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Synovial sarcoma (SS) is a rare yet refractory soft-tissue sarcoma that predominantly

affects young adults. We show in a mouse model that radioimmunotherapy (RIT)

with an a-particle emitting anti-Frizzled homolog 10 (FZD10) antibody, synthesized

using the a-emitter radionuclide astatine-211 (211At-OTSA101), suppresses the

growth of SS xenografts more efficiently than the corresponding b-particle emitting

anti-FZD10 antibody conjugated with the b-emitter yettrium-90 (90Y-OTSA101). In

biodistribution analysis, 211At was increased in the SS xenografts but decreased in

other tissues up to 1 day after injection as time proceeded, albeit with a relatively

higher uptake in the stomach. Single 211At-OTSA101 doses of 25 and 50 lCi signifi-

cantly suppressed SS tumor growth in vivo, whereas a 50-lCi dose of 90Y-OTSA101

was needed to achieve this. Importantly, 50 lCi of 211At-OTSA101 suppressed

tumor growth immediately after injection, whereas this effect required several days

in the case of 90Y-OTSA101. Both radiolabeled antibodies at the 50-lCi dosage

level significantly prolonged survival. Histopathologically, severe cellular damage

accompanied by massive cell death was evident in the SS xenografts at even 1 day

after the 211At-OTSA101 injection, but these effects were relatively milder with
90Y-OTSA101 at the same timepoint, even though the absorbed doses were

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Received: 5 February 2018 | Revised: 17 April 2018 | Accepted: 2 May 2018

DOI: 10.1111/cas.13636

2302 | wileyonlinelibrary.com/journal/cas Cancer Science. 2018;109:2302–2309.

http://orcid.org/0000-0001-9632-914X
http://orcid.org/0000-0001-9632-914X
http://orcid.org/0000-0001-9632-914X
http://orcid.org/0000-0002-7793-9759
http://orcid.org/0000-0002-7793-9759
http://orcid.org/0000-0002-7793-9759
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.wileyonlinelibrary.com/journal/CAS


comparable (3.3 and 3.0 Gy, respectively). We conclude that a-particle RIT with
211At-OTSA101 is a potential new therapeutic option for SS.
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1 | INTRODUCTION

Synovial sarcoma (SS) is rare but a highly aggressive soft-tissue sar-

coma (STS) that can develop at any site in the body but often arises at

lower extremities in adolescents and young adults.1,2 Although cases

with a resectable SS have a relatively better prognosis, there remains a

high risk of local recurrence and metastasis to the lymph nodes and

lung. Patients with metastatic SS have a poor prognosis.3,4 Although

the molecular mechanisms underlying the oncogenesis of SS have

remained elusive, a balanced t(X,18; p11,q11) chromosomal transloca-

tion is found in virtually all cases, which creates a fusion oncogene,

SS18-SSX, that could be the driver mutation gene for these cancers.5,6

Surgical therapy, accompanied by radiation and/or chemotherapy, has

been shown to be effective for early stage SS but no effective thera-

pies have been established so far for advanced SS. Novel therapeutic

strategies for this disease are, thus, highly desired.

Frizzled homolog 10 (FZD10) is a transmembrane protein mem-

ber of the Frizzled family7 and serves as a putative receptor in the

Wnt signal pathway. Previous studies have revealed that FZD10 is

highly expressed in SS tumors and cell lines but is absent in most

normal tissues, and that immunotherapy using an antibody against

FZD10 inhibits the growth of SS xenografts.8,9 Furthermore, radioim-

munotherapy (RIT) using a yttrium-90 (90Y)-labeled anti-FZD10 anti-

body emitting b-particle radiation has been reported to be effective

against SS in a preclinical mouse model.10,11 These studies raised the

possibility that FZD10 has potential as a therapeutic target for SS.

