MEN2A (association of MTC, pheochromocytomas, 

hyperparathyroidism), and MEN2B (MTC, pheochromocytomas, characteristic facies, 

marfanoid habitus, ocular abnormalities, musculoskeletal manifestations and generalized 

ganglioneuromatosis).91 RET encodes the tyrosine kinase membrane receptor for the glial-

derived neurotrophic factor, expressed by the neural crest during embryogenesis. Activating 

mutations result in constitutive RET function and activation of pro-proliferative molecular 

pathways, including the RAS/RAF proto-oncogene serine/threonine-protein kinase (RAF)/

mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K)/RAC-alpha 

serine/threonine-protein kinase (AKT) pathway.91, 92 Pituitary adenomas are not a classical 

component of MEN2, but an association between pituitary adenomas and RET mutations 

has been reported in four different patients. Three patients presented with an MEN2A-like 

phenotype; the fourth patient presented as MEN2B; among them, two CD cases have been 

associated with RET mutations.93–96 Other patients with similar phenotypes have been 

described in the literature, although genetic testing was not available or was negative for 

RET mutations.97 Although rarely, MEN4 patients can also develop CS due to ectopic 

ACTH secretion from MTC.91
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Multiple endocrine neoplasia type 4

Human germline mutations in the cyclin dependent kinase inhibitor 1B gene (CDKN1B, 

12p13.1) cause about 2% of the cases of MEN1 mutation-negative multiple endocrine 

neoplasia.98–100 These patients display a heterogeneous phenotype, referred to as multiple 

endocrine neoplasia type 4 (MEN4), encompassing parathyroid and pituitary adenomas, 

neuroendocrine tumors and various benign and malignant neoplasms.98 MEN4 is an 

autosomal dominant disorder with incomplete penetrance, therefore it can present clinically 

as familial or sporadic cases.101 The most common component of the syndrome is 

hyperparathyroidism, while renal angiomyolipoma, adrenal non-functional tumor, uterine 

fibroids, gastrinoma and gastric carcinoma, GEP-NETs, non-functioning pancreatic 

endocrine neoplasm, neuroendocrine cervical carcinoma, bronchial carcinoid and papillary 

thyroid carcinoma have also been described as part of the syndrome.98–100, 102–107

Pituitary tumors have been reported in eight MEN4 patients so far, only one of them with 

CD.100, 101, 107 This female patient carrried a frameshift CDKN1B mutation (p.K25fs) and 

was diagnosed with CD at the age of 46 years; loss of the normal allele was demonstrated in 

the tumor tissue. She also developed a small-cell neuroendocrine cervical carcinoma and 

hyperparathyroidism. Although the association of CDKN1B mutations with human 

corticotropinomas is rare, CDKN1B plays a crucial role in the control of corticotroph 

proliferation. In addition, Cdkn1b knockout mice develop, among other phenotypic 

abnormalities, ACTH-secreting hyperplasia or adenomas of the pituitary pars intermedia 
with full penetrance.108–110 Given that CDKN1B gene defects are infrequent, other gene 

regulatory mechanisms might play a role in the impaired CDKN1B function often observed 

in corticotropinomas.

Three P association (3PAS)

The association of a pituitary adenoma with a pheochromocytoma or paraganglioma (pheo/

PGL) in a single patient, recently defined as the “Three P Association” (3PAs), is a very 

infrequent phenotype, with only 82 cases identified in the literature.97, 111–121 Out of the 

cases with a known genetic cause, twenty one are due to germline loss-of-function mutations 

in genes that are known to be causative of pheo/PGL: SDHB, SDHD, SDHC and SDHA 
genes (SDHx genes), in nine, six, two, two and one cases, respectively, while an SDHAF2 
and a MAX mutation were reported in one case each.111–115, 117, 120, 122–126 A few other 

cases presenting with this phenotype represent variants of classic syndromes of multiple 

endocrine neoplasia: three cases with RET mutations (MEN2A), two cases with MEN1 
mutations (MEN1) and one with a VHL mutation (Von Hippel-Lindau disease).93, 95, 119, 127 

Four cases of Cushing’s disease presenting with 3PAs phenotype have been reported in the 

literature, one of them carrying a RET mutation (see “Multiple endocrine neoplasia type 2”). 

