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Abstract

Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, 

treatment planning, and treatment outcome evaluation. Build upon successful deep learning 

techniques, a novel brain tumor segmentation method is developed by integrating fully 

convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified 

framework to obtain segmentation results with appearance and spatial consistency. We train a deep 

learning based segmentation model using 2D image patches and image slices in following steps: 1) 

training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-

RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the 

CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image 

patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to 

segment brain tumors using a voting based fusion strategy. Our method could segment brain 

images slice-by-slice, much faster than those based on image patches. We have evaluated our 

method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation 

Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have 

demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and 

achieve competitive performance as those built with Flair, T1, T1c, and T2 scans.
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1. Introduction

Accurate brain tumor segmentation is of great importance in cancer diagnosis, treatment 

planning, and treatment outcome evaluation. Since manual segmentation of brain tumors is 

laborious (Bauer et al., 2013), an enormous effort has devoted to the development of semi-

automatic or automatic brain tumor segmentation methods. Most of the existing brain tumor 

segmentation studies are focusing on gliomas that are the most common brain tumors in 

adults and can be measured by Magnetic Resonance Imaging (MRI) with multiple 

sequences, such as T2-weighted fluid attenuated inversion recovery (Flair), T1-weighted 

(T1), T1-weighted contrast-enhanced (T1c), and T2-weighted (T2). The segmentation of 

gliomas based on MRI data is challenging for following reasons: (1) gliomas may have the 

same appearance as gliosis and stroke in MRI data (Goetz et al., 2016); (2) gliomas may 

appear in any position of the brain with varied shape, appearance and size; (3) gliomas 

invade the surrounding brain tissues rather than displacing them, causing fuzzy boundaries 

(Goetz et al., 2016); and (4) intensity inhomogeneity of MRI data further increases the 

difficulty.

The existing automatic and semi-automatic brain tumor segmentation methods can be 

broadly categorized as either generative model based or discriminative model based methods 

(Menze et al., 2015). The generative model based brain tumor segmentation methods 

typically require prior information, which could be gained through probabilistic image 

atlases (Gooya et al., 2012 ; Cuadra et al., 2004 ; Menze et al., 2010). Based on probabilistic 

image atlases, the brain tumor segmentation problem can be modeled as an outlier detection 

problem (Prastawa et al., 2004).

On the other hand, the discriminative model based methods solve the tumor segmentation 

problem in a pattern classification setting, i.e., classifying image voxels as tumor or normal 

tissues based on image features. The performance of discriminative model based 

segmentation methods are hinged on the image features and classification algorithms. A 

variety of image features have been adopted in tumor segmentation studies, including local 

histograms (Goetz et al., 2014), image textures (Reza and Iftekharuddin, 2014), structure 

tensor eigenvalues (Kleesiek et al., 2014), and so on. The most commonly adopted pattern 

classification algorithms in brain tumor segmentation studies are support vector machines 

(SVMs) (Ruan et al., 2007 ; Li and Fan, 2012 ; Li et al., 2010) and random forests (Goetz et 

al., 2014 ; Reza and Iftekharuddin, 2014 ; Kleesiek et al., 2014 ; Meier et al., 2014).

More recently, deep learning techniques have been adopted in brain tumor segmentation 

studies following their success in general image analysis fields, such as images classification 

(Krizhevsky et al., 2012), objects detection (Girshick et al., 2014), and semantic 

segmentation (Long et al., 2015 ; Zheng et al., 2015 ; Liu et al., 2015). Particularly, 

Convolutional Neural Networks (CNNs) were adopted for brain tumor image segmentation 
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in the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2014 (Zikic et al., 

2014 ; Davy et al., 2014 ; Urban et al., 2014). More deep learning based brain tumor 

segmentation methods were presented in the BRATS 2015 and different deep learning 

models were adopted, including CNNs (Dvorak and Menze, 2015 ; Havaei et al., 2015 ; 

Pereira et al., 2015), convolutional restricted Boltzman machines (Agn et al., 2015), and 

Stacked Denoising Autoencoders (Vaidhya et al., 2015).

Among the deep learning based tumor segmentation methods, the methods built upon CNNs 

have achieved better performance. Particularly, both 3D-CNNs (Urban et al., 2014 ; 

Kamnitsas et al., 2017 ; Yi et al., 2016) and 2D-CNNs (Zikic et al., 2014 ; Davy et al., 2014 ; 

Dvorak and Menze, 2015 ; Havaei et al., 2015 ; Pereira et al., 2015 ; Havaei et al., 2017 ; 

Pereira et al., 2016) models were adopted to build tumor segmentation methods. Although 

3D-CNNs can potentially take full advantage of 3D information of the MRI data, the 

network size and computational cost are increased too. Therefore, 2D-CNNs have been 

widely adopted in the brain tumor segmentation methods. Davy et al. proposed a deep 

learning method with two pathways of CNNs, including a convolutional pathway and a 

fully-connected pathway (Davy et al., 2014). Dvorak et al. modeled the multi-class brain 

tumor segmentation task as 3 binary segmentation sub-tasks and each sub-task was solved 

using CNNs (Dvorak and Menze, 2015). Very deep CNNs (Simonyan and Zisserman, 2014) 

were adopted to segment tumors by Pereira et al. (2015). Most of these brain tumor 

segmentation methods train CNNs using image patches, i.e., local regions in MR images. 

These methods classify each image patch into different classes, such as healthy tissue, 

necrosis, edema, non-enhancing core, and enhancing core. The classification result of each 

image patch is used to label its center voxel for achieving the tumor segmentation. Most of 

the above CNN brain tumor segmentation methods assumed that each voxel’s label is 

independent, and they didn’t take the appearance and spatial consistency into consideration. 

To take the local dependencies of labels into account, Havaei et al. constructed a cascaded 

architecture by taking the pixel-wise probability segmentation results obtained by CNNs 

trained at early stages as additional input to their following CNNs (Havaei et al., 2015, 

2017). To take into consideration appearance and spatial consistency of the segmentation 

results, Markov Random Fields (MRFs), particularly Conditional Random Fields (CRFs), 

have been integrated with deep learning techniques in image segmentation studies, either 

used as a post-process step of CNNs (Kamnitsas et al., 2017 ; Chen et al., 2014) or 

formulated as neural networks (Zheng et al., 2015 ; Liu et al., 2015). In the latter setting, 

both CNNs and MRFs/CRFs can be trained with back-propagation algorithms, tending to 

achieve better segmentation performance.