Recently, a-particle-based RIT (a-RIT) has emerged as a novel

antitumor strategy. Astatine-211 (211At) is one of the more attractive

a-emitters in this regard because of its 7.2-h half-life and 100% a-

particle emission during its decay.12 The remarkably high cell killing

potency of 211At derives from its high energy transfer within a short

range of the a-particle, which is considered to be stronger than that

of a b-particle.13 We have previously reported, also in a preclinical

mouse model, that a-RIT using 211At-labeled trastuzumab is highly

effective against peritoneal metastases of gastric cancers that are

positive for human epidermal growth factor receptor 2 (HER2).14

Thus, we speculated that a-RIT may be more beneficial than b-RIT

in the treatment of solid tumors, including STS and SS, which are

often radio-resistant or chemo-resistant. This notion is supported by

the findings of several previous studies of solid tumor models.15,16

However, few reports to date have directly compared the therapeu-

tic efficacy of a-RIT and b-RIT against SS in vivo.

In our current study, we conducted comparative analysis of a-

RIT using a 211At-anti-FZD10 antibody and b-RIT using a 90Y-anti-

FZD10 antibody in a preclinical SS xenograft model and evaluated

both their therapeutic efficacy and toxicity against SS.

2 | MATERIALS AND METHODS

2.1 | Cells

The human synovial sarcoma cell line SYO-1 was kindly provided by

Dr A. Kawai (National Cancer Center, Tokyo, Japan).17 Cells were

cultured with D-MEM medium, supplemented with 10% FBS and 1%

penicillin-streptomycin (Wako, Osaka, Japan), and maintained in a

humidified atmosphere containing 5% CO2 at 37°C.

2.2 | Reagents

A humanized chimeric anti-FZD10 antibody, OTSA101, was provided by

OncoTherapy Science (Kanagawa, Japan). N-succinimidyl-3-(trimethylas-

tannyl) benzoate (m-MeATE) was purchased from Santa Cruz Biotech-

nology (Dallas, TX, USA) and stored at �30°C. N-chlorosuccinimide

(NCS) was purchased from Tokyo Chemical Industry (Tokyo, Japan).

2.3 | Radiolabeling of the anti-FZD10 antibody

Astatine-211 (211At) was produced by the 209Bi (a, 2n)211At reaction

as described previously.18 The 211At labeling of anti-FZD10 antibody

(OTSA101) was also carried out following a previously described

procedure.14 Briefly, OTSA101 (5 mg/mL) was conjugated to m-

MeATE (26 mmol/L in DMSO) in a reaction containing 0.2 mol/L

sodium carbonate buffer (pH 8.5). The immunoconjugate was subse-

quently isolated in PBS using a Sephadex G-50 spin column (GE

Healthcare Japan, Tokyo, Japan) and then adjusted to pH 5.5 by

adding citric acid prior to 211At labeling. 211At was dissolved using

0.04 mg/mL NCS in methanol with 1% acetic acid for labeling. The

OTSA101-m-MeATE immunoconjugate (2 mg/mL) was added to
211At and reacted for 1 minute followed by another 1-minute reac-

tion with 2-mg/mL NCS. Finally, sodium ascorbate (50 mg/mL) was

added to stop the reaction. 211At-labeled OTSA101 (211At-OTSA101)

was isolated in PBS using a Sephadex G-50 spin column and verified

by high-performance liquid chromatography (HPLC). Yttrium-90 (90Y)

and indium-111 (111In) were obtained from Eckert & Ziegler Radio-

pharma (Berlin, Germany) and Nihon Medi-Physics (Tokyo, Japan),

respectively. Both the111In and 90Y labeling were performed as

described previously.19 Radiochemical purities were evaluated by

methanol precipitation, HPLC or thin-layer chromatography.

2.4 | Animal experiments

All animal experiments were approved by the Animal Care and Use

Committee of the National Institute of Radiological Sciences at the
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National Institutes for Quantum and Radiological Science and Tech-

nology (Chiba, Japan) and were undertaken in compliance with the

institutional guidelines regarding animal care and handling.

