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Lithium-ion batteries are widely used in various industries,
such as portable electronic devices, mobile phones, new
energy car batteries, etc., and show great potential for
more demanding applications like electric vehicles. Among
advanced anode materials applied to lithium-ion batteries,
silicon—carbon anodes have been explored extensively due to
their high capacity, good operation potential, environmental
friendliness and high abundance. Silicon—carbon anodes have
demonstrated great potential as an anode material for
lithium-ion batteries because they have perfectly improved
the problems that existed in silicon anodes, such as the
particle pulverization, shedding and failures of electrochemical
performance during lithiation and delithiation. However, there
are still some problems, such as low first discharge efficiency,
poor conductivity and poor cycling performance, which need
to be improved. This paper mainly presents some methods for
solving the existing problems of silicon—carbon anode materials
through different perspectives.

1. Introduction

With the development of social progress, increasing energy
demands are becoming more urgent in various fields such as
electronics, renewable energy generation systems and electric
vehicles [1-4]. Lithium-ion batteries (LIBs) are considered as
candidates for the increasing demand of portable electronic
devices and electric and hybrid vehicles due to their high energy
densities and stable cycle life. A secondary lithium-ion battery is
fabricated with an anode, a cathode, a separator and electrolytes.
Both the electrodes act as lithium ion hosts with a separator
membrane to avoid a short circuit while the electrolyte supplies
lithium ions. The specific energy of a battery is determined by
the specific capacities of the cathode and anode materials [5].
Among various anode materials, silicon has attracted considerable
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attention because of its highest theoretical specific capacity (about 4200 mAhg~'), which is ten times
higher than that of conventional carbon anodes (372mAhg~!) and satisfactory potentials for lithium
insertion and extraction (<0.5V versus Li/Lit) [6].

Unfortunately, practical application of Si anodes is currently hampered by multiple challenges.
The primary one is its huge volume change (approx. 300%) upon full lithiation and the resultant
expansion/shrinkage stress during lithiation/delithiation, which induces severe cracking of Si. This
results in the formation of an unstable solid electrolyte interphase (SEI) on the Si surface, and causes
lithium trapping in active Si material, consequently leading to irreversible fast capacity loss and low
initial coulombic efficiency (CE). Moreover, the slow lithium diffusion kinetics in Si (diffusion coefficient
between 107! and 107'*cm?s~!) and low intrinsic electric conductivity of Si (107°>-1073Scm™!)
also significantly affect the rate capability and full capacity utilization of Si electrodes [7-9]. Silicon
nanostructure materials, including nanotubes, nanowires, nanorods, nanosheets, porous and hollow or
encapsulating Si particles with protective coatings, have been devoted to achieve improved structural
and electrical performance [10,11].

Meanwhile, the preparation methods for these nanostructures (e.g. vapour-liquid—solid methods,
magnetron sputtering and chemical vapour deposition) have the disadvantages of complicated
technologies and multiple steps [12,13]. Graphite and porous carbon are potential anode materials
with relatively small volume change (e.g. graphite’s volume expansion rate is about 10.6%) during the
lithiation—delithiation process and have excellent cycle stability and electronic conductivity. Compared
with silicon, carbon materials have a similar nature and they can combine closely with each other,
so they are naturally selected as the substrate materials for dispersing silicon particles (i.e. dispersing
carriers) [14,15]. Therefore, silicon-carbon composite anodes have been researched extensively because
of their higher capacity, better electronic conductivity and cycle stability [16]. However, problems of
silicon—carbon anode materials, such as low first discharge efficiency, poor conductivity and poor cycling
performance need to be overcome. In this paper, we focus on the modification methods of silicon—carbon
anode materials for LIBs. The status of solutions for the problems that exist with silicon—carbon anode
materials is reviewed.

2. Preparation of the silicon—carbon materials

The Si—-C anode materials are usually prepared by methods such as vapour deposition, high temperature
solid phase synthesis, mechanical alloying, electrostatic electrospinning; the latter three methods require
high temperature treatment. The methods mentioned above are the most widely used and easiest to
implement.

