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Abstract

Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent 

studies have indicated that spatial gradients of selection pressure can accelerate resistance 

evolution, much less is known about evolution in more complex spatial profiles. Here we use a 

stochastic toy model of drug resistance to investigate how different spatial profiles of selection 

pressure impact the time to fixation of a resistant allele. Using mean first passage time 

calculations, we show that spatial heterogeneity accelerates resistance evolution when the rate of 

spatial migration is sufficiently large relative to mutation but slows fixation for small migration 

rates. Interestingly, there exists an intermediate regime—characterized by comparable rates of 

migration and mutation—in which the rate of fixation can be either accelerated or decelerated 

depending on the spatial profile, even when spatially averaged selection pressure remains constant. 

Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread 

and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our 

results may lay the groundwork for optimized, spatially-resolved drug dosing strategies for 

mitigating the effects of drug resistance.

Drug resistance is a rapidly growing public health threat and a central impediment to the 

treatment of cancer, viruses, and microbial infections [1–4]. The battle against resistance has 

been largely fought at the molecular level, leading to an increasingly mature understanding 

of its underlying biochemical and genetic roots. At the same time, evolutionary biologists 

have long recognized resistance as a fundamentally stochastic process governed by the 

complex interplay between microbial ecology and evolutionary selection. The last decade, in 

particular, has seen a significant surge in efforts to develop and understand evolution-based 

treatment strategies to forestall resistance [5–16]. While the vast majority of this work 

focuses on spatially homogeneous environments, a number of recent studies, both theoretical 

and experimental, have demonstrated that spatial heterogeneity in drug concentration can 

dramatically alter the evolutionary dynamics leading to resistance [16–24]. On a practical 

level, the picture that emerges is somewhat bleak, as resistance evolution is dramatically 

accelerated in the presence of spatial gradients in drug concentration [18–20, 22–24] or 

heterogeneous drug penetration [17, 21]. Interestingly, however, recent work shows that this 

acceleration can be tempered or even reversed when the mutational pathway (i.e. the 
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genotypic fitness landscape) leading to resistance contains fitness valleys [18], which are 

known to inhibit evolution [25–28]. Unfortunately, because the fitness landscape is a genetic 

property of the cells themselves, the potential for accelerated evolution appears to be “built 

in”, making it difficult to combat in a treatment setting. However, these results raise the 

question of whether non-monotonic profiles of tunable properties of the system—for 

example, the spatial selection pressure— might also have the potential to slow evolution, 

even when the mutational pathway lacks the requisite fitness valleys.

Evolution in natural or clinical settings takes place in heterogeneous environments 

characterized by spatial fluctuations in multiple factors, including drug concentrations, 

nutrients, temperature, and pH, all of which potentially affect cellular growth. Understanding 

evolution and ecology in such spatially extended systems is a challenging and long-studied 

problem [29–33]. Recent studies have demonstrated rich dynamics when inter-cellular 

interactions are defined on heterogeneous complex networks [34–36], where spatial structure 

can (for example) promote invasive strategies in tumor models [35] or modulate fixation 

times on random landscapes [34]. Remarkably, in the weak selection limit, evolutionary 

dynamics can be solved for any population structure [36], providing extensive insight into 

game-theoretic outcomes on complex networks. In addition, theoretical tools from statistical 

physics have proven useful for understanding spatiotemporal dynamics in spatially 

structured populations in a wide range of contexts, including biologically-inspired Monte 

Carlo models [18], toy models of source-sink dynamics [19], stepping-stone models of 

spatial pattern formation [37], models of dispersion [38–42], and Moran meta-population 

models [43–45]. In a similar spirit, here we use stochastic models of evolution along with 

theoretical tools from statistical physics to investigate the effects of spatially heterogeneous 

fitness pressures on the evolution of resistance. In contrast to previous models defined on 

heterogeneous networks at the single-cell level, here we consider meta-populations 

connected via simple topologies and investigate the effects of spatial structure imposed by 

arbitrary distributions of selection pressure. While several elegant approaches exist for 

studying these models in particular limits (e.g. with a center manifold reduction) [43–45], 

here we instead use a classical mean first passage time approach based on adjoint equations 

to reduce the calculation of mean fixation times to a simple collection of linear equations 

that can be easily solved for arbitrary spatial distributions of selection pressures. This 

method also allows us to find the fixation times from arbitrary initial states, which are often 

difficult to compute using other methods. Using this approach, we show that resistance 

evolution can be either accelerated or decelerated by spatial heterogeneities in selection 

pressure, even when the spatially averaged selection pressure remains constant. In addition, 

we demonstrate that tuning the spatial distribution of selection pressure can dramatically 

slow fixation when the subpopulations of resistant mutants are not uniformly distributed in 

space.

