
GENOME EVOLUTION

We are not so special
New sequence data from choanoflagellates improves our understanding

of the genetic changes that occurred along the branch of the

evolutionary tree that gave rise to animals.

ZACHARY R LEWIS AND CASEY W DUNN

T
he most recent common ancestor of ani-

mals lived more than 600 million years

ago, so we cannot sequence its genome.

Nevertheless, we can identify a minimal set of

gene families that were present in this long-

dead ancestor by comparing genomic data

across animals and their closest relatives. In

addition to being interesting in its own right,

this helps us identify which genes were gained

and lost before the origin of animals and, like-

wise, which genes were gained and lost as ani-

mals diversified.

The challenge, though, is that there are

strong sampling biases that can compromise

these analyses. Genome sequencing has focused

on species that are medically relevant, experi-

mentally tractable, and easy to sequence

(del Campo et al., 2014). Left unaddressed,

these biases can frustrate efforts to reconstruct

the genomes of our ancient ancestors. Take, for

example, the simple case of three groups of

organisms called O, C and M, and a gene that

originated along the branch that gave rise to C

and M (Figure 1A). If more sequencing effort

has been invested in group M than in group C,

the gene is more likely to be found in group M

than in group C. And if the gene is found in M

but not in C, even though it is present in both,

then it will appear that the gene is specific to

group M and younger than it actually is.

Now, in eLife, Daniel Richter, Parinaz Fozouni,

Michael Eisen and Nicole King report their work

to reduce sequencing bias by sampling many

more genes in the sister group to animals, the

choanoflagellates (Richter et al., 2018). They

generated transcriptomic data for 19 species of

choanoflagellates and analyzed them in combi-

nation with previously published metazoan (ani-

mal), choanoflagellate and other eukaryote

genomes. In addition to presenting new data,

Richter et al. – who are based at UC Berkeley,

UCSF, the Gladstone Institutes and Station

Biologique de Roscoff – applied new probabilis-

tic methods to minimize the chance that a gene

family would be predicted to be present in a tax-

onomic group based on the spurious assignment

of unrelated genes to the same family.

In related work at the universities of Essex

and Oxford, Jordi Paps and Peter Holland have

reported an interesting analysis of gene gain

and loss in early animal evolution (Paps and Hol-

land, 2018). The studies agree on some key

points. Both recovered a relatively large number

of gene family gains along the ‘animal stem’ (the

branch of the evolutionary tree that uniquely

gives rise to animals; shown in blue in

Figure 1B). However, while Paps and Holland

estimate that the number of gains was much

higher than the number of losses, which they

interpreted as evidence for an accelerated

expansion of gene families along the Metazoa

stem, Richter et al. estimate approximately

equal numbers of gains and losses (Figure 1C).

This means that Richter et al. find evidence for

accelerated churn of gene families along the

Metazoa stem, not a burst of expansion. This
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incongruence is likely related to Paps and Hol-

land analyzing two choanoflagellate species,

compared to the 21 analyzed by Richter et al.

Another difference is that Paps and Holland

did not estimate gene gain and loss along the

Choanoflagellata stem, whereas Richter et al.

did. This revealed more gene family gain and

less gene family loss along the Choanoflagellata

stem than along the Metazoa stem (Figure 1C).

So, Richter et al. do find a burst of gene family

expansion, but in Choanoflagellata rather than

Metazoa. It will be critical to further test the

findings of both studies with improved sampling

of other closely related groups, which could

change how the gains and losses are appor-

tioned to these two stems.

The results presented by Richter et al. agree in

important ways with other recent work (King et al.,

2008; Suga et al., 2013). These analyses reveal

that the genetic changes on the Metazoa stem

included the evolution of new intercellular signal-

ing pathways (Fairclough et al., 2013) and the

integration of new ligands and receptors into intra-

cellular pathways that were already present (such

as the Hippo pathway; Sebé-Pedrós et al., 2012).

Other changes included the expansion of a core

set of transcription factors (de Mendoza et al.,

2013), and increased cis-regulatory complexity

(Sebé-Pedrós et al., 2016).

Comparative gene content analyses refine

our understanding of what makes metazoans

unique, and in the process we are learning about

the underappreciated biology of our close non-

metazoan relatives (Sebé-Pedrós et al., 2017).

For instance, Richter et al. identified homologs

of Toll-like receptors in most choanoflagellates.

These genes were thought to be an animal-spe-

cific innovation for innate immunity. Future

research could investigate if these genes have

immune-like roles in non-animals.

It is impossible to know how special animals

really are without also knowing something about

our closest relatives. The more we learn about

these relatives, the less special we seem to be.

Figure 1. Genes lost and gained. (A) Example of biased sampling (left): although a gene was gained (first green line) before group C and group M

diverged, biased sampling means that it is only detected in group M, which leads to the incorrect inference (second green line) that the gene arose

after the groups diverged. With uniform sampling (right), the gene gain is correctly inferred (third green line). Groups C, M and O could be

Choanoflagellata, Metazoa and Outgroups. (B) Cladogram showing the evolutionary relationships of the clades in question, with the Choanoflagellata

stem shown in red and the Metazoa stem shown in blue. Choanozoa refers to the clade Choanoflagellata + Metazoa (Brunet and King, 2017). (C) The

number of gene groups gained (y-axis) plotted against the number of gene groups lost (x-axis) along various branches leading to the nodes shown in

panel B, based on the data in four studies (Fairclough et al., 2013; Paps and Holland, 2018; Richter et al., 2018; Suga et al., 2013). The gray

dashed line indicates equal gene group gain and loss. Note that the four studies use different methodologies to define groupings of genes. Data and

analyses are available at https://github.com/dunnlab/gene_inventory_2018 (Lewis and Dunn, 2018; copy archived at https://github.com/elifesciences-

publications/gene_inventory_2018).
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