Table 1.
Evaluation results of FCNNs with and without post-processing, FCNN + CRF with and without post-processing, and FCNN + 3D-CRF with and without post-processing. (The sizes of image patches used to train FCNNs were 33*33*3 and 65*65*3 respectively, n = 5, and the number of patches used to train FCNNs was 5000*5*20. FCNN + CRF is short for the integrated network of FCNNs and CRF-RNN).
Dataset | Methods | Dice
|
PPV
|
Sensitivity
|
||||||
---|---|---|---|---|---|---|---|---|---|---|
Complete | Core | Enhancing | Complete | Core | Enhancing | Complete | Core | Enhancing | ||
Challenge | FCNNs | 0.74 | 0.72 | 0.67 | 0.62 | 0.63 | 0.60 | 0.94 | 0.86 | 0.77 |
FCNN + post-process | 0.81 | 0.75 | 0.73 | 0.73 | 0.70 | 0.73 | 0.94 | 0.85 | 0.74 | |
FCNN + CRF | 0.85 | 0.80 | 0.70 | 0.87 | 0.80 | 0.63 | 0.84 | 0.81 | 0.80 | |
FCNN + CRF + post-process | 0.87 | 0.83 | 0.76 | 0.92 | 0.87 | 0.77 | 0.83 | 0.81 | 0.77 | |
FCNN + 3D-CRF | 0.85 | 0.80 | 0.73 | 0.84 | 0.78 | 0.69 | 0.88 | 0.83 | 0.80 | |
FCNN + 3D-CRF + post-process | 0.87 | 0.83 | 0.78 | 0.89 | 0.85 | 0.78 | 0.86 | 0.83 | 0.79 | |
Leaderboard | FCNNs | 0.70 | 0.61 | 0.54 | 0.58 | 0.57 | 0.49 | 0.96 | 0.74 | 0.67 |
FCNN + post-process | 0.81 | 0.65 | 0.61 | 0.74 | 0.63 | 0.62 | 0.94 | 0.78 | 0.66 | |
FCNN + CRF | 0.83 | 0.66 | 0.57 | 0.85 | 0.71 | 0.50 | 0.85 | 0.69 | 0.71 | |
FCNN + CRF + post-process | 0.86 | 0.73 | 0.62 | 0.89 | 0.76 | 0.64 | 0.84 | 0.78 | 0.68 | |
FCNN + 3D-CRF | 0.84 | 0.65 | 0.61 | 0.81 | 0.71 | 0.57 | 0.90 | 0.71 | 0.71 | |
FCNN + 3D-CRF + post-process | 0.87 | 0.71 | 0.63 | 0.88 | 0.74 | 0.63 | 0.88 | 0.79 | 0.70 |