To investigate resistance evolution on a spatially heterogeneous landscape, we consider a 

stochastic Moran-like model [46] of a finite population (N) consisting of (N −n*) wild-type 

cells with fitness r0 ≤ 1 and n* drug-resistant mutants with fitness r*, which we set to unity 

without loss of generality. Note that this model does not include a fitness cost to resistance 

(i.e. r* ≥ r0 for all conditions). At each time step, cells are randomly selected for birth and 

death, with cells of higher fitness (in this case, resistant cells) chosen preferentially for 
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division (see SI for full model with transition rates). Wild-type cells can mutate to become 

drug resistant at rate μ; we neglect reverse transitions to the drug-sensitive state. To 

incorporate spatial heterogeneity, we consider a simple spatially extended system with M 
distinct microhabitats, each containing N cells; cells are allowed to migrate at rate β between 

connected microhabitats (Fig. 1a). At each time t, the state of the system is characterized by 

the vector n*(xi) whose components correspond to the number of mutants in each discrete 

microhabitat xi = 0, 1, …, M−1. The system evolves according to a continuous time master 

equation

dPm
dt = ∑

m′
Ωmm′Pm′, (1)

where m and m′ denote different states of the system and Ω is a NM × NM matrix whose 

entries depend on the wild-type fitness value r0(xi) at each spatial location xi (see SI). For 

tractability, we restrict our analysis to M = 3, which is the simplest model that allows for 

potentially non-monotonic fitness landscapes, such as fitness peaks and fitness valleys. In 

what follows, we refer to the vector s(xi) ≡ 1 − r0(xi) as the spatial profile of selection 

pressure, as it measures the difference in fitness between resistant and wild-type cells in each 

microhabitat (xi). Intuitively, large values of s(xi) correspond to regions where the resistant 

mutant has a significant evolutionary advantage over the wild-type cells (e.g. regions of high 

drug concentration).

While Equation 1 is difficult to solve explicitly, it is straightforward to calculate quantities 

that describe the evolution of resistance in various spatial profiles. The model consists of a 

single absorbing state—the fully resistant state (n*(xi) = N for all xi)—and the system will 

asymptotically approach this state. To characterize the speed of fixation in the presence of 

different spatial profiles s(xi), we calculate the mean first passage times (MFTPs) between 

states, which obey [47, 48]

−1 = ∑
m′ ≠ m f

T(m f ∣ m′)Ωm′, mi
(2)

where T (mf |mi) is the mean time required for a system initially in state mi to first reach 

state mf. We take mf to be the fully resistant state and solve the coupled set of linear 

equations for τ f
j ≡ T(m f ∣ j), where j is an index that runs over all initial states. In particular, 

when j is the fully wild-type population (n*(xi) = 0 for all xi), we refer to the MFPT as the 

mean fixation time τf.

In the case of a single microhabitat, the mean fixation time τf increases as selection pressure 

decreases (see SI). In the spatially extended case, τf would also be expected to increase 

when the selection pressure is globally decreased, though it should also depend on the 

spatial structure of the specific selection profile s(xi). To investigate the impact of spatial 

De Jong and Wood Page 3

Phys Rev Lett. Author manuscript; available in PMC 2018 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structure alone, we compared τf across different selection profiles s(xi), all of which were 

characterized by the same spatially averaged selection pressure, 〈s〉 = Σi s(xi)/M. For 

simplicity, we begin with a symmetric profile characterized by a background selection 

pressure s0 in the edge habitats and a relative peak of height δs in the center habitat (Fig. 

1a). This toy landscape has an average selection pressure of 〈s〉 = s0 + δs/M, and the 

parameters s0 and δs are constrained by the fact that 0 ≤ s(xi) ≤ 1 at all spatial locations. We 

vary δs systematically to explore different selection profiles, which can include a single 

selection pressure valley (δs < 0), a homogeneous landscape (δs = 0), or a single selection 

pressure peak (δs > 0).

Interestingly, we find that modulating heterogeneity (δs) can increase or decrease τf for 

certain choices of migration and mutation rates, even when 〈s〉 is held constant (Fig. 1b). 

More generally, we find that the β − μ plane can be divided into three non-overlapping 

regions where the homogeneous landscape 1) leads to the smallest value of τf, 2) leads to the 

largest value of τf, or 3) does not correspond to an extremum τf (Fig. 2a–b). In the latter 

region, heterogeneity often modulates the fixation time by only a few percent, but we do find 

larger effects in the high and low migration limits (i.e. on the edges) of the intermediate 

regime (Fig. S1). In addition, as we increase β for a fixed value of μ, τf smoothly transitions 

from being minimized at δs = 0 to being maximized near δs = 0 (Fig. S1). We find 

empirically that the fixation time can be dominated by τ1, the time required to achieve a 

small population of mutants (Fig. 2c, rightmost panel) or τ2, the time required for this small 

population to achieve fixation (Fig. 2c, leftmost panel). However, in many cases—

particularly those close to the intermediate region where fixation can be accelerated or 

slowed by heterogeneity—both timescales contribute to the dynamics. While we restrict 

ourselves primarily to N = 25, 〈s〉 = 1/6, and to symmetric landscapes, we find qualitatively 

similar results (i.e. 3 distinct regions) for other values of 〈s〉 (Fig. S2), N (Fig. S3), as well as 

for permuted selection profiles (Fig. S4), globally coupled profiles (Fig. S4), and monotonic 

(gradient) selection profiles (Fig. S5).