Genetic screening failed to identify causative mutations in two patients.117, 118 One patient 

was not genetically tested but had a family history compatible with MEN2A.128 Although it 

is feasible that mutations in other pheo/PGL-related genes could lead to CD, this has not 

been demonstrated so far.
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Familial isolated pituitary adenoma

Familial isolated pituitary adenoma (FIPA) is defined by the presence of pituitary adenomas 

in two or more members of the same family in the absence of other clinical features, with 

autosomal dominant inheritance and incomplete penetrance, and accounts for about 2.5% of 

all pituitary adenomas.129, 130 One-fifth of the FIPA cases are due to germline loss-of-

function mutations in the AIP gene (11q13.2).131, 132 AIP mutations are also detected in a 

subset of sporadic pituitary adenomas affecting young patients, and in one-third of cases of 

gigantism.133, 134 In the somatotroph cells, AIP has a complex effect as a negative regulator 

of the cAMP/PKA pathway and of the downstream effects of a Gi protein-coupled receptor, 

probably an SSTR.135, 136 Ninety-three percent of the AIP mutation positive patients have 

macroadenomas and the clinical phenotype is growth hormone excess in 80% of the cases.
132, 133 Only three cases of CD associated with AIP mutations have been described so far in 

one pediatric and two young adult patients with missense mutations (p.K103R in the 

pediatric case and p.R304Q in the adults), all of them with apparently sporadic presentation.
137, 138 Nevertheless, the variants found in these patients have displayed inconsistent 

experimental results, therefore their pathogenic potential is uncertain (reviewed in 139).

FIPA with undetermined genetic cause represents a heterogeneous group of patients 

regarding pituitary tumor types, although half of these patients develop GH excess.140 Six 

percent of these patients have CD, and FIPA families with exclusively cases CD have only 

been reported in the absence of AIP mutations.133, 141 X-linked acrogigantism, an infrequent 

form of gigantism with very young onset caused by GPR101 (Xq26.3) gene amplification, 

occasionally has a familial presentation and is included by some, but not all authors as part 

of FIPA. Nevertheless, GPR101 gene defects have not been implicated in CD as yet.142

CD associated with CABLES1 mutations

The negative cell cycle regulator CABLES1 is a direct target gene for glucocorticoids in the 

corticotroph cells, therefore acting as a mediator of the regulatory adrenal-pituitary feedback 

loop.143 CABLES1 stabilizes and prevents the degradation of cell cycle regulators and 

interacts with TP53 and TP73 to trigger apoptosis; such tumor suppressor activity is 

inhibited by 14-3-3 or AKT-mediated phosphorylation 144, 145 CABLES1 expression is lost 

in a variety of human cancers, and CABLES1 gene inactivation promotes cell proliferation 

and survival, as well as tumor formation in vitro, and replicates the human neoplasms in 

mouse models.144 We have recently identified four CD patients with loss-of-function 

CABLES1 missense mutations, accounting for 2% of the patients tested.146 The four 

patients had young-onset macroadenomas that were large and aggressive. The mutations 

were demonstrated at the germline level in two of the patients, while only tumor-derived 

DNA was available in the other two cases; one of the germline mutations was demonstrated 

in an apparently unaffected parent. These mutations displayed reduced ability to block 

corticotroph cell proliferation in response to dexamethasone stimulation in vitro. None of the 

patients had somatic USP8 mutations, and immunohistochemistry revealed variable 

CABLES1 with very low nuclear CDKN1B staining. Given its function, CABLES1 could 

provide a link between two of the main molecular mechanisms disrupted in 

corticotropinomas: dysfunction of the CDK/cyclin-dependent cell cycle regulation and 
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EGFR activation of the epidermal growth factor receptor (EGFR) pathway, which uses 

AKT1 as one of its main effectors.145, 147, 148

DICER1 syndrome

The DICER1 syndrome or pleuropulmonary blastoma (PPB) familial tumor and dysplasia 

syndrome consists of the association of PPB, ovarian sex cord-stromal tumors, cystic 

nephroma and thyroid gland tumors such as multinodular goiter, adenomas, and 

differentiated thyroid cancer together with other less common benign and malignant tumors.
149, 150 This syndrome is caused by loss-of-function mutations in the DICER1 gene 

(14q32.13), and has autosomal dominant presentation, with very low penetrance. Eighty 

percent of the mutations are inherited and 20% present de novo and only one-third of the 

mutation carriers have a known familial history of DICER1-related tumours.150 DICER1 is a 

multidomain enzyme with important functions in micro RNA (miRNA) processing; the 

RNaseIIIa and RNaseIIIb domains, located at the C-terminal half, constitute the catalytic 

core of the enzyme. Somatic DICER1 loss-of-function variants have been reported in 