Multiple 2D CNNs could be integrated for segmenting 3D medical images. In particular, 

Prasoon et al. proposed a triplanar CNN (Prasoon et al., 2013) for knee cartilage 

segmentation. The triplanar network used 3 CNNs to deal with patches extracted from xy, yz 
and zx planes and fused them using a softmax classifier layer. Fritscher et al. proposed a 

pseudo 3D patch-based approach (Fritscher et al., 2016), consisting of 3 convolutional 

pathways for image patches in axial, coronal, and sagittal views respectively and fully 

connected layers for merging them. Setio et al. used multi-view convolutional networks for 

pulmonary nodule detection (Setio et al., 2016). Their proposed network architecture 

composed multiple streams of 2D CNNs, each of which was used to deal with patches 
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extracted in a specific angle of the nodule candidates. The outputs of the multiple streams of 

2D CNNs were finally combined to detect pulmonary nodules. However, all these methods 

built CNNs upon image patches, not readily extendable for building FCNNs.

Preprocessing of MRI data plays an important role in the discriminative model based tumor 

segmentation methods that assume different MRI scans of the same modality have 

comparable image intensity information. The intensities of different MRI scans can be 

normalized by subtracting their specific mean values and dividing by their specific standard 

deviation values or by matching histograms (Kleesiek et al., 2014 ; Urban et al., 2014). 

However, the mean values of intensities of different MRI scans do not necessarily 

correspond to the same brain tissue, and the histogram matching might not work well for 

tumor segmentation studies (Goetz et al., 2014). A robust intensity normalization has been 

adopted in tumor segmentation studies by subtracting the gray-value of the highest 

histogram bin and normalizing the standard deviation to be 1 (Goetz et al., 2014).

Inspired by the success of deep learning techniques in medical image segmentation, we 

propose a new brain tumor segmentation method by integrating Fully Convolutional Neural 

Networks (FCNNs) and CRFs in a unified framework. Particularly, we formulate the CRFs 

as Recurrent Neural Networks (Zheng et al., 2015), referred to as CRF-RNN. The integrative 

model of FCNNs and CRF-RNN is trained in 3 steps: (1) training FCNNs using image 

patches; (2) training CRF-RNN using image slices with parameters of FCNNs fixed; and (3) 

fine-tuning the whole network using image slices. To make use of 3D information provided 

by 3D medical images, we train 3 segmentation models using 2D image patches and slices 

obtained in axial, coronal and sagittal views respectively, and combine them to segment 

brain tumors using a voting based fusion strategy. The proposed method is able to segment 

brain images slice-by-slice, which is much faster than the image patch based segmentation 

methods. Our method could achieve competitive segmentation performance based on 3 MR 

imaging modalities (Flair, T1c, T2), rather than 4 modalities (Flair, T1, T1c, T2) (Menze et 

al., 2015 ; Goetz et al., 2014 ; Reza and Iftekharuddin, 2014 ; Kleesiek et al., 2014 ; Meier et 

al., 2014 ; Zikic et al., 2014 ; Davy et al., 2014 ; Urban et al., 2014 ; Dvorak and Menze, 

2015 ; Havaei et al., 2015 ; Pereira et al., 2015 ; Agn et al., 2015 ; Vaidhya et al., 2015 ; 

Kamnitsas et al., 2017 ; Yi et al., 2016 ; Havaei et al., 2017 ; Pereira et al., 2016), which 

could help reduce the cost of data acquisition and storage. We have evaluated our method 

based on imaging data provided by the Multimodal Brain Tumor Image Segmentation 

Challenge (BRATS) 2013, the BRATS 2015, and the BRATS 2016. The experimental results 

have demonstrated that our method could achieve promising brain tumor segmentation 

performance. Preliminary results have been reported in a conference proceeding paper of the 

BRATS 2016 (Zhao et al., 2016).

2. Methods and materials

2.1. Imaging data

All the imaging data used in this study were obtained from the BRATS 2013,1 the BRATS 

20152 and the BRATS 2016.3 The BRATS 2013 provided clinical imaging data of 65 glioma 

1https://www.virtualskeleton.ch/BRATS/Start2013.
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patients, including 14 patients with low-grade gliomas (LGG) and 51 patients with high-

grade gliomas (HGG). The patients were scanned with MRI scanners from different vendors 

at 4 different centers, including Bern University, Debrecen University, Heidelberg 

University, and Massachusetts General Hospital. Each patient had multi-parametric MRI 

scans, including T2-weighted fluid attenuated inversion recovery (Flair), T1-weighted (T1), 

T1-weighted contrast-enhanced (T1c), and T2-weighted (T2). All the MRI scans of the same 

patient were rigidly co-registered to their T1c scan and resampled at 1 mm isotropic 

resolution in a standardized axial orientation with a linear interpolator (Menze et al., 2015). 

All images were skull stripped. Ground truths were produced by manual annotations. The 

cases were split into training and testing sets. The training set consists of 20 HGG and 10 

LGG cases. The testing set consists of Challenge and Leaderboard subsets. The Challenge 

dataset has 10 HGG cases and the Leaderboard dataset contains 21 HGG and 4 LGG.

The imaging dataset provided by BRATS 2015 contains imaging data obtained from the 

BRATS 2012, 2013, and the NIH Cancer Imaging Archive (TCIA). Each case has Flair, T1, 

T1c, and T2 scans aligned onto the same anatomical template space and interpolated at 1 

mm3 voxel resolution. The testing dataset consists of 110 cases with unknown grades, and 

the training dataset consists of 220 HGG and 54 LGG cases. In the testing dataset, the 

ground truth of each case was produced by manual annotation. In the training dataset, all the 

cases from the BRATS 2012 and 2013 were labeled manually, and the cases from the TCIA 

were annotated by fusing segmentation results obtained using top-ranked methods of the 

BRATS 2012 and 2013. The annotations were inspected visually and approved by 

experienced raters. The tumor labels of the training cases are provided along with their 

imaging scans, while only imaging data are provided for the testing cases for blind 

evaluation of the segmentation results.