To intuitively understand these results, we developed a simple analytical approximation for 

τf (see SI, Equation S16) valid in the limit μ, β ≪ 1, where the fixation time is dominated by 

the arrival times of individual mutants (either from de novo mutation or from migration from 

a neighboring vial that has achieved fixation). In this limit, the three habitats achieve fixation 

one at a time, and fixation in a single habitat is approximated as an exponential process with 

rate λ(s, nfix) = N(μ+βnfix)Pfix(s), where nfix is the number of neighboring vials that have 

already achieved fixation and Pfix = s(1 − (1 − s)N)−1 is the probability of a single mutant 

fixing in a habitat with selection pressure s (see SI). The approximation captures the 

qualitative features of fixation over a wide range of μ and β (Fig. S7) and, in many cases, 

provides excellent quantitative agreement as well (see, for example, Fig. 2b, left panel and 

Fig. S7).

In general, the analytical approximation for τf is algebraically cumbersome. However, in the 

limit β ≪ μ, the approximation reduces to the expected maximum of three independent 

exponential random variables, leading to 

τ f ≈ τmax = λ0
−1 + λ1

−1 + λ2
−1 − (λ0 + λ1)−1 − (λ0 + λ2)−1 − (λ1 + λ2)−1 + (λ0 + λ1 + λ2)−1, with 
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λi ≡ λ(s(xi), 0) (see SI for details). In this limit, the three-vial system acts effectively as 

three independent systems, with the overall fixation time corresponding to the slowest 

fixation. After rewriting τmax in terms of 〈s〉 and δs, it is straightforward to show that 

(∂τmax/∂δs)|δs=0 = 0 and (∂2τmax/∂δs2)|δs=0 > 0, indicating that the homogeneous landscape 

(δs = 0) minimizes the fixation time, consistent with results of the exact calculation (Fig. 2b, 

left panel). Intuitively, increasing heterogeneity reduces the minimum selection pressure in 

the spatial array, which in turn slows the expected maximum fixation time among the three 

habitats.

By contrast, in the limit μ ≪ β, τf reduces to the expected minimum of three independent 

exponential processes, leading to τf ≈ τmin = (λeff)−1, where λeff ≡ λ0+λ1+λ2. In this limit, 

the fixation time is dominated by dynamics in the vial that first achieves fixation; the 

remaining vials then rapidly achieve fixation due to fast migration. For large but finite N, the 

fixation time τmin is maximized at δs = 0, indicating that heterogeneity always accelerates 

fixation, again consistent with the exact calculation (Fig. 2b, right panel). In this limit, the 

effective rate of fixation λeff is increased for all δ ≠ 0, as heterogeneity decreases fixation 

time in the vial with the fastest average fixation.

Our results indicate that a judicious choice of selection pressure profile can potentially slow 

fixation of de novo mutants. In addition, selection pressure profiles can be optimized to 

mitigate the effects of resistance once it has emerged. One advantage of the MFPT approach 

(i.e. solving Equation 2) is that it provides fixation times starting from all possible initial 

states, making it straightforward to apply to cases where a resistant subpopulation already 

exists. Specifically, consider a situation where a resistant subpopulation has arisen at a 

particular spatial location. Is it possible to choose the spatial distribution of selection 

pressure—for example, by spatially dosing the drug—to minimize the time to fixation from 

this state? Intuitively, the goal is to delay the onset of treatment failure as long as possible. 

As an illustrative example, we consider a population consisting of N/2 mutants in the center 

microhabitat and calculate the mean time to fixation for different spatial profiles of selection 

pressure. We then find the optimal value for δs—that is, the heterogeneity corresponding to 

the spatial landscape with the slowest fixation time—in different regions of parameter space 

(Fig. 3a). The specific choice of spatial profile significantly impacts the time to fixation from 

the initial resistant subpopulation (Fig. 3b). We observe two distinct regions of parameter 

space that lead to two very different dosing regimes (Fig. 3c). For μ sufficiently large relative 

to β, slowest fixation occurs when we maximize the amount of drug in the center 

microhabitat (δs = 0.5, white region). On the other hand, at large migration rates fixation is 

optimally slowed by maximizing the amount of drug in the two microhabitats without any 

initial mutants (δs = −0.2). In contrast to the case with no initial mutants (e.g. Figure 2), 

fixation time is never maximized by choosing the homogeneous profile. To further 

characterize these two regimes, we compare the fixation times from a maximally peaked 

landscape (δs is maximized) to that from a landscape with a large valley (δs is minimized). 