2.5 | Tumor xenograft mouse model

The SS xenograft mouse model was established by subcutaneously

implanting SYO-1 cells (1 9 107 cells in 0.1-mL PBS) into the flank

of BALB/c nude mice (Japan SLC, Hamamatsu, Japan).

2.6 | Biodistribution

Biodistribution studies were performed as described previously.14

Briefly, 111In-labeled OTSA101 (111In-OTSA101, 1 lCi) or 211At-

OTSA101 (12.5 lCi) was injected into the tail veins of the SS xeno-

graft mice. Tumor and tissues were dissected at 1 hour, 3 hours,

1 day, 2 days and 4 days post-injection, excluding the 2-day and 4-

day timepoints for the 211At-OTSA101 group. The radioactivity in

each tissue was measured using a gamma counter (Aloka, Tokyo,

Japan) to calculate the percentage of the injected dose per tissue

gram (%ID/g).

2.7 | Radioimmunotherapy

Radioimmunotherapy was performed as described previously.14

Briefly, SS xenograft mice received a single injection of 12.5, 25 or

50 lCi of 211At-OTSA101 or 90Y-OTSA101 into the tail vein. Unla-

beled and intact OTSA101 were also injected as controls. The protein

doses were adjusted to the same amount (50 lg) by adding intact anti-

body immediately after verification using HPLC. Injection of radiola-

beled antibodies was performed within 30 minutes after HPLC

verification. Tumor sizes and body weights were monitored continu-

ously to evaluate anti-tumor effects and toxicity. Mice were killed at

the defined study endpoint (ie when the tumor volume reached

1200 mm3 or at 28 days post-injection). The tumor-absorbed and tis-

sue-absorbed doses for radiolabeled antibodies were estimated from

the biodistribution data as previously described.19 Briefly, the area

under the curve (AUC) was calculated based on the biodistribution

data and the absorbed dose was then estimated using the AUC and

the mean energy emitted per transition of 90Y, or 211At and a daughter

nuclide 211Po with a correction for the branching ratio.20

2.8 | Histological analysis and
immunohistochemistry

Histological analyses were performed as described previously.19

Briefly, SS xenografts were sampled from the model mice at 1, 3 and

7 days post-injection with either 211At-OTSA101 (50 lCi) or 90Y-

OTSA101 (50 lCi) and fixed with 10% (v/v) formalin and embedded

in paraffin. Untreated SS xenografts were also sampled. After sec-

tioning, the samples were stained with H&E. Immunohistochemical

staining of CD31 was performed according the manufacturer’s

instruction. Briefly, paraffin sections of tumors were deparaffinized

and then heat-induced antigen retrieval and endogenous peroxidase

quenching were performed using Histofine Deparaffinization Antigen

Retrieval Solution pH 9 (Nichirei Biosciences, Tokyo, Japan) and

Dako REALTM Peroxidase-Blocking Solution (Dako, Dlostrup, Den-

mark), respectively. After blocking using Blocking One Histo (Nacalai

tesque, Kyoto, Japan), tumor sections were incubated with anti-

CD31 antibody (ab28364, Abcam, Cambridge, UK) overnight at 4°C.

SignalStain Boost IHC Detection Regent and DAB Substrate Kit (Cell

Signaling Technology, Danvers, MA9) were used to visualize the

reaction and hematoxylin was used for counterstaining.

2.9 | Statistical analysis

Statcel 3 software (OMS, Tokorozawa, Japan) was used for all statis-

tical analysis. Tumor volumes and survival data were analyzed using

2-way repeated measures ANOVA and the Kaplan-Meier method,

respectively. A P-value of <.05 was considered significant.

3 | RESULTS

3.1 | Radiochemical analyses of radiolabeled
OTSA101

The labeling yields of 211At, 111In and 90Y to OTSA101 were 49.0 � 4.2,

86.2 � 2.1 and 98.1%, respectively. The radiochemical purities of the

radiolabeled OTSA101 molecules were consistently above 95%.