BRATS 2016 shares the same training dataset with BRATS 2015, which consists of 220 

HGG and 54 LGG. Its testing dataset consists of 191 cases with unknown grades. The 

ground truth of each testing case was produced by manual annotation, not released to the 

competition participants.

2.2. Brain tumor segmentation methods based on FCNNs trained using image patches

Deep learning techniques, particularly CNNs, have been successfully adopted in image 

segmentation studies. A deep learning model of CNNs usually has millions or even billions 

of parameters. To train the deep CNNs with sufficient training samples, image patch-based 

techniques are adopted (Zikic et al., 2014 ; Davy et al., 2014 ; Urban et al., 2014 ; Dvorak 

and Menze, 2015 ; Havaei et al., 2015, 2017; Pereira et al., 2015 ; Kamnitsas et al., 2017 ; 

Pereira et al., 2016 ; Zhang et al., 2015 ; Moeskops et al., 2016 ; de Brebisson and Montana, 

2015). With the image patch based representation, the image segmentation problem can be 

solved as a classification problem of image patches.

An image patch is a local region extracted from an image to characterize its central pixel/

voxel in 2D/3D, and has the same label as its center pixel/voxel’s label in the classification 

2https://www.virtualskeleton.ch/BRATS/Start2015.
3https://www.virtualskeleton.ch/BRATS/Start2016.
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problem. In the training phase, a large number of image patches can be extracted to train the 

CNNs. In the testing phase, image patches extracted from a testing image are classified one 

by one by the trained CNNs. Then, the classification results of all image patches make up a 

segmentation result of the testing image. However, FCNNs can segment a testing image slice 

by slice with improved computational efficiency (Havaei et al., 2017), even though the 

model is trained using image patches. Since the number and location of training image 

patches for each class can be easily controlled by changing the image patch sampling 

scheme, image patch-based deep learning segmentation methods can avoid the training 

sample imbalance problem. However, a limitation of image patch-based segmentation 

methods is that relationship among image patches is typically lost. Integrating CRF-RNN 

with FCNNs tends to overcome such a limitation in tumor segmentation.

2.3. The proposed brain tumor segmentation method

The proposed brain tumor segmentation method consists of 4 main steps: pre-processing, 

segmenting image slices using deep learning models with integrated FCNNs and CRF-RNN 

from axial, coronal and sagittal views respectively, fusing segmentation results obtained in 

the three different views, and post-processing.

2.3.1. Pre-processing of the imaging data—Since MRI scans typically have varied 

intensity ranges and are affected by bias fields differently, we adopted a robust intensity 

normalization method to make MRI scans of different patients comparable, besides 

correcting the bias field of MRI data using N4ITK (Tustison et al., 2010). Our normalization 

method is built upon the image mode based method (Goetz et al., 2014), which normalizes 

image intensity by subtracting the image mode (e.g. the gray-value of the highest histogram 

bin) and normalizing the standard deviation to be 1. As almost half of the brain is the whiter 

matter (Fields, 2010), the gray-value of the highest histogram bin typically corresponds to 

the gray-value of the white matter, and therefore matching intensity values of the white 

matter across MRI scans and normalizing the intensity distributions accordingly would 

largely make different MRI scans comparable. However, the standard deviation calculated 

based on intensity mean value does not necessarily have a fixed tissue meaning. Therefore, 

in our study a robust intensity deviation is adopted to replace the standard deviation used in 

Goetz et al. (2014). The robust deviation is computed based on the gray-value of the highest 

histogram bin, representing the discreteness of intensity to the gray-value of white matter. 

Besides, the intensity mean is more sensitive to noise than the gray value of the highest 

histogram bin. Thus the standard deviation calculated based on intensity mean is more 

sensitive to noise than the robust deviation.

Given an MRI scan V with voxels {v1, v2, ···, vN}, and each voxel vk has intensity Ik, k = 1, 

2, ···, N, the robust deviation σ∼ = ∑k = 1
N (I − Ik)2/N, where Î denotes the gray-value of the 

highest histogram bin. Our intensity normalization procedure is following:

Step 1. Transform the intensity range to 0–255 linearly.

Step 2. Calculate the intensity histogram, with 256 bins.
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Step 3. Subtract the gray-value of the highest histogram bin Î and divide the robust 

deviation.

Step 4. Multiply each voxel’s intensity by a constant σ and plus a constant I0. Then, 

set the intensities that are below 0 or above 255 to 0 and 255 respectively. In the 

present study, we set σ and I0 equal to the gray-value of the highest histogram bin and 

robust deviation of NO. 0001 HGG clinical training image data of BRATS 2013, 

which has been pre-processed by N4ITK and the Step 1. For the Flair, T1c, and T2 

scans, σ = 30, 31, 37 and I0 = 75, 99, 55 respectively.

The image intensity normalization effect is illustrated with T2 scans in Fig. 1. Particularly, 

we randomly selected 3 subjects from the BRATS 2013 and 3 subjects from the BRATS 

2015. The results shown in Fig. 1 clearly demonstrated that the image intensity 

normalization could improve comparability of different scans. The improvement is further 

confirmed by image intensity histograms of 30 subjects from the BRATS 2013 training 

dataset, as shown in Fig. 2.

2.3.2. A deep learning model integrating FCNNs and CRFs—The proposed deep 

learning model for brain tumor segmentation integrates Fully Convolutional Neural 

Networks (FCNNs) and Conditional Random Fields (CRFs), as illustrated by Fig. 3. We 

formulated CRFs as Recurrent Neural Networks (RNNs), referred to as CRF-RNN (Zheng et 

al., 2015). The proposed method could segment brain images slice by slice.

2.3.2.1. FCNNs: The structure of our proposed FCNNs is illustrated by Fig. 4. Similar to the 

network architectures proposed in Kamnitsas et al. (2017) and Havaei et al. (2017), the 

inputs to our network are also in 2 different sizes. Passing through a series of convolutional 

and pooling layers, the larger inputs turn into feature maps with the same size of smaller 

inputs. These feature maps and smaller inputs are sent into following networks together. In 

this way, both local image information and context information in a larger scale can be taken 

into consideration for classifying image patches. Different from the cascaded architecture 

proposed in Havaei et al. (2017), the two branches in our FCNNs are trained simultaneously, 

rather than trained in different steps. Furthermore, our model has more convolutional layers.