The selection landscape that leads to the slowest fixation rapidly becomes sub-optimal as 

mutation rate is decreased at constant β (Fig. 3d).

Our model is a dramatic oversimplification of the biological dynamics leading to drug 

resistance. Practical applications will require analysis of more realistic models and may call 
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for spatial optimizations with different constraints–for example, limits on the maximum 

allowable local selection pressure. Nevertheless, the simplicity of our model allows for a 

thorough characterization of fixation time over a wide range of parameters, and its behavior 

is surprising rich. Importantly, our results do not require a fitness cost of resistance or a 

genetic fitness valley, and they predict that spatial heterogeneity in drug concentrations 

would impact populations of motile and non-motile cells in opposing ways, even when 

mutations rates are relatively similar. While heterogeneity is likely to accelerate evolution 

for populations of motile bacteria, similar to what is observed in experiments with E. coli 
[22, 24], our results predict slowed evolution for less motile cells (e.g. the nosocomial 

pathogen E. faecalis [49]) or cells with rapid mutation rates. Perhaps most interestingly, our 

results suggest counter-intuitive, spatially optimal profiles for slowing the spread of 

resistance sub-populations. In the long term, these results may lay the groundwork for 

optimized, spatially-resolved drug dosing strategies for mitigating the effects of drug 

resistance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
(a) Stochastic model for emergence and spread of resistant cells (red) in a spatially extended 

population of sensitive cells (green). Each spatial habitat (xi) contains N total cells. Cells 

migrate at a rate β between neighboring habitats, and sensitive cells mutate at a rate μ to 

resistant cells. The spatial distribution of selection pressure is characterized by a background 

value (s0) and a peak height (δs). (b) Example plot of the mean fixation time for different 

landscapes with μ = 5 × 10−3, β = 0.08, N = 25, and 〈s〉 = 0.167. The time to fixation can be 

either faster (green) or slower (red) than the spatially homogeneous landscape with δs = 0. 

Inset: selection landscapes for δs = −0.2 and δs = 0.5.
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FIG. 2. 
Spatial heterogeneity can speed or slow fixation depending on the rates of migration (β) and 

mutation (μ). (a) Phase diagram illustrates region of parameter space where the 

homogeneous landscape leads to a maximum (light blue), minimum (dark blue) or 

intermediate (medium blue) value of the in fixation time. MFPT calculations were 

performed for the indicated values of β and μ and for −0.2 ≤ δs ≤ 0.5 in steps of 0.1. (b) 

Sample fixation curves in the regions where heterogeneity slows fixation (left panel, 

diamonds; β = 10−4, μ = 10−4) or accelerates fixation (right panel, squares; β = 5 × 10−2, μ = 

10−4). Solid curves indicate analytical approximations. (c) Gray shaded region indicates 

fixation time τf from every initial state (n*(x0), n*(x1), n*(x2)), where n*(xi) is the initial 

number of mutants at position xi. Red curves show mean fixation time over all initial states 

with a given total mutant fraction. Vertical arrows represent time to achieve a total mutant 

fraction of 1/5 (τ1, blue) and time to go from that fraction to fixation (τ2, green). Left to 

right panels: increasing β at a fixed value of μ = 10−4; plots correspond to symbols on phase 

diagram in panel (a). N = 25 and 〈s〉 = 0.167 in all panels.
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FIG. 3. 
(a) Schematic: a subpopulation of resistant mutants (red) arises at a particular spatial 

location. How can one choose the spatial distribution of selection pressure (i.e. drug 

concentration) to maximize the time to fixation? (b) Heterogeneity can significantly speed or 

slow fixation starting from an initial resistant subpopulation consisting of N/2 cells in the 

center habitat (μ = 10−5, β = 8 × 10−3). Points, exact calculation; solid line, analytical 

approximation. (c) The optimal spatial heterogeneity (δs) leading to the slowest mean 

fixation time from an initial state of (0,N/2, 0). Depending on the specific parameter regime, 

the optimal selection pressure profile is the one with the largest possible valley consistent 

with 〈s〉 (black) or the one having the largest possible peak (white). Red solid line, analytical 

approximation. (d) Relative magnitude of τ f
δsmax (mean fixation time at maximum value of 

δs) and τ f
δsmin (mean fixation time at minimum value of δs) as mutation rate decreases at 

constant migration rate (green arrow, panel (c)). Points, exact calculation; solid line, 

analytical approximation. N = 24 and 〈s〉 = 0.167 in all panels. Analytical approximation is 

given in Equation S24.
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