3.2 | Biodistribution of 211At-OTSA101 and 111In-
OTSA101

We investigated the biodistribution of 211At-OTSA101 and 111In-

OTSA101 in the SS xenograft mouse model (Figure 1). The biodistri-

bution of 211At-OTSA101 was very similar to that of 111In-OTSA101

within 1 day of injection other than the stomach where relatively

TABLE 1 Absorbed doses (Gy) by each mouse tissue following
radioimmunotherapy using 211At-OTSA101 (50 lCi) or 90Y-OTSA101
(50 lCi)

Tissue

211At-OTSA101
1 d

90Y-OTSA101
1 d

90Y-OTSA101
4 d

Blood 24.2 9.6 16.9

Thyroid 4.1 1.4 2.5

Lung 8.7 3.7 6.4

Liver 8.4 2.1 3.9

Spleen 8.2 1.7 3.3

Pancreas 1.6 0.7 1.3

Stomach 9.1 0.7 1.3

Intestine 2.6 0.8 1.3

Kidney 6.1 2.6 4.5

Muscle 0.6 0.3 0.7

Bone 1.7 0.8 1.6

SYO-1 tumor 3.3 3.0 9.3
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higher radioactivity was observed only for 211At-OTSA101 at approxi-

mately a 6-fold higher level than 111In-OTSA101 (Figure 1A,B).

We observed increased tumor uptake for both of the radiolabeled

OTSA101 molecules over time but to different maximum levels of

5.1 � 1.9%ID/g up to 1-day post-injection for 211At-OTSA101 com-

pared with 14.6 � 3.3%ID/g for 111In-OTSA101 at the same time-

point. The maximum tumor uptake of 111In-OTSA101 was

24.2 � 3.8%ID/g at 4 days post-injection. The maximum blood

uptake of 211At-OTSA101 was considerably lower (35.9 � 2.3%ID/g

vs 45.7 � 3.7%ID/g) and showed a faster decline (14.8 � 1.5%ID/g

vs 27.4 � 0.7%ID/g at 1 day post-injection) compared to that of
111In-OTSA101. There was no apparent difference in the maximum

uptake at the thyroid where halogens preferentially bind (5.9 � 0.8%

ID/g for 211At-OTSA101 vs 4.9 � 1.3%ID/g for 111In-OTSA101).

3.3 | Therapeutic efficacy of 211At-OTSA101 and
90Y-OTSA101 against synovial sarcoma tumors in the
mouse

Figure 2 shows the measured therapeutic efficacy (ie tumor suppres-

sion and survival time) of RIT using 211At-OTSA101 and 90Y-

OTSA101. A single injection of 25 and 50 lCi of 211At-OTSA101 and

of 50 lCi of 90Y-OTSA101 significantly suppressed the growth of

SYO-1 xenografts compared to treatment with intact OTSA101 in our

SS mouse model. Twenty-five lCi of 90Y-OTSA101 and 12.5 lCi each

of both types of radiolabeled OTSA101 moderately suppressed the SS

tumor growth but not to a significant level. Notably, SYO-1 tumors

treated with a 50 lCi dose of 211At-OTSA101 suppressed tumor

growth immediately after injection, whereas tumors continued to grow

after a 50-lCi injection of 90Y-OTSA101 and only started to shrink

from several days after this treatment. Tumor regrowth occurred from

17 to 20 days post-injection in both treatment groups (Figure 2A,B).

Survival was significantly prolonged in the SYO-1 xenograft mice

by RIT with 50 lCi of either radiolabeled antibody compared to

treatment with intact OTSA101. The mean survival outcomes were

14 days with intact OTSA101 and 24 days for all of the SS model

mice treated with 211At-OTSA101 (25 lCi) or 90Y-OTSA101 (12.5 or

25 lCi) except for the 12.5-lCi 211At-OTSA101 group that showed

a 28-day mean survival. None of the mice reached the study end-

point when treated with a 50-lCi dose of either radiolabeled anti-

body during the observation period (30 days) (Figure 2C,D).