Our deep FCNNs are trained using image patches, which are extracted from slices of the 

axial view, coronal view or sagittal views randomly. Equal numbers of training samples for 

different classes are extracted to avoid data imbalance problem. There are 5 classes in total, 

including healthy tissue, necrosis, edema, non-enhancing core, and enhancing core.

As shown in Fig. 4, in our deep FCNNs, the kernel size of each max pooling layer is set to n 
× n, and the size of image patches used to train FCNNs is proportional to the kernel size. 

Different settings of the kernel size or equivalently the image patch size may affect the 

tumor segmentation performance. The max pooling layers of our FCNNs are used to capture 

image information in large scales with a relatively small number of network parameters. We 

set the stride of each layer to be 1. Therefore, in the testing stage, our model can segment 

brain images slice by slice.
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2.3.2.2. CRF-RNN: CRF-RNN formulates 2D fully connected Conditional Random Fields 

as Recurrent Neural Networks (Zheng et al., 2015). Given a 2D image I, comprising a set of 

pixels {Ii|i = 1, …, M}, the image segmentation problem is solved as an optimization 

problem using fully connected CRFs by minimizing an energy function (Krahenbuhl and 

Koltun, 2011):

E(Y) = ∑
i = 1

M
Φ yi

u + ∑
∀i, j, i < j

Ψ yi
u, y j

v , (1)

where Y is a certain label assignment to I, i, j ∈ {1, …, M}, yi
u denotes the assignment of 

label u to pixel Ii, y j
v denotes the assignment of label v to pixel Ij, u, ν ∈ L = {l1, l2, ···, lC} 

are segmentation labels, the unary term Φ(yi
u) measures the cost of assigning label u to pixel 

Ii, and the pairwise term Ψ(yi
u, y j

v) measures the cost of assigning label u and v jointly to Ii 

and Ij. According to Liu et al. (2015), minimizing E (Y) equals to minimizing an energy 

function:

F(Q) = ∑
∀i

∑
∀u ∈ L

qi
uΦ yi

u + ∑
∀i, j, i < j

∑
∀u ∈ L

∑
∀v ∈ L

qi
uq j

vΨ yi
u, y j

v + ∑
∀i

∑
∀u ∈ L

qi
ulnqi

u, (2)

where qi
u denotes the probability of assigning label u to pixel Ii, which is the variable that we 

aim to estimate.

Differentiating Eq. (2) with respect to qi
u and setting the differentiation result equal to 0, we 

have

qi
u ∝ exp −Φ yi

u − ∑
j, j ≠ i

∑
∀v ∈ L

q j
vΨ yi

u, y j
v , (3)

The unary term Φ(yi
u) can be obtained from the FCNNs, and the pairwise potential Ψ(yi

u, y j
v)

is defined as

Ψ yi
u, y j

v = μ(u, v) ∑
m = 1

K
w(m)k(m) f i, f j , (4)

where K = 2 is the number of Gaussian kernel; k(m) is a Gaussian kernel, 

k(1) = exp ( −
∣ si − s j ∣

2θα
2 −

∣ ei − e j ∣

2θβ
2 ) and k(2) = exp( −

∣ si − s j ∣

2θγ
2 ) (ei and ej denote the intensity of 
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Ii and Ij respectively, si and sj denote spatial coordinates of Ii and Ij, θα, θβ and θγ are 

parameters of the Gaussian kernels); w(m) is a weight for the Gaussian kernel k(m); fi and fj 

denote image feature vectors of Ii and Ij respectively, encoding their intensity (ei, ej) and 

spatial position information (si, sj); μ(u, v) indicates the compatibility of labels u and v. 

Substituting (4) into (3), we get:

qi
u ∝ exp −Φ yi

u − ∑
∀v ∈ L

μ(u, v) ∑
m = 1

K
w(m) ∑

∀ j ≠ i
k(m) f i, f j q j

v . (5)

Fully connected CRF predicts the probability of assigning label u to pixel Ii according to Eq. 

(5), and qi
u can be calculated using a mean field iteration algorithm formulated as Recurrent 

Neural Networks so that CNNs and the fully connected CRF are integrated as one deep 

network and can be trained using a back-propagation algorithm (Zheng et al., 2015). Fig. 5 

shows the network structure of CRF-RNN. G1 and G2 in Fig. 5 are two gating functions:

Qin =
Pnorm = softmax(P), initialization, t = 0
Qout = one mean field interation(Qin), 0 < t ≤ T

, (6)

Q final =
0, 0 < t < T
Qout, t = T , (7)

where Q = {qi
u ∣ ∀i ∈ [1, 2, …, M], ∀u ∈ L}, Qin denotes the input Q of one mean-field 

iteration; Qout denotes the output Q of one meanfield iteration; Qfinal denotes the final 

prediction results of CRF-RNN; P denotes the output of FCNNs, and Pnorm denotes the P 
that after softmax operation; t represents the tth mean-field iteration, and T is the total 

number of mean-field iterations. In our study, the unary term −Φ(yi
u) is the output of FCNNs, 

and the pairwise potential Ψ(yi
u, y j

v) are computed based on pixel features fi and fj with 

information provided by Flair, T1c and T2 slices with θα = 160, θβ = 3, θγ = 3 while w and 

μ are learned in the training phase (Zheng et al., 2015). By integrating FCNNs and CRF-

RNN in one deep network, we are able to train the network end-to-end with a typical back-

propagation algorithm (Zheng et al., 2015).

2.3.2.3. The integration of FCNNs and CRF-RNN—The proposed brain tumor 

segmentation network consists of FCNNs and CRF-RNN. The FCNNs predict the 

probability of assigning segmentation labels to each pixel, and the CRF-RNN takes the 

prediction results and image information as its input to globally optimize appearance and 

spatial consistency of the segmentation results according to each pixel’s intensity and 

position information.
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The proposed deep learning network of FCNNs and CRF-RNN is trained in 3 steps: (1) 

training FCNNs using image patches; (2) training CRF-RNN using image slices with 

parameters of FCNNs fixed; and (3) fine-tuning the whole network using image slices.