2.1. Vapour deposition

Vapour deposition includes chemical vapour deposition (CVD) and physical vapour deposition (PVD).
CVD s a chemical process used to produce high quality, high performance solid materials. The process is
often used in the semiconductor industry to produce thin films. CVD is widely used in microfabrication
processes to deposit materials in various forms, including monocrystalline, polycrystalline, amorphous
and epitaxial. These materials include: silicon (5iO,, germanium, carbide, nitride and oxynitride), carbon
(fibre, nanofibres, nanotubes, diamond and graphene), fluorocarbons, filaments, tungsten, titanium
nitride and various high-k dielectrics. Chemical vapour deposition (CVD) in which hydrocarbons are
decomposed over a substrate is perhaps the most popular route since it is a technique commonly adopted
by the semiconductor industry and it is also relatively facile to set up in research laboratories [17]. PVD
describes a variety of vacuum deposition methods, which can be used to produce thin films and coatings
[18]. PVD is characterized by a process in which the material goes from a condensed phase to a vapour
phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and
evaporation. PVD is applied in the manufacture of items that require thin films for mechanical, optical,
chemical or electronic functions. Common industrial coatings applied by PVD are titanium nitride,
zirconium nitride, chromium nitride and titanium aluminium nitride. Of the two vapour depositions,
CVD is often used to prepare silicon—carbon composite materials [19].

2.2. High temperature solid phase synthesis

High temperature solid phase synthesis refers to a method that under high temperature (1000-1500°C)
and through contact with a solid interface, reaction, nucleation and crystal growth response generates
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a large number of compound oxides. High temperature solid phase synthesis could be a common
method to prepare Si/C composite materials, and in order to prevent the inert phase of Si/C the reaction
temperature is often controlled under 1200°C [20].

2.3. Mechanical alloying

In contrast to high temperature solid phase synthesis, the materials prepared by mechanical alloying
often have smaller particles, larger specific surface area and more uniform structures [21]. Mechanical
alloying (MA) is a solid-state powder processing technique involving repeated cold welding, fracturing
and re-welding of blended powder particles in a high-energy ball mill to produce a homogeneous
material [22]. MA is now shown to be capable of synthesizing a variety of equilibrium and non-
equilibrium alloy phases starting from blended elemental or pre-alloyed powders [23].

2.4. Electrostatic electrospinning

Electrospinning is a fibre production method, which uses electric force to draw charged threads of
polymer solutions or polymer melts up to fibre diameters in the order of some hundred nanometres [24].
Electrospinning shares characteristics of both electrospraying and conventional solution dry spinning of
fibres [25]. The process does not require the use of coagulation chemistry or high temperatures to produce
solid threads from solution. This makes the process particularly suited to the production of fibres using
large and complex molecules. Electrospinning from molten precursors is also practised and this method
ensures that no solvent can be carried into the final products [26,27]. Electrospinning is a particularly
low cost, simple and versatile method to produce nanofibres from various kinds of materials, and the
improved coaxial electrospinning can fabricate nanotubes and core—shell structural nanofibres [28].

3. Modification of silicon—carbon anode materials

The main problems of silicon—-carbon anode materials, such as low first discharge efficiency, poor
conductivity and poor cycling performance need to be improved. When studying the modification of
silicon—carbon anode materials, we usually take the following three aspects into consideration:

(1) Use different nanostructures to buffer the volume change of silicon, avoid the damage of
generated SEI film on the electrode surface and avert the explosion of new surface during the
process of circulation, in order to reduce the irreversible capacity loss and improve the cycling
stability;

(2) We can significantly change the carbon material elements and the surface activity and improve
the electrochemical properties through heteroatom doping, including non-metallic elements
(boron, nitrogen, sulfur, phosphorus) and metal elements (K, Al, Ga, V, Ni, Co, Cu, Fe)

(3) Apply compound modification treatment by combining different forms of carbon with silicon to
form uniform conductive network structures and to prepare silicon-carbon composite materials
with good electrical conductivity, good adhesion and high chemical stability.