We next measured the animal body weights to assess the toxic-

ity of both radiolabeled antibodies (Figure 3). Although these

weights tended to be lower in the mice treated with the 50-lCi

doses, no apparent severe body weight loss was observed in any of

the experimental animals (Figure 3A,B).

3.4 | Absorbed dose by the tumor following
radioimmunotherapy with 211At-OTSA101 and 90Y-
OTSA101

The absorbed doses of the radiolabeled antibodies by each mouse tis-

sue were calculated using biodistribution data (Table 1). The biodistri-

bution data for 111In-OTSA101 were used in the calculations for 90Y-

OTSA101 as they had almost the same biodistribution pattern. The

tumor absorbed doses up to 1-day post-injection were almost equiva-

lent for 211At-OTSA101 and 90Y-OTSA101 at 3.3 and 3.0 Gy, respec-

tively. For 90Y-OTSA101, this level reached 9.3 Gy at 4 days.

3.5 | Histopathological features of a-RIT and b-RIT

We conducted histopathological analyses to identify any differences

in the therapeutic effects of a-RIT (211At-OTSA101) and b-RIT (90Y-

OTSA101) (Figure 4). The untreated SYO-1 SS xenografts showed

spindle cell proliferation with high cellularity and relatively small pleo-

morphism among the tumor cells, and no apparent epithelial cells.

These characteristics were consistent with a spindle, monophasic type

of SS. No necrosis was apparent in any of these xenografts (Fig-

ure 4A). At day 1 after a-RIT treatment, many of the SS tumor cells

became smaller with pyknotic nuclei, indicating severe damage. There

were some relatively larger cells among these smaller cells, which

showed milder damage. Edema was also evident (Figure 4B). At day 1

following b-RIT, the tumor cells became round. A slight degree of

edema and cell damage were also detected. Mitoses were also still evi-

dent (Figure 4C). However, the damage from b-RIT was less severe

(A)

(B) 211At-OTSA101

111In-OTSA101

F IGURE 1 Biodistribution of 111In-OTSA101 and 211At-OTSA101
in the SS subcutaneous xenograft mouse model. Uptakes (%ID/g) of
111In in the tumor and other organs at 1 h, 3 h, 1 d, 2 d and 4 d
after injection of 111In-OTSA101 (A) and 211At at 1 h, 3 h and 1 d
after injection of 211At-OTSA101 (B). Five mice were used at each
timepoint in both groups. All data represent the mean � SD
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than that induced by a-RIT. By day 3, a-RIT-treated tumors were

severely damaged with smaller cells and edema. Inflammatory cell infil-

tration was present although slight (Figure 4D). In the case of b-RIT,

the treated tumors became edematous with smaller cells showing

pyknotic nuclei and severe damage, and larger cells, indicative of less

damage, also found (Figure 4E). Spindle cell proliferation was found in

tumors treated with both a-RIT and b-RIT by day 7 post-injection,

although there were still some damaged cells observed (Figure 4F,G).

CD 31 and H&E staining revealed that no blood vessels were damaged

at day 1 after a-RIT treatment, suggesting that the SS cells were

directly targeted by the a-RIT (Figure 4H,I). These analyses revealed

that the cellular damage induced by 211At-OTSA101 emerges at an

earlier stage and is more severe than that induced by 90Y-OTSA101.