DICER1-related tumors, most of them affecting the RNase IIIb catalytic domain, in the 

presence or absence of germline mutations.151

Pituitary blastoma is a very rare and aggressive apparently congenital pituitary tumor 

presenting clinically as CD early in infancy.152 A recent study reported thirteen cases of 

DICER1 syndrome with pituitary blastoma, and nine out of ten infants tested were positive 

for heterozygous DICER1 mutations. Somatic DICER1 mutations were detected in seven 

cases, and two cases displayed LOH in the tumor, accounting for a total of nine patients with 

somatic alterations; seven of these cases were also positive for germline mutations.152 This 

series, together with a recent case report, account for a total of 14 genetically screened cases 

of this neoplasm reported to date.153 The first manifestation of disease appeared early in 

childhood, and in most cases (9/14) pituitary blastoma was the only manifestation of the 

syndrome; five out of the patients died within 0–26 months of the first surgery.152, 153 At the 

histopathological examination, pituitary blastomas resemble the human fetal 

adenohypophysis at the age of 10–12 gestational weeks, when corticotrophs and 

somatotrophs are already differentiated, and alpha-glycoprotein subunit starts to emerge, but 

other cells types are not yet evident.154 Aside of pituitary blastoma, it remains uncertain 

whether DICER1 could also play a role in CD due to pituitary adenomas.

Tuberous sclerosis complex

Tuberous sclerosis complex is a syndrome characterized by multiple hamartomatous lesions 

affecting brain, skin, heart, lungs and kidneys, associated with neurological manifestations 

such as seizures, autism and cognitive disability. This syndrome is due to loss-of-function 

mutations in either the TSC1 (9q34.13) or the TSC2 (16p13.3) gene, whose protein products 

(hamartin and tuberin) act as negative regulators of the mammalian target of rapamycin 

complex1 (mTORC1), therefore inhibiting cell growth.155 Pituitary adenomas are not a 

common feature of the tuberous sclerosis complex, but CD has been described in two of 

such patients so far: a pediatric patient with a TSC2 mutation and a young adult who was not 

genetically tested; both patients presented with other coexistent manifestations of TSC.
63, 156, 157
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X-linked congenital adrenal hypoplasia

The clinical association of adrenal hypoplasia with glucocorticoid and mineralocorticoid 

deficiency and hypogonadotropic hypogonadism is due to loss of function mutations in the 

DAX1 gene (Xp21.2), encoding an orphan nuclear receptor.158 A single case of a 

corticotropinoma associated with a germline frameshift DAX1 mutation has been described.
159 The patient had preexisting adrenal insufficiency, primary hypothyroidism and 

hypogonadotrophic hypogonadism and was diagnosed with a CD at the age of 33 years, due 

to an invasive corticotropinoma. Maternal inheritance of the genetic defect was proven, but 

no other affected family members were identified.

Summary

Great progress has been done in the recent years to elucidate the genetic defects underlying 

CS of adrenal and pituitary origin. Frequent molecular abnormalities in adrenal lesions 

include cAMP/PKA and WNT/CTNN1B signaling overactivation, while glucocorticoid 

resistance, abnormal expression of cell cycle regulators and overexpression of membrane 

receptors predominate in corticotropinomas. Although most of the patients present 

sporadically, CS is part of a growing number of syndromes of familial isolated CS or 

multiple endocrine and non-endocrine neoplasia. Moreover, it should be kept in mind that 

CS of adrenal and pituitary origin can coexist in the setting of some syndromic 

presentations, complicating the diagnosis. Further research efforts are required to unveil 

other molecular abnormalities in CS, which will hopefully lead to novel therapeutic targets.
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Key Points

• Cushing’s syndrome (CS) of pituitary or adrenal origin usually presents as a 

sporadic entity and is most commonly due to somatic gene defects.

• Cortisol-producing adenomas are the most common cause of adrenal CS and 

these lesions are frequently caused by somatic activating mutations in the 

PRKACA gene.

• Somatic gain-of-function mutations in the USP8 gene constitute the most 

common genetic defect in corticotropinomas.

• Although infrequent, familial forms of CS may present either isolated or in 

association with various familial syndromes of multiple endocrine and non-

endocrine neoplasia.

• Understanding the genetic defects that drive corticotroph and adrenocortical 

tumorigenesis should lead to unraveling novel therapeutic targets, which will 

hopefully be translated into more efficient strategies for the medical treatment 

of patients with CS.
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