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Abstract

Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis,
treatment planning, and treatment outcome evaluation. Build upon successful deep learning
techniques, a novel brain tumor segmentation method is developed by integrating fully
convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified
framework to obtain segmentation results with appearance and spatial consistency. We train a deep
learning based segmentation model using 2D image patches and image slices in following steps: 1)
training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-
RNN) using image slices with parameters of FCNNSs fixed; and 3) fine-tuning the FCNNs and the
CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image
patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to
segment brain tumors using a voting based fusion strategy. Our method could segment brain
images slice-by-slice, much faster than those based on image patches. We have evaluated our
method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation
Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have
demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and
achieve competitive performance as those built with Flair, T1, T1c, and T2 scans.
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1. Introduction

Accurate brain tumor segmentation is of great importance in cancer diagnosis, treatment
planning, and treatment outcome evaluation. Since manual segmentation of brain tumors is
laborious (Bauer et al., 2013), an enormous effort has devoted to the development of semi-
automatic or automatic brain tumor segmentation methods. Most of the existing brain tumor
segmentation studies are focusing on gliomas that are the most common brain tumors in
adults and can be measured by Magnetic Resonance Imaging (MRI) with multiple
sequences, such as T2-weighted fluid attenuated inversion recovery (Flair), T1-weighted
(T1), T1-weighted contrast-enhanced (T1c), and T2-weighted (T2). The segmentation of
gliomas based on MRI data is challenging for following reasons: (1) gliomas may have the
same appearance as gliosis and stroke in MRI data (Goetz et al., 2016); (2) gliomas may
appear in any position of the brain with varied shape, appearance and size; (3) gliomas
invade the surrounding brain tissues rather than displacing them, causing fuzzy boundaries
(Goetz et al., 2016); and (4) intensity inhomogeneity of MRI data further increases the
difficulty.

The existing automatic and semi-automatic brain tumor segmentation methods can be
broadly categorized as either generative model based or discriminative model based methods
(Menze et al., 2015). The generative model based brain tumor segmentation methods
typically require prior information, which could be gained through probabilistic image
atlases (Gooya et al., 2012 ; Cuadra et al., 2004 ; Menze et al., 2010). Based on probabilistic
image atlases, the brain tumor segmentation problem can be modeled as an outlier detection
problem (Prastawa et al., 2004).

On the other hand, the discriminative model based methods solve the tumor segmentation
problem in a pattern classification setting, i.e., classifying image voxels as tumor or normal
tissues based on image features. The performance of discriminative model based
segmentation methods are hinged on the image features and classification algorithms. A
variety of image features have been adopted in tumor segmentation studies, including local
histograms (Goetz et al., 2014), image textures (Reza and Iftekharuddin, 2014), structure
tensor eigenvalues (Kleesiek et al., 2014), and so on. The most commonly adopted pattern
classification algorithms in brain tumor segmentation studies are support vector machines
(SVMs) (Ruan et al., 2007 ; Li and Fan, 2012 ; Li et al., 2010) and random forests (Goetz et
al., 2014 ; Reza and Iftekharuddin, 2014 ; Kleesiek et al., 2014 ; Meier et al., 2014).

More recently, deep learning techniques have been adopted in brain tumor segmentation
studies following their success in general image analysis fields, such as images classification
(Krizhevsky et al., 2012), objects detection (Girshick et al., 2014), and semantic
segmentation (Long et al., 2015 ; Zheng et al., 2015 ; Liu et al., 2015). Particularly,
Convolutional Neural Networks (CNNs) were adopted for brain tumor image segmentation
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in the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2014 (Zikic et al.,
2014 ; Davy et al., 2014 ; Urban et al., 2014). More deep learning based brain tumor
segmentation methods were presented in the BRATS 2015 and different deep learning
models were adopted, including CNNs (Dvorak and Menze, 2015 ; Havaei et al., 2015 ;
Pereira et al., 2015), convolutional restricted Boltzman machines (Agn et al., 2015), and
Stacked Denoising Autoencoders (Vaidhya et al., 2015).

Among the deep learning based tumor segmentation methods, the methods built upon CNNs
have achieved better performance. Particularly, both 3D-CNNs (Urban et al., 2014 ;
Kamnitsas et al., 2017 ; Vi et al., 2016) and 2D-CNNs (Zikic et al., 2014 ; Davy et al., 2014 ;
Dvorak and Menze, 2015 ; Havaei et al., 2015 ; Pereira et al., 2015 ; Havaei et al., 2017 ;
Pereira et al., 2016) models were adopted to build tumor segmentation methods. Although
3D-CNNs can potentially take full advantage of 3D information of the MRI data, the
network size and computational cost are increased too. Therefore, 2D-CNNs have been
widely adopted in the brain tumor segmentation methods. Davy et al. proposed a deep
learning method with two pathways of CNNs, including a convolutional pathway and a
fully-connected pathway (Davy et al., 2014). Dvorak et al. modeled the multi-class brain
tumor segmentation task as 3 binary segmentation sub-tasks and each sub-task was solved
using CNNs (Dvorak and Menze, 2015). Very deep CNNSs (Simonyan and Zisserman, 2014)
were adopted to segment tumors by Pereira et al. (2015). Most of these brain tumor
segmentation methods train CNNSs using image patches, i.e., local regions in MR images.
These methods classify each image patch into different classes, such as healthy tissue,
necrosis, edema, non-enhancing core, and enhancing core. The classification result of each
image patch is used to label its center voxel for achieving the tumor segmentation. Most of
the above CNN brain tumor segmentation methods assumed that each voxel’s label is
independent, and they didn’t take the appearance and spatial consistency into consideration.
To take the local dependencies of labels into account, Havaei et al. constructed a cascaded
architecture by taking the pixel-wise probability segmentation results obtained by CNNs
trained at early stages as additional input to their following CNNs (Havaei et al., 2015,
2017). To take into consideration appearance and spatial consistency of the segmentation
results, Markov Random Fields (MRFs), particularly Conditional Random Fields (CRFs),
have been integrated with deep learning techniques in image segmentation studies, either
used as a post-process step of CNNs (Kamnitsas et al., 2017 ; Chen et al., 2014) or
formulated as neural networks (Zheng et al., 2015 ; Liu et al., 2015). In the latter setting,
both CNNs and MRFs/CRFs can be trained with back-propagation algorithms, tending to
achieve better segmentation performance.