Once the fine-tune of deep learning based segmentation model is done, the model can be 

applied to image slices one by one for segmenting tumors. Given an w × h image slice with 

3 channels, i.e., pre-processed Flair, T1c, and T2 scans respectively, we first pad the image 

slice with zeros to create 2 larger images with sizes of (w + 17 + 3 n) × (h + 17 + 3 n) × 3 

and (w + 34 + 6 n) × (h + 34 + 6 n) × 3 respectively. Using these 2 larger images as inputs of 

the FCNNs, we obtain 5 label predication images Pu, u = 1, 2, 3, 4, 5, 

Pu = {pi, j
u ∣ i ∈ [1, 2, …, w], j ∈ [1, 2, …, h]}, with the same size of the original image slices. 

pi, j
u  represents one pixel’s predicted probability of brain tissue labels, such as healthy tissue, 

necrosis, edema, non-enhancing core or enhancing core. Then, these label predication 

images P = {Pu | u = 1, 2, 3, 4, 5} along with the image slice I = {IF lair, IT1c, IT2} are used 

as inputs to the CRF-RNN. Finally, the CRF-RNN obtains a globally optimized 

segmentation result of the original image slice. Fig. 3 shows the flowchart of the proposed 

deep learning model integrating FCNNs and CRF-RNN for brain tumor segmentation.

In the training Steps 2 and 3, we first calculate softmax loss according to the current 

segmentation results and the ground truth, and then the loss information is back-propagated 

to adjust network parameters of the integrated FCNNs and CRF-RNN. In the training Step 2, 

we fix FCNNs and adjust the parameters in CRF-RNN. In the training Step 3, we set a small 

learning rate and fine-tune the parameters of the whole network. In our experiments, the 

initial learning rate was set to 10−5 and the learning rate was divided by 10 after each 20 

epoches in the training Step 1, and the learning rate was set to 10−8 and 10−10 respectively in 

the training Steps 2 and 3.

2.3.3. Fusing segmentation results obtained in axial, coronal and sagittal 
views—We train 3 segmentation models using patches and slices of axial, coronal and 

sagittal views respectively. During testing, we use these 3 models to segment brain images 

slice by slice in 3 different views, yielding 3 segmentation results. A majority voting strategy 

is adopted to fuse the segmentation results. Let ra, rc, and rs denote the segmentation results 

of one voxel gotten in axial, coronal and sagittal views respectively, let r denote the 

segmentation result after fusion, let 0, 1, 2, 3, 4 denote a voxel labeled as healthy tissue, 

necrosis, edema, non-enhancing core, and enhancing core respectively, the fused 

segmentation result is obtained by following voting procedure:

Step 1. If two or more than two of ra, rc, and rs are above 0, let r = 2.

Step 2. If two or more than two of ra, rc, and rs equal to 1, let r = 1.

Step 3. If two or more than two of ra, rc, and rs equal to 3, let r = 3.

Step 4. If two or more than two of ra, rc, and rs equal to 4, let r = 4.

2.3.4. Post-processing—To further improve the brain tumor segmentation performance, 

a post-processing method is proposed. Hereinafter, VFlair, VT1c, VT2 denote pre-processed 
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Flair, T1c, T2 MR images respectively, Res denotes the segmentation result obtained by our 

integrated deep learning model, VFlair (x, y, z), VT1c (x, y, z), VT2 (x, y, z), and Res (x, y, z) 

denote the value of voxel (x, y, z) in VFlair, VT1c, VT2, and Res respectively, Res (x, y, z) = 

0, 1, 2, 3, 4 indicates that the voxel (x, y, z) is labeled as healthy tissue, necrosis, edema, 

non-enhancing core, and enhancing core respectively, MeanFlair and MeanT2 denote the 

average intensity of the whole tumor region indicated by Res in VFlair and VT2 scans. For a 

segmentation result Res with N 3D connected tumor regions, meanflair (n) and meant2 (n) 

denote the average intensity of the nth 3D connected tumor area in VFlair and VT2 

respectively. The post-processing method consists of following step:

Step 1. If meanflair (n) > θ11 and meant2 (n) > θ12, set all voxels in the nth 3D 

connected tumor area in Res to be 0 so that the nth 3D connected tumor region is 

removed from Res, taking into consideration that isolated local areas with super high 

intensities are usually caused by imaging noise rather than tumors. In the present 

study, θ11 = θ12 = 150.

Step 2. If a voxel (x, y, z) satisfies the following conditions at the same time:

➀ VFlair (x, y, z) < θ21 × MeanFlair, ➁ VT1c (x, y, z) < θ22, ➂ VT2 (x, y, z) < θ23 × 

MeanT2, ➃ Res (x, y, z) < 4, set Res (x, y, z) = 0.

In general, tumor tissues have high signal in at least one modality of Flair, T1c, and 

T2. Voxels with low signal in Flair, T1c, and T2 at the same time are generally not 

tumor tissues. Thus, this step removes those segmented tumor regions whose 

intensities in Flair, T1c, T2 are below 3 thresholds respectively. However, enhancing 

core is an exception. In the present study, θ21 = 0. 8, θ22 = 125, θ23 = 0.9.

Step 3. Let volume (n) denote the volume of the nth 3D connected tumor area in Res. 
Volumemax is the volume of the maximum 3D connected tumor area in Res. If 

volume (n)/Volumemax < θ31, remove the nth 3D connected segmented tumor region 

in Res. In the present study, θ31 = 0.1.

Step 4. Fill the holes in Res with necrosis. Holes in Res are very likely to be necrosis.

Step 5. If VT1c (x, y, z) < θ41 and Res (x, y, z) = 4, set Res (x, y, z) = 1. Our model 

may mistakenly label necrosis areas as enhancing core. This step corrects this 

potential mistake through a threshold in T1c. In the present study, θ41 = 100.

Step 6. Let vole denote the volume of enhancing core represented in Res, and volt 
denote the volume of the whole tumor. If vole/volt < θ61, VT1c (x, y, z) < θ62, and Res 
(x, y, z) = 2, set Res (x, y, z) = 3. Our tumor segmentation model is not sensitive to 

non-enhancing core. In our model, non-enhancing regions might be mistakenly 

labeled as edema, especially when the enhancing core region is very small. In the 

present study, θ61 = 0.05, θ62 = 85.