4 | DISCUSSION

We found in our present analyses that 211At-OTSA101, an a-emit-

ting anti-FZD10 antibody, effectively suppresses the growth of SS

xenografts in a mouse model without apparent toxicity. This result

(A) 211At-OTSA101 90Y-OTSA101(B)

Days after injection of radiolabeled antibody Days after injection of radiolabeled antibody

90Y-OTSA101(D)(C) 211At-OTSA101 F IGURE 2 Therapeutic results of
radioimmunotherapy (RIT) with 211At-
OTSA101 and 90Y-OTSA101 in the
synovial sarcoma (SS) subcutaneous
xenograft mouse model. Changes in tumor
volumes in the model mice after RIT with
211At-OTSA101 (A) and 90Y-OTSA101 (B)
are shown. Plots were interrupted if the
animal reached the defined endpoint.
Kaplan-Meier survival curves of mice after
RIT with 211At-OTSA101 (C) and 90Y-
OTSA101 (D). Five mice were enrolled in
each of the treatment groups, except for
the intact IgG control (4 mice). *P < .05,
**P < .01, vs intact IgG control

(A) 211At-OTSA101 90Y-OTSA101(B)

Days after injection of radiolabeled antibody Days after injection of radiolabeled antibody

F IGURE 3 Body weights of the mice after treatment with 211At-OTSA101 (A) or 90Y-OTSA101 (B). Plots were interrupted if the animal
reached the defined endpoint. Data represent the mean � SD
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provides a proof-of-concept demonstration that a-RIT using 211At-

OTSA101 may be a viable therapeutic option for SS. Our study find-

ings also provide evidence that a-RIT would be more effective for

treating SS than b-RIT. Our current data show that a 25-lCi dose of
211At-OTSA101 significantly suppresses SS tumor growth but that

this does not occur with the same dose of 90Y-OTSA101, a b-emit-

ting anti-FZD10 antibody.

Our biodistribution data indicate that both 111In-OTSA101 and
211At-OTSA101 have similar pharmacokinetics in SS xenograft mice

other than in the stomach. The tumor uptake of 211At-OTSA101

was found to be approximately 3-fold lower than that of the 111In-

anti-FZD10 antibody at 1-day post-injection. We suspect that 211At

is de-astatinated from the antibody once internalized in the cells

and is then quickly excreted in the urine. We also speculate that

part of the carrier-free 211At may be accumulated preferentially in

the stomach. Improving the radiochemical stability of 211At-

OTSA101 and reducing the 211At uptake in the stomach should

probably be the subject of further studies, although we found no

Day 1

(B)

(C)

(D) (F)

(E) (G)

Day 3 Day 7

Untreated 
SYO-1

SS tumor

(A)

211At-OTSA101
Treated

90Y-OTSA101
Treated

(H) (I)

211At-OTSA101
Treated

Day 1 Day 1

CD 31 H&E

F IGURE 4 Histopathological analyses of the synovial sarcoma (SS) xenografts by immunohistochemistry and H&E staining. A, Untreated
SYO-1 SS xenograft. B,C, Day 1, D,E, day 3, F,G, day 7 after radioimmunotherapy. B,D,F, 211At-OTSA101. C,E,G, 90Y-OTSA101. H,I, CD31
immunostaining and its corresponding H&E staining at day 1 after 211At-OTSA101 treatment. Scale bars, 50 lm
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apparent abnormalities resulting from gastric toxicity in our present

experiments.

Tumor growth was rapidly suppressed and the SS xenografts

regressed immediately after a-emitting 211At-OTSA101 injection, but

this only occurred several days after b-emitting 90Y-OTSA101

administration. Consistent with these observations, our histopatho-

logical analyses indicated more severe tumoricidal effects at an ear-

lier stage of a-RIT with 211At-OTSA101 compared with b-RIT using
90Y-OTSA101. These dramatic tumoricidal effects were assumed to

be complete even at 1 day after 211At-OTSA101 injection, while

only relatively mild pathological changes were observed in the SS

xenografts at 1 day after the administration of 90Y-OTSA101. Inter-

estingly, our calculations showed that the absorbed dose by the SS

tumor cells up to 1-day post-injection was almost equivalent

between 211At-OTSA101 (3.3 Gy) and 90Y-OTSA101 (3.0 Gy). These

findings strongly suggest that the radiation quality represented as

linear energy transfer, rather than the absorbed dose, should be con-

sidered when determining the therapeutic effects of a-RIT. Notably,

the tumor vessels in our model mice were little affected by 211At-

OTSA101 at day 1, suggesting that this radiolabeled antibody specif-

ically targets SS cells that are positive for FZD10.