Multiple 2D CNNs could be integrated for segmenting 3D medical images. In particular,
Prasoon et al. proposed a triplanar CNN (Prasoon et al., 2013) for knee cartilage
segmentation. The triplanar network used 3 CNNs to deal with patches extracted from xy, yz
and zx planes and fused them using a softmax classifier layer. Fritscher et al. proposed a
pseudo 3D patch-based approach (Fritscher et al., 2016), consisting of 3 convolutional
pathways for image patches in axial, coronal, and sagittal views respectively and fully
connected layers for merging them. Setio et al. used multi-view convolutional networks for
pulmonary nodule detection (Setio et al., 2016). Their proposed network architecture
composed multiple streams of 2D CNNs, each of which was used to deal with patches
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extracted in a specific angle of the nodule candidates. The outputs of the multiple streams of
2D CNNs were finally combined to detect pulmonary nodules. However, all these methods
built CNNs upon image patches, not readily extendable for building FCNNS.

Preprocessing of MRI data plays an important role in the discriminative model based tumor
segmentation methods that assume different MRI scans of the same modality have
comparable image intensity information. The intensities of different MRI scans can be
normalized by subtracting their specific mean values and dividing by their specific standard
deviation values or by matching histograms (Kleesiek et al., 2014 ; Urban et al., 2014).
However, the mean values of intensities of different MRI scans do not necessarily
correspond to the same brain tissue, and the histogram matching might not work well for
tumor segmentation studies (Goetz et al., 2014). A robust intensity normalization has been
adopted in tumor segmentation studies by subtracting the gray-value of the highest
histogram bin and normalizing the standard deviation to be 1 (Goetz et al., 2014).

Inspired by the success of deep learning techniques in medical image segmentation, we
propose a new brain tumor segmentation method by integrating Fully Convolutional Neural
Networks (FCNNs) and CRFs in a unified framework. Particularly, we formulate the CRFs
as Recurrent Neural Networks (Zheng et al., 2015), referred to as CRF-RNN. The integrative
model of FCNNs and CRF-RNN is trained in 3 steps: (1) training FCNNs using image
patches; (2) training CRF-RNN using image slices with parameters of FCNNs fixed; and (3)
fine-tuning the whole network using image slices. To make use of 3D information provided
by 3D medical images, we train 3 segmentation models using 2D image patches and slices
obtained in axial, coronal and sagittal views respectively, and combine them to segment
brain tumors using a voting based fusion strategy. The proposed method is able to segment
brain images slice-by-slice, which is much faster than the image patch based segmentation
methods. Our method could achieve competitive segmentation performance based on 3 MR
imaging modalities (Flair, T1c, T2), rather than 4 modalities (Flair, T1, T1c, T2) (Menze et
al., 2015 ; Goetz et al., 2014 ; Reza and Iftekharuddin, 2014 ; Kleesiek et al., 2014 ; Meier et
al., 2014 ; Zikic et al., 2014 ; Davy et al., 2014 ; Urban et al., 2014 ; Dvorak and Menze,
2015 ; Havaei et al., 2015 ; Pereira et al., 2015 ; Agn et al., 2015 ; Vaidhya et al., 2015 ;
Kamnitsas et al., 2017 ; Yi et al., 2016 ; Havaei et al., 2017 ; Pereira et al., 2016), which
could help reduce the cost of data acquisition and storage. We have evaluated our method
based on imaging data provided by the Multimodal Brain Tumor Image Segmentation
Challenge (BRATS) 2013, the BRATS 2015, and the BRATS 2016. The experimental results
have demonstrated that our method could achieve promising brain tumor segmentation
performance. Preliminary results have been reported in a conference proceeding paper of the
BRATS 2016 (Zhao et al., 2016).

2. Methods and materials

2.1. Imaging data

All the imaging data used in this study were obtained from the BRATS 2013, the BRATS
20152 and the BRATS 2016.3 The BRATS 2013 provided clinical imaging data of 65 glioma

1https://wvvvv.virtualskeIeton.ch/BRATS/Start2013.
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patients, including 14 patients with low-grade gliomas (LGG) and 51 patients with high-
grade gliomas (HGG). The patients were scanned with MRI scanners from different vendors
at 4 different centers, including Bern University, Debrecen University, Heidelberg
University, and Massachusetts General Hospital. Each patient had multi-parametric MRI
scans, including T2-weighted fluid attenuated inversion recovery (Flair), T1-weighted (T1),
T1-weighted contrast-enhanced (T1c), and T2-weighted (T2). All the MRI scans of the same
patient were rigidly co-registered to their T1c scan and resampled at 1 mm isotropic
resolution in a standardized axial orientation with a linear interpolator (Menze et al., 2015).
All images were skull stripped. Ground truths were produced by manual annotations. The
cases were split into training and testing sets. The training set consists of 20 HGG and 10
LGG cases. The testing set consists of Challenge and Leaderboard subsets. The Challenge
dataset has 10 HGG cases and the Leaderboard dataset contains 21 HGG and 4 LGG.

The imaging dataset provided by BRATS 2015 contains imaging data obtained from the
BRATS 2012, 2013, and the NIH Cancer Imaging Archive (TCIA). Each case has Flair, T1,
Tlc, and T2 scans aligned onto the same anatomical template space and interpolated at 1
mm?3 voxel resolution. The testing dataset consists of 110 cases with unknown grades, and
the training dataset consists of 220 HGG and 54 LGG cases. In the testing dataset, the
ground truth of each case was produced by manual annotation. In the training dataset, all the
cases from the BRATS 2012 and 2013 were labeled manually, and the cases from the TCIA
were annotated by fusing segmentation results obtained using top-ranked methods of the
BRATS 2012 and 2013. The annotations were inspected visually and approved by
experienced raters. The tumor labels of the training cases are provided along with their
imaging scans, while only imaging data are provided for the testing cases for blind
evaluation of the segmentation results.