3.1. Structural modification of silicon—carbon anode materials

Carbon-based nanomaterials have unique properties that make them useful for many technical
applications, including lightweight construction, electronics, energy generation, environmental
technology and medicine [29-32]. Nanomaterials exhibit physical and chemical properties that are
different from, and normally much better than, those of the bulk forms. These outstanding properties are
often determined by the microstructure [33,34]. Carbon materials with excellent mechanical flexibility,
high electronic conductivity and chemical stability in electrolytes have drawn much attention for the
development of binder-free and lightweight electrodes [35]. The most recent advance in the applications
of nanowires (NWs) [36,37], nanofibres (NFs) [38—41], nanotubes (NTs) [42—44] and nanospheres (NSs)
[45-48] in the structure of silicon—carbon nanomaterials in LIBs are often mentioned. Table 1 lists
some studies using combinations of Si-C anode materials (NWs, NFs, NSs), in the form of material
structures and electrochemical properties. From these studies it can be seen clearly that anode materials
with nanostructures can significantly improve the electrochemical cycling performance of lithium ion
batteries.
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Table1. Electrical properties of silicon—carbon anodes with different structures. Qy, the first reversible capacity; CE, coulombic efficiency;
QdN(N), discharge capacity in Nth cycle; C.R.N., capacity retention in Nth cycle. NWs, nanowires; NFs, nanofibres; NTs, nanotubes; NSs,
nanospheres.

anode Qq (mAhg™")  current QdN (mAhg™")
material structure  method (initial CE) density
C-SiNWs NWs (') 1700.0 0.2C 1300.0 76.5 [36]
(90.0%) (30)
i o Iutlonbasedsy SO T o s oo [37]
(96.0%) (100)
T T G R el e S [38]
(78.5%) (20)
T ST electrospray/electrospmn|ng ........... S 05A9_1 ......... e Sy [39 ] .
technique (80%) (100)
T T electrospmmng ................................ e o 9_1 .......... s L [40]
(83.6%) (10
T T electrospmmng ................................ woy 20A9_1 ......... e e [4”
(79.3%) (400)
MWCNT@S|N e magn o g 04Ag—1 ......... S o [42] .
(51.0%) (10)
T R Gy s 03Ag“ ......... e e [43] .
(96%) (50)
T o G s o g_1 .......... s o [44]
(66.4%) (300)
MS|@C .............. sphere .......... magn s weg 005A9_1 ....... e e [16]
(83.0%) (100)
S|@CNSs .......... sphere .......... e e 02A9_1 ......... oy P [45]
(52.0%) (50)
HS|@ o sphere .......... o platmgmeth T oy 20Ag“ ......... sy oy [46]
carbonization (70.0%) (120)
Sl@v0|d@( ....... sphere .......... R magnes|otherm|c .............. O o 9_1 .......... e s [47] .
reduction (62.5%) (100)
pS|@( ............. sphere .......... part|a| magnes| s e 05A9_1 ......... s o [48]
reduction (69.4%) (100)

3.1.1. Silicon—carbon nanowires

Nanowires are needed in many nanoscale applications. Various types of nanowires have been produced,
including some with diameters ranging from about 50 to 100nm [49]. The process of a novel design
of carbon-silicon core-shell nanowires for high power and long life lithium-ion battery electrodes is
schematically illustrated in figure 1 [36]. Amorphous silicon was coated onto carbon nanofibres to form a
core—shell structure and the resulting core—shell nanowires showed great performance as anode material.
They show a high charge storage capacity of about 2000 mAh g~! and good cycling life. They also have a
high coulombic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. Bogart’s group
[37] reported a solution based synthesis of Si nanowires with a conductive carbon skin. Electrodes made
with Si nanowires coated by pyrolysed carbon shells exhibited high capacities of over 2000 mAh g~ for
100 cycles when cycled slowly at 0.1C and over 1200mAh g~! when cycled quickly at 1.0C. Uniform
and complete carbon coatings were also found to prevent complete nanowire expansion needed for full
lithiation of the nanowire.
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Figure 1. Schematicillustration of Si coating onto carbon nanofibres. (a) Bare CNFs. (b) C=Si core—shell NWs [36].