The parameters were set based on the BRATS 2013 dataset. Since the number of training 

cases of the BRATS 2013 is small, we did not cross-validate the parameters, therefore they 

are not necessarily optimal. We used the same parameters in all of our experiments, 

including our experiments on BRATS 2013, 2015 and 2016. In addition to the 
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aforementioned post-processing steps, we could also directly use CRF as a post-processing 

step of FCNNs as did in a recent study (Kamnitsas et al., 2017).

3. Experiments

Our experiments were carried out based on imaging data provided by the BRATS 2013, 

2015 and 2016 on a computing server with multiple Tesla K80 GPUs and Intel E5-2620 

CPUs. However, only one GPU and one CPU were useable at the same time for our 

experiments. Our deep learning models were built upon Caffe (Jia et al., 2014).

Based on the BRATS 2013 data, a series of experiments were carried out to evaluate how 

different implementation of the proposed method affect tumor segmentation results with 

respect to CRF, post-processing, image patch size, number of training image patches, pre-

processing, and imaging scans used. We also present segmentation results obtained for the 

BRATS 2013. The segmentation model was built upon the training data and then evaluated 

based on the testing data. Since no ground truth segmentation result for the testing data was 

provided, all the segmentation results were evaluated by the BRATS evaluation website. The 

tumor segmentation performance was evaluated using the BRATS segmentation evaluation 

metrics for complete tumor, core region, and enhancing region, including Dice, Positive 

Predictive Value (PPV), and Sensitivity. Particularly, the complete tumor includes necrosis, 

edema, non-enhancing core, and enhancing core; the core region includes necrosis, non-

enhancing core, and enhancing core; and the enhancing region only includes the enhancing 

core. The tumor segmentation evaluation metrics are defined as follows:

Dice(P∗, T∗) =
∣ P∗ ∩ T∗ ∣

( ∣ P∗ ∣ + ∣ T∗ ∣ )/2 , PPV(P∗, T∗) =
∣ P∗ ∩ T∗ ∣

∣ P∗ ∣ ,

Sensitivity(P∗, T∗) =
∣ P∗ ∩ T∗ ∣

∣ T∗ ∣

where * indicates complete, core or enhancing region, T * denotes the manually labeled 

region, P * denotes the segmented region, | P* ∩ T*| denotes the overlap area between P* and 

T*, and | P* | and | T* | denote the areas of P* and T* respectively.

3.1. Experiments on BRATS 2013 dataset

The BRATS 2013 training dataset contains 10 LGG and 20 HGG. Its testing dataset consists 

of two subsets, namely Challenge and Leaderboard. The Challenge dataset has 10 HGG 

cases and the Leaderboard dataset contains 21 HGG and 4 LGG.

A number of experiments were carried out based on the BRATS 2013 dataset, including (1) 

comparing the segmentation performance of FCNNs with and without post-processing, and 

the performance of the proposed deep learning network integrating FCNNs and CRF-RNN 

(hereinafter referred to as FCNN + CRF) with and without post-processing, in order to 

validate the effectiveness of CRFs and post-processing; (2) evaluating the segmentation 

performance of FCNN + CRF with 5 post-processing steps (6 post-processing steps in total), 

in order to test the effectiveness of each post-processing step; (3) evaluating the 

segmentation performance of FCNNs trained using different sizes of patches; (4) evaluating 
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the segmentation performance of FCNNs trained using different numbers of patches; (5) 

comparing the segmentation performance of segmentation models built upon scans of 4 

imaging sequences (Flair, T1, T1c, and T2) and 3 imaging sequences (Flair, T1c, and T2); 

and (6) evaluating how the image preprocessing step affect the segmentation performance. 

All the above experiments were performed in axial view. Apart from these experiments 

described above, we show the effectiveness of fusing segmentation results of three views in 

Section 3.1.7 and summarize comparison results with other methods in Section 3.1.8.

3.1.1. Evaluating the effectiveness of CRFs and post-processing—Table 1 shows 

the evaluation results of FCNNs with and without post-processing, and FCNN + CRF (our 

integrated network of FCNNs and CRF-RNN) with and without post-processing on the 

BRATS 2013 Challenge dataset and Leaderboard dataset. These results demonstrated that 

CRFs improved the segmentation accuracy and so did the post-processing. With respect to 

both Dice and PPV, FCNN + post-process and FCNN + CRF improved the segmentation 

performance in all complete tumor, core region, and enhancing region. However, CRFs and 

post-process reduced Sensitivity. It is worth noting that CRFs improved Sensitivity of the 

enhancing region. In summary, CRFs improved both the Dice and PPV and decreased the 

Sensitivity on the complete and core regions, FCNN + CRF + post-process obtained the best 

performance with respect to Dice and PPV, but degraded the performance with respect to the 

Sensitivity, especially on the complete tumor region.

We also adopted a 3D CRF based post-processing step as did in a recent study (Kamnitsas et 

al., 2017). Particularly, the parameters of the 3D CRF were optimized by grid searching 

based on the training dataset of BRATS 2013. Table 1 summarizes segmentation scores 

obtained by our method with different settings. These results indicated that 3D CRF as a 

post-processing step could improve the segmentation performance as 3D information was 

taken into consideration. However, our proposed post-processing procedure could further 

improve the segmentation performance.

Fig. 6 shows representative segmentation results on the BRATS 2013 Challenge dataset. 

These segmentation results demonstrated that FCNN + CRF could improve the spatial and 

appearance consistence of segmentation results, and FCNN + CRF + post-process could 

reduce false positives.

3.1.2. Evaluating the effectiveness of each post-processing step—To investigate 

the effectiveness of each post-processing step, we obtained segmentation results of FCNN + 

CRF + post− x, x = 1, 2, …, 6. In particular, FCNN + CRF + post− x indicates FCNN + 

CRF with all other post-processing steps except the step x. As described in Section 2.3.4, 

our post-processing consists of 6 steps in total. All the evaluation results are summarized in 

Table 2. These results indicated that the post-processing Step 3 played the most important 

role in the tumor segmentation, although all these post-processing steps might contribute the 

segmentation.