BRATS 2016 shares the same training dataset with BRATS 2015, which consists of 220
HGG and 54 LGG. Its testing dataset consists of 191 cases with unknown grades. The
ground truth of each testing case was produced by manual annotation, not released to the
competition participants.

2.2. Brain tumor segmentation methods based on FCNNs trained using image patches

Deep learning techniques, particularly CNNs, have been successfully adopted in image
segmentation studies. A deep learning model of CNNs usually has millions or even billions
of parameters. To train the deep CNNs with sufficient training samples, image patch-based
techniques are adopted (Zikic et al., 2014 ; Davy et al., 2014 ; Urban et al., 2014 ; Dvorak
and Menze, 2015 ; Havaei et al., 2015, 2017; Pereira et al., 2015 ; Kamnitsas et al., 2017 ;
Pereira et al., 2016 ; Zhang et al., 2015 ; Moeskops et al., 2016 ; de Brebisson and Montana,
2015). With the image patch based representation, the image segmentation problem can be
solved as a classification problem of image patches.

An image patch is a local region extracted from an image to characterize its central pixel/
voxel in 2D/3D, and has the same label as its center pixel/voxel’s label in the classification

thtps://wvvw.virtualskeIeton.ch/BRATS/StartZOlS.
3https://wvvvv.virtualskeIeton.ch/BRATS/StartZOlG.
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problem. In the training phase, a large number of image patches can be extracted to train the
CNN:Ss. In the testing phase, image patches extracted from a testing image are classified one
by one by the trained CNNSs. Then, the classification results of all image patches make up a
segmentation result of the testing image. However, FCNNSs can segment a testing image slice
by slice with improved computational efficiency (Havaei et al., 2017), even though the
model is trained using image patches. Since the number and location of training image
patches for each class can be easily controlled by changing the image patch sampling
scheme, image patch-based deep learning segmentation methods can avoid the training
sample imbalance problem. However, a limitation of image patch-based segmentation
methods is that relationship among image patches is typically lost. Integrating CRF-RNN
with FCNNs tends to overcome such a limitation in tumor segmentation.

2.3. The proposed brain tumor segmentation method

The proposed brain tumor segmentation method consists of 4 main steps: pre-processing,
segmenting image slices using deep learning models with integrated FCNNs and CRF-RNN
from axial, coronal and sagittal views respectively, fusing segmentation results obtained in
the three different views, and post-processing.

2.3.1. Pre-processing of the imaging data—Since MRI scans typically have varied
intensity ranges and are affected by bias fields differently, we adopted a robust intensity
normalization method to make MRI scans of different patients comparable, besides
correcting the bias field of MRI data using N4ITK (Tustison et al., 2010). Our normalization
method is built upon the image mode based method (Goetz et al., 2014), which normalizes
image intensity by subtracting the image mode (e.g. the gray-value of the highest histogram
bin) and normalizing the standard deviation to be 1. As almost half of the brain is the whiter
matter (Fields, 2010), the gray-value of the highest histogram bin typically corresponds to
the gray-value of the white matter, and therefore matching intensity values of the white
matter across MRI scans and normalizing the intensity distributions accordingly would
largely make different MRI scans comparable. However, the standard deviation calculated
based on intensity mean value does not necessarily have a fixed tissue meaning. Therefore,
in our study a robust intensity deviation is adopted to replace the standard deviation used in
Goetz et al. (2014). The robust deviation is computed based on the gray-value of the highest
histogram bin, representing the discreteness of intensity to the gray-value of white matter.
Besides, the intensity mean is more sensitive to noise than the gray value of the highest
histogram bin. Thus the standard deviation calculated based on intensity mean is more
sensitive to noise than the robust deviation.

Given an MRI scan Vwith voxels {11, v, -+, Va}, and each voxel vy has intensity /4, k=1,

2, -, IV, the robust deviation & = JszZ l(f — Ik)Z/N, where /denotes the gray-value of the

highest histogram bin. Our intensity normalization procedure is following:
Step 1. Transform the intensity range to 0-255 linearly.

Step 2. Calculate the intensity histogram, with 256 bins.
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Step 3. Subtract the gray-value of the highest histogram bin 7and divide the robust
deviation.

Step 4. Multiply each voxel’s intensity by a constant o-and plus a constant /. Then,
set the intensities that are below 0 or above 255 to 0 and 255 respectively. In the
present study, we set oand / equal to the gray-value of the highest histogram bin and
robust deviation of NO. 0001 HGG clinical training image data of BRATS 2013,
which has been pre-processed by N4ITK and the Step 1. For the Flair, T1c, and T2
scans, o= 30, 31, 37 and /y = 75, 99, 55 respectively.

The image intensity normalization effect is illustrated with T2 scans in Fig. 1. Particularly,
we randomly selected 3 subjects from the BRATS 2013 and 3 subjects from the BRATS
2015. The results shown in Fig. 1 clearly demonstrated that the image intensity
normalization could improve comparability of different scans. The improvement is further
confirmed by image intensity histograms of 30 subjects from the BRATS 2013 training
dataset, as shown in Fig. 2.

2.3.2. A deep learning model integrating FCNNs and CRFs—The proposed deep
learning model for brain tumor segmentation integrates Fully Convolutional Neural
Networks (FCNNs) and Conditional Random Fields (CRFs), as illustrated by Fig. 3. We
formulated CRFs as Recurrent Neural Networks (RNNs), referred to as CRF-RNN (Zheng et
al., 2015). The proposed method could segment brain images slice by slice.