3.1.2. Silicon—carbon nanofibres

The attractive properties of catalytically grown carbon nanofibres (CNFs) have been known for decades
[50]. They can be mass-produced inexpensively, and have excellent mechanical strength and high thermal
and electrical conductivity [51]. The hybrid nanostructured Si/CNFs anodes exhibited superior device
performance to that of materials used in previous studies, in terms of both specific capacity and cycle
life. The CNFs provide not only a good strain/stress relaxation layer but also a conductive electron
pathway [52].

Shu et al. [38] developed hollow carbon nanofibres/Si composites by a facile CVD technique with
iron nitrate as the catalyst source and acetylene as the carbon source. They show excellent rate
capability as anode materials for lithium batteries. The initial discharge and charge capacities of the
CNFs/Si composites at 0.60 C are 1197.8 and 941.4mAh g™, respectively. A reversible charge capacity
of 733.9mAh g~! can be delivered at 0.60 C after twenty cycles and the capacity retention is as high as
77.9%. It is found that CNFs/Si composites show superior electrochemical properties as anode materials
for lithium batteries. They not only provide electronic conducting bridges between Si particles and the
current collector for electron transportation but also act as a buffer to suppress the volume expansion of
Si particles during lithiation and delithiation reactions.

A novel flexible three-dimensional (3-D) Si/C fibre paper electrode [39] is synthesized by
simultaneously electrospraying nano-Si-PAN (polyacrylonitrile) clusters and electrospinning PAN fibres
followed by carbonization. The flexible 3-D Si/C fibre paper electrode demonstrate a very high overall
capacity of about 1600 mAh g~! with capacity loss less than 0.079% per cycle for 600 cycles and excellent
rate capability. Wang and co-workers [40] developed a new porous composite nanofibres manufacturing
route, combining electrospinning and foaming processes (illustrated in figure 2). After 20 cycles ,when all
these batteries reach stable charging/discharging rate, the discharging capacity shows as 1045 mAh g_1
for porous C/Si/AACA composite nanofibres. Kim et al. [41] introduced a 3-D paper-type Si—carbon
nanofibre-composite electrode (Si/CNF-P) as a binder/current collector-free anode for LIBs that was
prepared using an electrospinning method. Figure 3 shows Nyquist plots of the electrodes after the
1st, 5th and 100th cycles. Si—-NP and Si/CNF-G exhibited a sharp deterioration in the discharge
capacity, which might be due to a serious volumetric expansion by the alloy/dealloy process during
the cycling. However, the Si/CNF-P exhibited a high initial capacity of 1957 mAh g_1 at ZAg_1 and
maintained 1187 mAh g~ (retention rate of 60.6%) for 400 cycles. The enhanced cycling performance of
Si/CNF-P might result from the suppression of the volumetric expansion of Si and facilitation of Li-ion
transport. Si-NP and Si/CNF-G showed a severe increment of the charge transfer resistance (Rct) due
to increased interface resistance after the cycling process, whereas Si/CNF-P showed a relatively slight
increment of Re; due to the stable electrode structure containing Si on CNF with voids, which could
effectively release the volumetric expansion. These results confirm that the combination of CNFs and Si
dramatically improves the electric conductivity and reduces the total cell resistance, which leads to the
good performance of Si/CNF nanocomposite electrodes.