3.1.3. Evaluating the impact of image patch size—We used different kernel sizes in 

all the pooling layers to train different FCNNs. The training image patch size changed with 

the kernel size, as shown in Fig. 4, while the number of parameters in FCNNs was 
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unchanged. We evaluated the segmentation performance of our segmentation models with n 

= 1,3,5, as summarized in Table 3. When n = 1,3,5, the corresponding sizes of training 

patches are 21 *21 *3 (small input patch) and 41 *41 *3 (large input patch), 27 *27 *3 and 53 
*53 *3, 33 *33 *3 and 65 *65 *3. Bar plots of the Dice of complete regions on the Challenge 

dataset with different training patch sizes are shown in Fig. 7. These segmentation results 

indicated that (1) a bigger patch provided more information and helped improve FCNNs’ 

performance; (2) the CRF-RNN could reduce the performance differences caused by patch 

size as CRF-RNN could optimize the segmentation results according to the information in a 

whole image slice; and (3) the post-processing could further reduce the performance 

difference caused by patch size.

3.1.4. Evaluating the impact of the number of image patches used to train 
FCNNs—The BRATS 2013 training dataset contains 10 LGG and 20 HGG. In our 

experiments, we trained our segmentation model using the 20 HGG cases, and our model 

worked well for segmenting LGG cases. To investigate the impact of the number of training 

patches on the segmentation performance, we trained FCNNs with varied numbers of image 

patches. In particular, we sampled training imaging patches randomly from each subject and 

kept the number of training samples for different classes equal (5 classes in total, including 

normal tissue, necrosis, edema, non-enhancing core, and enhancing core). We generated 3 

sets of image patches by sampling, consisting of 1000*5*20, 3000*5*20, and 5000*5*20 

patches respectively, and used them to train different segmentation models.

The evaluation results are summarized in Table 4. Bar plots of the Dice of complete regions 

on the Challenge dataset with different numbers of training patches are shown in Fig. 8. The 

results shown in Table 4 and Fig. 8 indicated that the brain tumor segmentation accuracy of 

FCNNs increased with the increasing of the number of training patches. However, both 

CRFs and post-processing could reduce the performance difference.

In summary, all the experimental results demonstrated that both CRFs and the post-

processing method can narrow the performance difference caused by training patch sizes and 

training patch numbers, indicating that CRFs and the post-processing method might be able 

to narrow the performance difference caused by other training tricks. We will confirm this 

inference in our future work.

3.1.5. Performance comparison between segmentation models built upon 4 
and 3 imaging modalities—We also built a segmentation model using all available 4 

imaging modalities, i.e., Flair, T1, T1c, and T2, and compared its segmentation performance 

with that of the segmentation model built upon 3 imaging modalities, i.e., Flair, T1c, and T2. 

The segmentation results of these segmentation models are summarized in Table 5. These 

results demonstrated that these two segmentation models achieved similar performance, 

indicating that a segmentation model built upon Flair, T1c, and T2 could achieve 

competitive performance as the model built upon 4 imaging modalities.

3.1.6. Evaluation of different pre-processing strategies on the tumor 
segmentation—We preprocessed the imaging data using our robust deviation based 

intensity normalization and the standard deviation based intensity normalization (Goetz et 

Zhao et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2018 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2014), and then evaluated segmentation models built on them separately. As the results 

shown in Table 6 indicated, the robust deviation based intensity normalization could slightly 

improve the segmentation performance.

3.1.7. Evaluating the effectiveness of fusing the segmentation results gotten 
in three views—We trained 3 segmentation models using patches and slices obtained in 

axial, coronal and sagittal views respectively. During testing, we used these three models to 

segment brain images from 3 views and got three segmentation results. The results of 

different views were fused and the evaluation results are shown in Table 7.

Evaluation results in Table 7 indicated that, for both Challenge and Leaderboard datasets, 

fusing the segmentation results typically led to better segmentation performance without the 

post-processing procedure. However, the improvement became insignificant after the post-

processing procedure was applied to the segmentation results.

3.1.8. Comparison with other methods—Comparison results with other methods are 

summarized in Table 8. In particular, evaluation results of the top ranked methods 

participated in the BRATS 2013, shown on the BRATS 2013 website, are summarized in 

Table 8, along with the results of our method and other two state of art methods. Particularly, 

the method proposed by Sergio Pereira et al (Pereira et al., 2016) ranked first on the 

Challenge dataset and second on the Leaderboard dataset right now, while our method 

ranked second on the Challenge dataset and first on the Leaderboard dataset right now. In 

general, it took 2–4 min for one of the three views of our method to segment one subject’s 

imaging data. We do not have an accurate estimation of the training time for our 

segmentation models since we used a shared GPU server. On the shared GPU server, it took 

~12 days to train our segmentation models.

3.2. Segmentation performance on the BRATS 2015

The BRATS 2015 training dataset contains 54 LGG and 220 HGG, and its testing dataset 

contains 110 cases with unknown grades. All the training cases in BRATS 2013 are reused 

in BRATS 2015 as a subset of its training dataset. As what we have done in our experiments 

with BRATS 2013 dataset, we just used HGG training cases to train our segmentation 

models in this section. We extracted 1000*5 patches from each of 220 HGG to train FCNNs 

and initialed the CRF-RNN by the CRF-RNN trained by BRATS 2013 dataset. The whole 

network was fine-tuned using slices in BRATS 2013 training dataset, which is a subset of 

BRATS 2015 training dataset. The evaluation results of BRATS 2015 testing dataset are 

shown in Table 9, including evaluations of segmentation results that were segmented by the 

models trained by BRATS 2013 training dataset and evaluations of segmentation results that 

were segmented by the models trained in this section.

The results shown in Table 9 indicated that fusing the segmentation results of multi-views 

could improve the segmentation accuracy. These results also indicated that a larger training 

dataset might improve the segmentation performance.

There were only 53 testing cases available during the BRATS 2015, but now there are 110 

testing cases. Therefore, we are not able to directly compare our method with the methods 
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that participated in the BRATS 2015. We are aware that K. Kamnitses et al (Kamnitsas et al., 

2017) have published their evaluation results with 110 BRATS 2015 testing cases. The 

comparisons with K. Kamnitses et al’s method are shown in Table 10.