2.3.2.1. FCNNSs: The structure of our proposed FCNNs is illustrated by Fig. 4. Similar to the
network architectures proposed in Kamnitsas et al. (2017) and Havaei et al. (2017), the
inputs to our network are also in 2 different sizes. Passing through a series of convolutional
and pooling layers, the larger inputs turn into feature maps with the same size of smaller
inputs. These feature maps and smaller inputs are sent into following networks together. In
this way, both local image information and context information in a larger scale can be taken
into consideration for classifying image patches. Different from the cascaded architecture
proposed in Havaei et al. (2017), the two branches in our FCNNs are trained simultaneously,
rather than trained in different steps. Furthermore, our model has more convolutional layers.

Our deep FCNNSs are trained using image patches, which are extracted from slices of the
axial view, coronal view or sagittal views randomly. Equal numbers of training samples for
different classes are extracted to avoid data imbalance problem. There are 5 classes in total,
including healthy tissue, necrosis, edema, non-enhancing core, and enhancing core.

As shown in Fig. 4, in our deep FCNNSs, the kernel size of each max pooling layer is set to n
x n, and the size of image patches used to train FCNNSs is proportional to the kernel size.
Different settings of the kernel size or equivalently the image patch size may affect the
tumor segmentation performance. The max pooling layers of our FCNNs are used to capture
image information in large scales with a relatively small number of network parameters. We
set the stride of each layer to be 1. Therefore, in the testing stage, our model can segment
brain images slice by slice.
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2.3.2.2. CRF-RNN: CRF-RNN formulates 2D fully connected Conditional Random Fields
as Recurrent Neural Networks (Zheng et al., 2015). Given a 2D image /, comprising a set of
pixels {/{/=1, ..., M}, the image segmentation problem is solved as an optimization
problem using fully connected CRFs by minimizing an energy function (Krahenbuhl and
Koltun, 2011):

M
Em =Y o)+ > by @

i=1 Vi, i< j
where Yis a certain label assignmentto /, 7, j€ {1, ..., M}, y;.‘ denotes the assignment of
label uto pixel /;, y}). denotes the assignment of label vto pixel /; v, v€ L={h, b, -, Ic}
are segmentation labels, the unary term &(y:) measures the cost of assigning label vto pixel

/;, and the pairwise term ‘P(y?, y;.) measures the cost of assigning label ¢and vjointly to /;

and /; According to Liu et al. (2015), minimizing £(Y) equals to minimizing an energy
function:

FQ =Y X do0)+ Y XY > qavpiy)+ ;VZL(J?W]?, )
l ue

Vi VuelL Vi,j,i<jVYueLVveL

where ¢’ denotes the probability of assigning label v to pixel /; which is the variable that we

aim to estimate.

Differentiating Eq. (2) with respect to ¢} and setting the differentiation result equal to 0, we

have
g < epl-0() = Y D gL @)
iT#ivwel

The unary term (D(y;‘) can be obtained from the FCNNSs, and the pairwise potential ‘I’(y?, y;)

is defined as
K
¥ol) = we) 3K 5 0
m=1

where K = 2 is the number of Gaussian kernel; A is a Gaussian kernel,

) |sl.—s.| |ei—e.| @) |Si_s'| . .
K = exp (- 21 - 21 yand £'%) = exp( - 21 ) (¢;and e;denote the intensity of
20 20 20
a p Y
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/jand /;respectively, s;and s;denote spatial coordinates of /;and /; 6,, 6gand 6, are
parameters of the Gaussian kernels); wA”) is a weight for the Gaussian kernel A; f;and 7;
denote image feature vectors of /;and /;respectively, encoding their intensity (¢, €) and
spatial position information (s; $); /v, V) indicates the compatibility of labels vand v.
Substituting (4) into (3), we get:

K
q! o exp}—®@(y!) - ZL,u(u, V) le(m)vz .k(m)(fi, fj)q‘;. . (5)

Vv e Jj#

Fully connected CRF predicts the probability of assigning label «to pixel /;according to Eq.
(5), and ¢ can be calculated using a mean field iteration algorithm formulated as Recurrent

Neural Networks so that CNNs and the fully connected CRF are integrated as one deep
network and can be trained using a back-propagation algorithm (Zheng et al., 2015). Fig. 5
shows the network structure of CRF-RNN. G1 and G2 in Fig. 5 are two gating functions:

Pm= softmax(P), initialization, t =0

Qin = (6)

Qom = one mean field interation(Qm), 0<t<T

0, 0<t<T

Qﬁnal = lQout’ t=T" (7)

where 0 = {ql?‘ | Vie[1,2,...,M],Vu € L}, Qj,denotes the input @ of one mean-field

iteration; Q,,;denotes the output Q of one meanfield iteration; Qs denotes the final
prediction results of CRF-RNN; P denotes the output of FCNNS, and P, denotes the P
that after softmax operation; Zrepresents the #7 mean-field iteration, and 7 is the total

number of mean-field iterations. In our study, the unary term —@(y?) is the output of FCNNSs,

and the pairwise potential ‘I‘(yf.‘, y}}.) are computed based on pixel features fjand 7;with

information provided by Flair, T1c and T2 slices with 8, = 160, 8= 3, 8, = 3 while wand
L are learned in the training phase (Zheng et al., 2015). By integrating FCNNs and CRF-
RNN in one deep network, we are able to train the network end-to-end with a typical back-
propagation algorithm (Zheng et al., 2015).

2.3.2.3. The integration of FCNNs and CRF-RNN—The proposed brain tumor
segmentation network consists of FCNNs and CRF-RNN. The FCNNs predict the
probability of assigning segmentation labels to each pixel, and the CRF-RNN takes the
prediction results and image information as its input to globally optimize appearance and
spatial consistency of the segmentation results according to each pixel’s intensity and
position information.
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The proposed deep learning network of FCNNs and CRF-RNN is trained in 3 steps: (1)
training FCNNs using image patches; (2) training CRF-RNN using image slices with
parameters of FCNNSs fixed; and (3) fine-tuning the whole network using image slices.