3.1.3. Silicon—carbon nanotubes

Among all the conducting carbon materials, the carbon nanotube (CNT) is a one-dimensional material
with a hollow tube including a curled graphene structure and an end cap with a hemispherical fullerene
structure. CNTs, an allotrope of graphite, have been reported to show much improved lithium storage
capacity compared with graphite, because of their unique structures and properties. CNTs have been
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Figure 2. (a) Schematic of the electrospinning/foaming process in the manufacture of mesoporous C/Si/AACA composite nanofibres and
(b) optical images of the C/Si/AACA composite nanofibres under mechanical deformation (folding and spiral-wound bending) and after
bending [40]. Reproduced with permission from Wang et al. [40] (Copyright©2015 Elsevier).

reported to display conductivities as high as 106 Sm™! and 105Sm™! for single-walled carbon nanotubes
(SWCNTs) and multiwalled carbon nanotubes (MWCNTs), respectively. Recently, many investigations
have focused on CNT-based anodes for LIBs with varying success, depending on the treatments
employed [53]. Most previous reports on CNT-containing Si anode materials mainly emphasized the
electrical connection of Si with the CNT exterior surface by simple mechanical mixing, growth of
CNTs on Si, anchoring Si on the CNT surface, and deposition of Si on a CNT film to form a Si/CNT
composite paper. However, the confinement effect of CNTs is not satisfactory due to the inhomogeneous
distribution of Si particles and the fact that they are not strongly confined by the CNT network within a
nanospace [54].

Nanostructures of Si nanobeads strung by CNTs [42—44] and Si nanotubes confined in CNTs [19]
were proposed to accommodate huge volume changes of Si during lithiation and delithiation without
appreciable mechanical failure. Chen’s group [42] demonstrate the synthesis of uniform MWCNT@Si
nanocomposites via the magnesiothermic reduction of pre-synthesized MWCNT@SiO, nanocables [42].
The uniform MWCNT@Si nanocomposite electrode shows a capacity of approximately 900mAh g~! at
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Figure 3. Nyquist plots of (a) Si—NP, (b) Si/CNF—P and (c) Si/CNF-G, and () the R; numbers measured after the 1st, 5th and 100th cycles
[41]. Reproduced with permission from Kim et al. [41] (Copyright©2017 Elsevier).

200mA gfl. When the current density is reset to 400 mAh gfl, a capacity of 680 mAh g*1 can be retained,
which indicates the good rate capability of the as-prepared uniform MWCNT@Si nanocomposite
electrode.

Epur et al. [43] reported a simple and facile, novel ascribable technique for achieving electrochemically
active moderately thick Si-CNT nanocomposite coatings on copper foil. The Si—-CNT heterostructures
synthesized by the simple two-step CVD technique were compacted into a pellet using a conventional
cold pressing technique that was then used to scribe the electrode on a copper foil to form the final
electrode devoid of any additives and binders. A very high first discharge capacity of 3112mAhg™!
was obtained followed by a low first cycle irreversible loss (19%). The scribed electrodes also exhibited
good cyclability with 76% capacity retention at the end of 50 cycles, corresponding to a fade rate of
0.48% loss per cycle. A novel silicon core/amorphous carbon nanotube (ACNT) shell composite that can
be used as LIB anode material was synthesized in situ by Zhao et al. [44] in the CVD growth process.
The fabrication of Si/ACNT composite and Nyquist plots of the cells with Si/ACNT composite and Si-
ACNT mixture are illustrated in figures 4 and 5, respectively. These curves unambiguously demonstrate
that the Si/ ACNT composite benefits from fast charge transfer, which can be reflected by the diameter
of the semicircle in the high frequency region, indicating good electronic contact of Si/ ACNT composite
is maintained after repeated lithium insertion and extraction processes. It should benefit from the strong
adherence and thus direct electronic connection of ACNTs on the surface of Si. This Si/ ACNT composite
delivered a high capacity of 1496 mAh g_1 at a current density of 100mA g_l, and a superior cycling
stability with 80% capacity retention after 300 cycles. This observed specific capacity improvement of
Si/ ACNT composite may be attributed to the formed 3-D conductive networks between silicon particles
and interwoven ACNTs in the composite.

