Skip to main content
. Author manuscript; available in PMC: 2018 Jul 3.
Published in final edited form as: Med Image Anal. 2017 Oct 5;43:98–111. doi: 10.1016/j.media.2017.10.002

Table 6.

Performance comparison of segmentation models built upon images normalized by the robust deviation and the standard deviation (the sizes of patches used to train FCNNs were 33*33*3 and 65*65*3 respectively, n = 5, and the number of patches used to train FCNNs was 5000*5*20).

Dataset Deviation Methods Dice PPV Sensitivity



Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing
Challenge standard FCNNs 0.73 0.69 0.67 0.61 0.60 0.61 0.94 0.86 0.75
FCNN + CRF 0.84 0.80 0.71 0.87 0.79 0.68 0.82 0.82 0.75
FCNN + CRF + post-process 0.86 0.83 0.76 0.93 0.86 0.80 0.81 0.81 0.74
robust FCNNs 0.74 0.72 0.67 0.62 0.63 0.60 0.94 0.86 0.77
FCNN + CRF 0.85 0.80 0.70 0.87 0.80 0.63 0.84 0.81 0.80
FCNN + CRF + post-process 0.87 0.83 0.76 0.92 0.87 0.77 0.83 0.81 0.77
Learderboard standard FCNNs 0.69 0.60 0.54 0.57 0.55 0.50 0.97 0.75 0.67
FCNN + CRF 0.83 0.66 0.58 0.85 0.71 0.56 0.85 0.70 0.67
FCNN + CRF + post-process 0.86 0.73 0.61 0.89 0.75 0.66 0.84 0.78 0.66
robust FCNNs 0.70 0.61 0.54 0.58 0.57 0.49 0.96 0.74 0.67
FCNN + CRF 0.83 0.66 0.57 0.85 0.71 0.50 0.85 0.69 0.71
FCNN + CRF + post-process 0.86 0.73 0.62 0.89 0.76 0.64 0.84 0.78 0.68