Once the fine-tune of deep learning based segmentation model is done, the model can be
applied to image slices one by one for segmenting tumors. Given an wx /image slice with
3 channels, i.e., pre-processed Flair, T1c, and T2 scans respectively, we first pad the image
slice with zeros to create 2 larger images with sizes of (w+ 17 +3 n) x (h+17+3 n) x 3
and (w+ 34 +6 n) x (h+ 34 +6 n) x 3 respectively. Using these 2 larger images as inputs of
the FCNNSs, we obtain 5 label predication images 7/, u=1, 2, 3, 4, 5,

Pt = {p;{j lie[1,2,....,w], j€[l,2,....h]}, with the same size of the original image slices.

pzj represents one pixel’s predicted probability of brain tissue labels, such as healthy tissue,

necrosis, edema, non-enhancing core or enhancing core. Then, these label predication
images P={A/| u=1, 2, 3, 4, 5} along with the image slice /={/r 3 /710 72} are used
as inputs to the CRF-RNN. Finally, the CRF-RNN obtains a globally optimized
segmentation result of the original image slice. Fig. 3 shows the flowchart of the proposed
deep learning model integrating FCNNs and CRF-RNN for brain tumor segmentation.

In the training Steps 2 and 3, we first calculate softmax loss according to the current
segmentation results and the ground truth, and then the loss information is back-propagated
to adjust network parameters of the integrated FCNNs and CRF-RNN. In the training Step 2,
we fix FCNNs and adjust the parameters in CRF-RNN. In the training Step 3, we set a small
learning rate and fine-tune the parameters of the whole network. In our experiments, the
initial learning rate was set to 10 and the learning rate was divided by 10 after each 20
epoches in the training Step 1, and the learning rate was set to 1078 and 10710 respectively in
the training Steps 2 and 3.

2.3.3. Fusing segmentation results obtained in axial, coronal and sagittal
views—We train 3 segmentation models using patches and slices of axial, coronal and
sagittal views respectively. During testing, we use these 3 models to segment brain images
slice by slice in 3 different views, yielding 3 segmentation results. A majority voting strategy
is adopted to fuse the segmentation results. Let 7, r, and r;denote the segmentation results
of one voxel gotten in axial, coronal and sagittal views respectively, let rdenote the
segmentation result after fusion, let 0, 1, 2, 3, 4 denote a voxel labeled as healthy tissue,
necrosis, edema, non-enhancing core, and enhancing core respectively, the fused
segmentation result is obtained by following voting procedure:

Step 1. If two or more than two of 7, r,, and r;are above 0, let r=2.
Step 2. If two or more than two of r,, 1, and rsequal to 1, let r=1.
Step 3. If two or more than two of r,, r,, and rsequal to 3, let r= 3.
Step 4. If two or more than two of 7, r,, and rsequal to 4, let r= 4.

2.3.4. Post-processing—To further improve the brain tumor segmentation performance,
a post-processing method is proposed. Hereinafter, Ve, Ve V72 denote pre-processed
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Flair, T1c, T2 MR images respectively, Res denotes the segmentation result obtained by our
integrated deep learning model, Ve,ir (X, ¥, 2), Ve (X Y, 2), Vo (X, ¥, 2), and Res (x, v, 2)
denote the value of voxel (x, y; 2) in Ve, Ve Vo, and Resrespectively, Res(x, y, 2) =
0, 1, 2, 3, 4 indicates that the voxel (x, y, 2) is labeled as healthy tissue, necrosis, edema,
non-enhancing core, and enhancing core respectively, Meang;,;rand Meany, denote the
average intensity of the whole tumor region indicated by Resin Vg,j-and V7, scans. For a
segmentation result Reswith A/ 3D connected tumor regions, /meanygg, (1) and meany (1)
denote the average intensity of the 773D connected tumor area in Vi;-and Vo
respectively. The post-processing method consists of following step:

Step 1. If meany;, (n) > 611 and meang (r) > 615, set all voxels in the 773D
connected tumor area in Resto be 0 so that the 777 3D connected tumor region is
removed from Res, taking into consideration that isolated local areas with super high
intensities are usually caused by imaging noise rather than tumors. In the present
study, &1 = 612 = 150.

Step 2. If a voxel (x, y, 2) satisfies the following conditions at the same time:

O Venir (X, 1 2) < 621 % Meangain @ Ve (X 1 2) < 622, @ Vi (X Y, 2) < B3 %
Meanm, ® Res(x, y, 2) <4, set Res(x, y, 2) = 0.

In general, tumor tissues have high signal in at least one modality of Flair, T1c, and
T2. Voxels with low signal in Flair, T1c, and T2 at the same time are generally not
tumor tissues. Thus, this step removes those segmented tumor regions whose
intensities in Flair, T1c, T2 are below 3 thresholds respectively. However, enhancing
core is an exception. In the present study, 6,1 = 0. 8, 6, = 125, 6,3 =10.9.

Step 3. Let volume (n) denote the volume of the 77 3D connected tumor area in Res.
Volume,,y is the volume of the maximum 3D connected tumor area in Res. If
volume (n)/ Volume < 651, remove the 713D connected segmented tumor region
in Res. In the present study, 831 = 0.1.

Step 4. Fill the holes in Reswith necrosis. Holes in Resare very likely to be necrosis.

Step 5. If V(X ), 2) < 641 and Res (x, y, 2) = 4, set Res (x, y, 2) = 1. Our model
may mistakenly label necrosis areas as enhancing core. This step corrects this
potential mistake through a threshold in T1c. In the present study, €41 = 100.

Step 6. Let vol, denote the volume of enhancing core represented in Res, and vol;
denote the volume of the whole tumor. If voldvoli< 51, V10 (X, ¥, 2) < Bgp, and Res
(X, ¥, 2) = 2, set Res(x, y, 2) = 3. Our tumor segmentation model is not sensitive to
non-enhancing core. In our model, non-enhancing regions might be mistakenly
labeled as edema, especially when the enhancing core region is very small. In the
present study, 851 = 0.05, G5 = 85.