3.3. Segmentation performance on the BRATS 2016

We also participated in the BRATS 2016. However, during the competition we just 

segmented brain images in axial view. Since the BRATS 2016 shares the same training 

dataset with BRATS 2015, we used the same segmentation models trained based on the 

BRATS 2015 training dataset. The BRATS 2015 training dataset has been pre-processed 

with rigid registration, bias field correction and skull stripping. However, the BRATS 2016 

test dataset contains a number of unprocessed or partially pre-processed images (Le Folgoc 

et al., 2016), as shown in Fig. 9. To reduce false positives caused by incomplete pre-

processing, apart from the post-processing steps described in Section 2.3.4, we manually 

placed rectangular bounding boxes around tumors in images and applied the post-processing 

Step 2 to the segmentation results. Among 19 teams participated in the BRATS 2016, we 

ranked first on the multi-temporal evaluation. The ranking details of our method are shown 

in Table 11.

4. Discussions and conclusion

In this study, we proposed a novel deep learning based brain tumor segmentation method by 

integrating Fully Convolutional Neural Networks (FCNNs) and Conditional Random Fields 

(CRFs) in a unified framework. This integrated model was designed to obtain tumor 

segmentation results with appearance and spatial consistency. In our method, we used CRF-

RNN to implement CRFs (Zheng et al., 2015), facilitating easy training of both FCNNs and 

CRFs as one deep network, rather than using CRFs as a post-processing step of FCNNs. Our 

integrated deep learning model was trained in 3 steps, using image patches and slices 

respectively. In the first step, image patches were used to train FCNNs. These image patches 

were randomly sampled from the training dataset and the same number of image patches for 

each class was used as training image patches, in order to avoid the data imbalance problem. 

In the second step, image slices were used to train the following CRF-RNN, with parameters 

of FCNNs fixed. In the third step, image slices were used to fine-tune the whole network. 

Particularly, we train 3 segmentation models using 2D image patches and slices obtained in 

axial, coronal and sagittal views respectively, and combine them to segment brain tumors 

using a voting based fusion strategy. Our experimental results also indicated that the 

integration of FCNNs and CRF-RNN could improve the segmentation robustness to 

parameters involved in the model training, such as image patch size and the number of 

training image patches. Our experimental results also demonstrated that a tumor 

segmentation model built upon Flair, T1c, and T2 scans achieved competitive performance 

as those built upon Flair, T1, T1c, and T2 scans.

We also proposed a simple pre-processing strategy and a simple post-processing strategy. 

We pre-processed each MR scan using N4ITK and intensity normalization, which 

normalized each MR image’s intensity mainly by subtracting the gray-value of the highest 

frequency and dividing the robust deviation. The results shown in Figs. 1 and 2 
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demonstrated that the proposed intensity normalization method could make different MRI 

scans com parable, i.e., similar intensity values characterize similar brain tissues across 

scans. We post-processed the segmentation results by removing small 3D-connected regions 

and correcting false labels by simple thresholding method. Our experimental results have 

demonstrated that these strategies could improve the tumor segmentation performance.

Our method has achieved promising performance on the BRATS 2013 and BRATS 2015 

testing dataset. Different from other top ranked methods, our method could achieve 

competitive performance with only 3 imaging modalities (Flair, T1c, and T2), rather than 4 

(Flair, T1, T1c, and T2). We also participated in the BRATS 2016 and our method ranked 

first on its multi-temporal evaluation.

Our method is built upon 2D FCNNs and CRF-RNN to achieve computational efficiency. 

For training CRF-RNN and fine-tuning the integrated FCNNs and CRF-RNN, we use image 

slices as training data. However, in image slices, the numbers of pixels for different classes 

are different, which may worsen the segmentation performance of the trained network. To 

partially overcome the imbalanced training data problem, we trained CRF-RNN with the 

parameters of FCNNs were fixed so that the CRF-RNN are trained to optimize the 

appearance and spatial consistency of segmentation results. Such a strategy in conjunct with 

a fine-tuning of the whole network with a small learning rate improved the tumor 

segmentation performance. However, 2D CNNs are not equipped to take full advantage of 

3D information of the MRI data (Kamnitsas et al., 2017; Yi et al., 2016). Our experimental 

results have demonstrated adopting 3D CRF as a post-processing step could improve the 

tumor segmentation performance. Our ongoing study is to build a fully 3D network to 

further improve the tumor segmentation performance.
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Fig. 1. 
T2 scans before (top row) and after (bottom row) the proposed intensity normalization. 

(a-1)–(a-3) and (b-1)–(b-3) are randomly selected subjects from the BRATS 2013, and 

(a-4)–(a-6) and (b-4)–(b-6) are randomly selected subjects from the BRATS 2015. (a-1)–

(a-6): before normalization; (b-1)–(b-6): after normalization. All the scans were 

preprocessed by N4ITK and the proposed normalization step 1.
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Fig. 2. 
Image intensity histograms of T2 scans of 30 subjects from the BRATS 2013 training dataset 

before (left) and after (right) the intensity normalization. All the scans were preprocessed by 

N4ITK and the proposed normalization step 1.
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Fig. 3. 
Flowchart of the proposed deep learning model integrating FCNNs and CRFs for brain 

tumor segmentation.

Zhao et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2018 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The network structure of our deep FCNNs.

Zhao et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2018 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
The network structure of CRF-RNN.
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Fig. 6. 
Example segmentation results on the BRATS 2013 Challenge dataset. The first and second 

rows show the segmentation results of the 50th and 80th slice of the axial view of Subject 

0301. The third and fourth rows show the segmentation results of the 40th and 70th slice of 

the axial view of Subject 0308. From left to right: Flair, T1c, T2, segmentation results of 

FCNNs, segmentation results of FCNN + CRF, and segmentation results of FCNN + CRF + 

post-process. In the segmentation results, each gray level represents a tumor class, from low 

to high: necrosis, edema, non-enhancing core, and enhancing core.
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Fig. 7. 
Bar plots for the Dice of complete regions on the Challenge dataset with different training 

patch sizes.
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Fig. 8. 
Bar plots for the Dice of complete regions on the Challenge dataset with different numbers 

of training image patches.
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Fig. 9. 
An example of partial skull stripping case in BRATS 2016 testing dataset. From left to right: 

Flair, T1c, T2.
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