No apparent systemic toxicities were evident in our model mice

treated with 211At-OTSA101, although the calculated absorbed

doses were considerably higher in all tissues examined at 1 day

after the injection of 211At-OTSA101 compared with 90Y-OTSA101.

The body weights of the mice tended to be lower in the groups

treated with both 211At-OTSA101 and 90Y-OTSA101 compared to

the control mice, but no severe body weight loss was observed in

the RIT groups and all varied within a normal range. Although

hematological toxicities were not examined in our current experi-

ments, our previous study showed transient but recoverable leuko-

cytopenia following the systemic administration of an a-emitting

antibody.14

The potential of FZD10 as an RIT target against SS tumors has

been previously suggested using an 90Y-anti-FZD10 antibody.10,11

Accordingly, a Phase I trial of OTSA101 has been conducted for the

treatment of advanced SS. Previous studies have also reported that

a-RIT is superior to b-RIT in treating solid tumors because a-particles

with a higher LET may have huge advantages in terms of cytotoxic-

ity compared to b-particles with a lower LET.15,16 Given that solid

tumors including SS lesions are generally chemo-resistant and radio-

resistant, a-RIT using 211At-OTSA101 could become a more viable

therapeutic option than b-RIT with 90Y-OTSA101 for the treatment

of SS, especially in cases of unresectable, conventional chemother-

apy or radiotherapy-resistant lesions.

New therapeutic approaches are now emerging for STS tumors

and the development of novel treatments for SS is under active

investigation.21,22 A multi-tyrosine kinase inhibitor pazopanib has

demonstrated significant benefits in terms of extending progression-

free survival in STS patients.23 Adaptive immunotherapy targeting

NY-ESO-1 has also demonstrated promising results against SS.24

Vaccination against the SS18-SSX oncoprotein has been attempted

and produced transient shrinkage of a metastatic SS tumor in the

lung of 1 patient, although this was a small clinical trial and most of

the study patients showed stable or progressive disease.25 More

recently, high throughput siRNA screening has suggested that inhibi-

tion of ATR activity may be a therapeutic option for SS treatment.26

It would be of interest to investigate whether a-RIT monotherapy

using 211At-OTSA101 or a combination therapy of 211At-OTSA101

with other therapeutic modalities is superior to other therapeutic

approaches in the treatment of localized or metastatic SS in a clinical

setting.

Although our present analyses indicate that a-RIT using 211At-

OTSA101 has therapeutic potential for the treatment of SS, there

were several noteworthy limitations of our current study. First, we

did not evaluate the therapeutic efficacy of a 211At-labeled isotype

control antibody because a previous study has reported that a 90Y-

labeled antibody that was non-specific for FZD10 partially sup-

pressed tumor growth of SS in vivo.10 However, a direct comparison

using a 211At-labeled isotype control antibody will be needed in a

future study to more accurately evaluate the tumor-suppressive

effects of 211At. Second, more detailed analyses in addition to body

weight measurements are warranted to assess the toxicity of 211At-

OTSA101. Third, SS often occurs in soft tissues that would differ

from subcutaneous xenografts in terms of drug delivery and target-

ing by 211At-OTSA101. In addition, possible immunological modifica-

tion of tumor suppression should also be considered and orthotopic

or immunocompetent animal models will be needed in this regard to

further evaluate 211At-OTSA101.

In conclusion, a-RIT using 211At-OTSA101 effectively suppresses

the growth of SS xenografts in a preclinical mouse model with no

apparent toxicities and with more efficiency than b-RIT using 211Y-

OTSA101. 211At-OTSA101 therapy may prove to be a relatively safe

and effective option for the future treatment of SS.
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