The parameters were set based on the BRATS 2013 dataset. Since the number of training
cases of the BRATS 2013 is small, we did not cross-validate the parameters, therefore they
are not necessarily optimal. We used the same parameters in all of our experiments,
including our experiments on BRATS 2013, 2015 and 2016. In addition to the
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aforementioned post-processing steps, we could also directly use CRF as a post-processing
step of FCNNs as did in a recent study (Kamnitsas et al., 2017).

3. Experiments

Our experiments were carried out based on imaging data provided by the BRATS 2013,
2015 and 2016 on a computing server with multiple Tesla K80 GPUs and Intel E5-2620
CPUs. However, only one GPU and one CPU were useable at the same time for our
experiments. Our deep learning models were built upon Caffe (Jia et al., 2014).

Based on the BRATS 2013 data, a series of experiments were carried out to evaluate how
different implementation of the proposed method affect tumor segmentation results with
respect to CRF, post-processing, image patch size, number of training image patches, pre-
processing, and imaging scans used. We also present segmentation results obtained for the
BRATS 2013. The segmentation model was built upon the training data and then evaluated
based on the testing data. Since no ground truth segmentation result for the testing data was
provided, all the segmentation results were evaluated by the BRATS evaluation website. The
tumor segmentation performance was evaluated using the BRATS segmentation evaluation
metrics for complete tumor, core region, and enhancing region, including Dice, Positive
Predictive Value (PPV), and Sensitivity. Particularly, the complete tumor includes necrosis,
edema, non-enhancing core, and enhancing core; the core region includes necrosis, hon-
enhancing core, and enhancing core; and the enhancing region only includes the enhancing
core. The tumor segmentation evaluation metrics are defined as follows:

|P.NnT, | |P.NnT_ |
Dice(P,,T)=——— % __ pPY(P.,T)=—— "
N U D b D7/ AR i v o B
|P*nT*|
Sensitivity(P*, T*) = T
*

where ™ indicates complete, core or enhancing region, 7+ denotes the manually labeled
region, P« denotes the segmented region, | A N 7«| denotes the overlap area between Px and
T+, and | P« | and | 7« | denote the areas of P« and 7x respectively.

3.1. Experiments on BRATS 2013 dataset

The BRATS 2013 training dataset contains 10 LGG and 20 HGG. Its testing dataset consists
of two subsets, namely Challenge and Leaderboard. The Challenge dataset has 10 HGG
cases and the Leaderboard dataset contains 21 HGG and 4 LGG.

A number of experiments were carried out based on the BRATS 2013 dataset, including (1)
comparing the segmentation performance of FCNNs with and without post-processing, and
the performance of the proposed deep learning network integrating FCNNs and CRF-RNN
(hereinafter referred to as FCNN + CRF) with and without post-processing, in order to
validate the effectiveness of CRFs and post-processing; (2) evaluating the segmentation
performance of FCNN + CRF with 5 post-processing steps (6 post-processing steps in total),
in order to test the effectiveness of each post-processing step; (3) evaluating the
segmentation performance of FCNNs trained using different sizes of patches; (4) evaluating
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the segmentation performance of FCNNs trained using different numbers of patches; (5)
comparing the segmentation performance of segmentation models built upon scans of 4
imaging sequences (Flair, T1, T1c, and T2) and 3 imaging sequences (Flair, T1c, and T2);
and (6) evaluating how the image preprocessing step affect the segmentation performance.
All the above experiments were performed in axial view. Apart from these experiments
described above, we show the effectiveness of fusing segmentation results of three views in
Section 3.1.7 and summarize comparison results with other methods in Section 3.1.8.

3.1.1. Evaluating the effectiveness of CRFs and post-processing—Table 1 shows
the evaluation results of FCNNs with and without post-processing, and FCNN + CRF (our
integrated network of FCNNs and CRF-RNN) with and without post-processing on the
BRATS 2013 Challenge dataset and Leaderboard dataset. These results demonstrated that
CRFs improved the segmentation accuracy and so did the post-processing. With respect to
both Dice and PPV, FCNN + post-process and FCNN + CRF improved the segmentation
performance in all complete tumor, core region, and enhancing region. However, CRFs and
post-process reduced Sensitivity. It is worth noting that CRFs improved Sensitivity of the
enhancing region. In summary, CRFs improved both the Dice and PPV and decreased the
Sensitivity on the complete and core regions, FCNN + CRF + post-process obtained the best
performance with respect to Dice and PPV, but degraded the performance with respect to the
Sensitivity, especially on the complete tumor region.

We also adopted a 3D CRF based post-processing step as did in a recent study (Kamnitsas et
al., 2017). Particularly, the parameters of the 3D CRF were optimized by grid searching
based on the training dataset of BRATS 2013. Table 1 summarizes segmentation scores
obtained by our method with different settings. These results indicated that 3D CRF as a
post-processing step could improve the segmentation performance as 3D information was
taken into consideration. However, our proposed post-processing procedure could further
improve the segmentation performance.

Fig. 6 shows representative segmentation results on the BRATS 2013 Challenge dataset.
These segmentation results demonstrated that FCNN + CRF could improve the spatial and
appearance consistence of segmentation results, and FCNN + CRF + post-process could
reduce false positives.

3.1.2. Evaluating the effectiveness of each post-processing step—To investigate
the effectiveness of each post-processing step, we obtained segmentation results of FCNN +
CRF + post- x, x=1, 2, ..., 6. In particular, FCNN + CRF + post- x indicates FCNN +
CRF with all other post-processing steps except the step x. As described in Section 2.3.4,
our post-processing consists of 6 steps in total. All the evaluation results are summarized in
Table 2. These results indicated that the post-processing Step 3 played the most important
role in the tumor segmentation, although all these post-processing steps might contribute the
segmentation.

