Skip to main content
. Author manuscript; available in PMC: 2018 Jul 3.
Published in final edited form as: Med Image Anal. 2017 Oct 5;43:98–111. doi: 10.1016/j.media.2017.10.002

Table 1.

Evaluation results of FCNNs with and without post-processing, FCNN + CRF with and without post-processing, and FCNN + 3D-CRF with and without post-processing. (The sizes of image patches used to train FCNNs were 33*33*3 and 65*65*3 respectively, n = 5, and the number of patches used to train FCNNs was 5000*5*20. FCNN + CRF is short for the integrated network of FCNNs and CRF-RNN).

Dataset Methods Dice
PPV
Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing
Challenge FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77
FCNN + post-process 0.81 0.75 0.73 0.73 0.70 0.73 0.94 0.85 0.74
FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80
FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77
FCNN + 3D-CRF 0.85 0.80 0.73 0.84 0.78 0.69 0.88 0.83 0.80
FCNN + 3D-CRF + post-process 0.87 0.83 0.78 0.89 0.85 0.78 0.86 0.83 0.79
Leaderboard FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67
FCNN + post-process 0.81 0.65 0.61 0.74 0.63 0.62 0.94 0.78 0.66
FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71
FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68
FCNN + 3D-CRF 0.84 0.65 0.61 0.81 0.71 0.57 0.90 0.71 0.71
FCNN + 3D-CRF + post-process 0.87 0.71 0.63 0.88 0.74 0.63 0.88 0.79 0.70