3.1.3. Evaluating the impact of image patch size—We used different kernel sizes in
all the pooling layers to train different FCNNSs. The training image patch size changed with
the kernel size, as shown in Fig. 4, while the number of parameters in FCNNs was
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unchanged. We evaluated the segmentation performance of our segmentation models with n
=1,3,5, as summarized in Table 3. When n = 1,3,5, the corresponding sizes of training
patches are 21 "21 "3 (small input patch) and 41 *41 *3 (large input patch), 27 *27 "3 and 53
53 *3, 33 "33 "3 and 65 "65 “3. Bar plots of the Dice of complete regions on the Challenge
dataset with different training patch sizes are shown in Fig. 7. These segmentation results
indicated that (1) a bigger patch provided more information and helped improve FCNNs’
performance; (2) the CRF-RNN could reduce the performance differences caused by patch
size as CRF-RNN could optimize the segmentation results according to the information in a
whole image slice; and (3) the post-processing could further reduce the performance
difference caused by patch size.

3.1.4. Evaluating the impact of the number of image patches used to train
FCNNs—The BRATS 2013 training dataset contains 10 LGG and 20 HGG. In our
experiments, we trained our segmentation model using the 20 HGG cases, and our model
worked well for segmenting LGG cases. To investigate the impact of the number of training
patches on the segmentation performance, we trained FCNNs with varied numbers of image
patches. In particular, we sampled training imaging patches randomly from each subject and
kept the number of training samples for different classes equal (5 classes in total, including
normal tissue, necrosis, edema, non-enhancing core, and enhancing core). We generated 3
sets of image patches by sampling, consisting of 1000520, 3000520, and 5000"5 20
patches respectively, and used them to train different segmentation models.

The evaluation results are summarized in Table 4. Bar plots of the Dice of complete regions
on the Challenge dataset with different numbers of training patches are shown in Fig. 8. The
results shown in Table 4 and Fig. 8 indicated that the brain tumor segmentation accuracy of
FCNNs increased with the increasing of the number of training patches. However, both
CRFs and post-processing could reduce the performance difference.

In summary, all the experimental results demonstrated that both CRFs and the post-
processing method can narrow the performance difference caused by training patch sizes and
training patch numbers, indicating that CRFs and the post-processing method might be able
to narrow the performance difference caused by other training tricks. We will confirm this
inference in our future work.

3.1.5. Performance comparison between segmentation models built upon 4
and 3 imaging modalities—We also built a segmentation model using all available 4
imaging modalities, i.e., Flair, T1, T1c, and T2, and compared its segmentation performance
with that of the segmentation model built upon 3 imaging modalities, i.e., Flair, T1c, and T2.
The segmentation results of these segmentation models are summarized in Table 5. These
results demonstrated that these two segmentation models achieved similar performance,
indicating that a segmentation model built upon Flair, T1c, and T2 could achieve
competitive performance as the model built upon 4 imaging modalities.

3.1.6. Evaluation of different pre-processing strategies on the tumor
segmentation—We preprocessed the imaging data using our robust deviation based
intensity normalization and the standard deviation based intensity normalization (Goetz et
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al., 2014), and then evaluated segmentation models built on them separately. As the results
shown in Table 6 indicated, the robust deviation based intensity normalization could slightly
improve the segmentation performance.

3.1.7. Evaluating the effectiveness of fusing the segmentation results gotten
in three views—We trained 3 segmentation models using patches and slices obtained in
axial, coronal and sagittal views respectively. During testing, we used these three models to
segment brain images from 3 views and got three segmentation results. The results of
different views were fused and the evaluation results are shown in Table 7.

Evaluation results in Table 7 indicated that, for both Challenge and Leaderboard datasets,
fusing the segmentation results typically led to better segmentation performance without the
post-processing procedure. However, the improvement became insignificant after the post-
processing procedure was applied to the segmentation results.

3.1.8. Comparison with other methods—Comparison results with other methods are
summarized in Table 8. In particular, evaluation results of the top ranked methods
participated in the BRATS 2013, shown on the BRATS 2013 website, are summarized in
Table 8, along with the results of our method and other two state of art methods. Particularly,
the method proposed by Sergio Pereira et al (Pereira et al., 2016) ranked first on the
Challenge dataset and second on the Leaderboard dataset right now, while our method
ranked second on the Challenge dataset and first on the Leaderboard dataset right now. In
general, it took 2—4 min for one of the three views of our method to segment one subject’s
imaging data. We do not have an accurate estimation of the training time for our
segmentation models since we used a shared GPU server. On the shared GPU server, it took
~12 days to train our segmentation models.

3.2. Segmentation performance on the BRATS 2015

The BRATS 2015 training dataset contains 54 LGG and 220 HGG, and its testing dataset
contains 110 cases with unknown grades. All the training cases in BRATS 2013 are reused
in BRATS 2015 as a subset of its training dataset. As what we have done in our experiments
with BRATS 2013 dataset, we just used HGG training cases to train our segmentation
models in this section. We extracted 1000”5 patches from each of 220 HGG to train FCNNs
and initialed the CRF-RNN by the CRF-RNN trained by BRATS 2013 dataset. The whole
network was fine-tuned using slices in BRATS 2013 training dataset, which is a subset of
BRATS 2015 training dataset. The evaluation results of BRATS 2015 testing dataset are
shown in Table 9, including evaluations of segmentation results that were segmented by the
models trained by BRATS 2013 training dataset and evaluations of segmentation results that
were segmented by the models trained in this section.

The results shown in Table 9 indicated that fusing the segmentation results of multi-views
could improve the segmentation accuracy. These results also indicated that a larger training
dataset might improve the segmentation performance.

There were only 53 testing cases available during the BRATS 2015, but now there are 110
testing cases. Therefore, we are not able to directly compare our method with the methods
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that participated in the BRATS 2015. We are aware that K. Kamnitses et al (Kamnitsas et al.,
2017) have published their evaluation results with 110 BRATS 2015 testing cases. The
comparisons with K. Kamnitses et al’s method are shown in Table 10.

3.3. Segmentation performance on the BRATS 2016

We also participated in the BRATS 2016. However, during the competition we just
segmented brain images in axial view. Since the BRATS 2016 shares the same training
dataset with BRATS 2015, we used the same segmentation models trained based on the
BRATS 2015 training dataset. The BRATS 2015 training dataset has been pre-processed
with rigid registration, bias field correction and skull stripping. However, the BRATS 2016
test dataset contains a number of unprocessed or partially pre-processed images (Le Folgoc
etal., 2016), as shown in Fig. 9. To reduce false positives caused by incomplete pre-
processing, apart from the post-processing steps described in Section 2.3.4, we manually
placed rectangular bounding boxes around tumors in images and applied the post-processing
Step 2 to the segmentation results. Among 19 teams participated in the BRATS 2016, we
ranked first on the multi-temporal evaluation. The ranking details of our method are shown
in Table 11.

4. Discussions and conclusion

In this study, we proposed a novel deep learning based brain tumor segmentation method by
integrating Fully Convolutional Neural Networks (FCNNs) and Conditional Random Fields
(CRFs) in a unified framework. This integrated model was designed to obtain tumor
segmentation results with appearance and spatial consistency. In our method, we used CRF-
RNN to implement CRFs (Zheng et al., 2015), facilitating easy training of both FCNNSs and
CRFs as one deep network, rather than using CRFs as a post-processing step of FCNNs. Our
integrated deep learning model was trained in 3 steps, using image patches and slices
respectively. In the first step, image patches were used to train FCNNSs. These image patches
were randomly sampled from the training dataset and the same number of image patches for
each class was used as training image patches, in order to avoid the data imbalance problem.
In the second step, image slices were used to train the following CRF-RNN, with parameters
of FCNNs fixed. In the third step, image slices were used to fine-tune the whole network.
Particularly, we train 3 segmentation models using 2D image patches and slices obtained in
axial, coronal and sagittal views respectively, and combine them to segment brain tumors
using a voting based fusion strategy. Our experimental results also indicated that the
integration of FCNNs and CRF-RNN could improve the segmentation robustness to
parameters involved in the model training, such as image patch size and the number of
training image patches. Our experimental results also demonstrated that a tumor
segmentation model built upon Flair, T1c, and T2 scans achieved competitive performance
as those built upon Flair, T1, T1c, and T2 scans.

We also proposed a simple pre-processing strategy and a simple post-processing strategy.
We pre-processed each MR scan using N4ITK and intensity normalization, which
normalized each MR image’s intensity mainly by subtracting the gray-value of the highest
frequency and dividing the robust deviation. The results shown in Figs. 1 and 2
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demonstrated that the proposed intensity normalization method could make different MRI
scans com parable, i.e., similar intensity values characterize similar brain tissues across
scans. We post-processed the segmentation results by removing small 3D-connected regions
and correcting false labels by simple thresholding method. Our experimental results have
demonstrated that these strategies could improve the tumor segmentation performance.

Our method has achieved promising performance on the BRATS 2013 and BRATS 2015
testing dataset. Different from other top ranked methods, our method could achieve
competitive performance with only 3 imaging modalities (Flair, T1c, and T2), rather than 4
(Flair, T1, T1lc, and T2). We also participated in the BRATS 2016 and our method ranked
first on its multi-temporal evaluation.

Our method is built upon 2D FCNNs and CRF-RNN to achieve computational efficiency.
For training CRF-RNN and fine-tuning the integrated FCNNs and CRF-RNN, we use image
slices as training data. However, in image slices, the numbers of pixels for different classes
are different, which may worsen the segmentation performance of the trained network. To
partially overcome the imbalanced training data problem, we trained CRF-RNN with the
parameters of FCNNs were fixed so that the CRF-RNN are trained to optimize the
appearance and spatial consistency of segmentation results. Such a strategy in conjunct with
a fine-tuning of the whole network with a small learning rate improved the tumor
segmentation performance. However, 2D CNNs are not equipped to take full advantage of
3D information of the MRI data (Kamnitsas et al., 2017; Yi et al., 2016). Our experimental
results have demonstrated adopting 3D CRF as a post-processing step could improve the
tumor segmentation performance. Our ongoing study is to build a fully 3D network to
further improve the tumor segmentation performance.
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Fig. 1.

T2g scans before (top row) and after (bottom row) the proposed intensity normalization.
(a-1)—(a-3) and (b-1)—(b-3) are randomly selected subjects from the BRATS 2013, and
(a-4)—(a-6) and (b-4)—(b-6) are randomly selected subjects from the BRATS 2015. (a-1)—
(a-6): before normalization; (b-1)—(b-6): after normalization. All the scans were
preprocessed by N4ITK and the proposed normalization step 1.
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Fig. 2.
Image intensity histograms of T2 scans of 30 subjects from the BRATS 2013 training dataset

before (left) and after (right) the intensity normalization. All the scans were preprocessed by
N4I1TK and the proposed normalization step 1.
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Fig. 3.

Flowchart of the proposed deep learning model integrating FCNNs and CRFs for brain
tumor segmentation.
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Fig. 4.
The network structure of our deep FCNNSs.
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Fig. 5.
The network structure of CRF-RNN.

Med Image Anal. Author manuscript; available in PMC 2018 July 03.

Qout

Page 24

Q final



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhao et al. Page 25

Fig. 6.

E)?ample segmentation results on the BRATS 2013 Challenge dataset. The first and second
rows show the segmentation results of the 50th and 80th slice of the axial view of Subject
0301. The third and fourth rows show the segmentation results of the 40th and 70th slice of
the axial view of Subject 0308. From left to right: Flair, T1c, T2, segmentation results of
FCNNSs, segmentation results of FCNN + CRF, and segmentation results of FCNN + CRF +
post-process. In the segmentation results, each gray level represents a tumor class, from low
to high: necrosis, edema, non-enhancing core, and enhancing core.
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Fig. 7.

Bar plots for the Dice of complete regions on the Challenge dataset with different training

patch sizes.
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Bar plots for the Dice of complete regions on the Challenge dataset with different numbers

of training image patches.
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Fig. 9.
An example of partial skull stripping case in BRATS 2016 testing dataset. From left to right:

Flair, T1c, T2.
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