3.1.4. Silicon—carbon nanospheres

Carbon nanospheres consist of graphite layers distributed discontinuously in the graphite structure with
a state of glass phase [55]. Since the carbon nanospheres have high specific surface, excellent chemical
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Figure 4. Schematic llustration presents the fabrication of Si/ACNT composite using impregnation and in situ CVD method to grow the
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Figure 5. Nyquist plots of the cells with Si/ACNT composite and Si—ACNT mixture [44].

stability and thermal stability, etc., they can be applied to preparation of high strength and high density
C/C composite materials, high performance liquid chromatographic columns, high specific surface area
activated carbon materials, LIB anode materials and a series of high-performance carbon materials.
Carbon microspheres have a strong adsorption capacity and they can be used repeatedly [56,57].

Hollow core-shell structured porous Si—-C nanocomposites with void space were designed by Li’s
group [58] to accommodate the volume expansion during lithiation for high performance LIBs. An
initial capacity of about 760 mAh g_l after formation cycles (based on the entire electrode weight) with
approximately 86% capacity retention over 100 cycles is achieved at a current density of 1.0 Ag~!. Ma
et al. [16] demonstrated the design and synthesis of novel mesoporous Si@C microspheres as anode
materials for high-performance LIBs, which is illustrated in figure 6. They present a specific capacity
of 1637 and 1375mAhg™! at first discharge and charge under a current density of 50mA g~!. After
100 cycles, the charge capacity remains 1053 mAh g_1 with a coulombic efficiency of 99%, showing
good cycle stability of the anode. Mesoporosity of Si@C microspheres effectively buffers the volume
expansion/shrinkage of Si nanoparticles during Li ion insertion/extraction, which endows mesoporous
Si@C microspheres with excellent electrochemical performance and cycle stability.

Zhou et al. [45] prepared silicon/carbon nanospheres composite by a facile chemical method followed
by heat treatment. The Si particles are coated with an amorphous carbon layer, which suppresses
agglomeration of pristine Si. Carbon spheres accommodate large volume expansion of silicon during
cycling. As shown in figure 7, the diameter of the semicircle for the Si/carbon nanospheres electrode
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Figure 7. (a) Nyquist plots of Si and Si/carbon nanospheres composite; (b) equivalent circuit that is used to fit the EIS data [45].
Reproduced with permission from Zhou et al. [45] (Copyright © 2016 Elsevier).

is much smaller than that of the pure Si electrode, which indicates good electrical conductivity
of silicon/carbon nanospheres composite. The silicon/carbon nanospheres composite exhibits initial
reversible specific capacity of 888.6mAhg™! at current density of 200mA g~!. After cycling up to 50
cycles, the electrode still delivers charge capacities of 610.7 mAh g_l. Ashuri et al. [46] have investigated
the electrochemical properties of hollow silicon nanospheres encapsulated within a thin carbon shell,
HSi@C, as a potential candidate for LIB anodes. The HSi@C nanospheres obtained deliver a stable
specific capacity of 700mAh g~ after 100 cycles at a current density of 2A g~! and 800 mAhg~! after
120 cycles at a current density of 1.0 Ag~!. A yolk-shell structured Si-based anode was prepared by
depositing MgO as sacrifice layer and CVD process, which is shown in figure 8 [47]. After 100 cycles at
1.0A g™, the Si@void@C electrode gave a specific capacity of 796 mAh g~! with the capacity retention
of 88.3%, which was higher than the Si@C produced directly by CVD. As is shown in figure 9, the
electrochemical impedance spectroscopy (EIS) measurements indicate a good cycling stability and an
improved electrical conductivity. The significant improvements for cycle performance demonstrate the
yolk—=shell structured Si—C nanocomposite in this work is a promising anode material for LIBs. A partial
magnesiothermic reduction method, which is conducted by adjusting the proportion of added Mg
powder to convert SiO; into Si/SiO; and subsequently to coat such a composite with a carbon layer was
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reported by Wu's group [48]. After removing unreacted SiO, using HF, carbon-coated mesoporous Si (p-
Si@C) materials can be obtained. The as-prepared p-Si@C shows superior electrochemical performance
with a reversible capacity of 1146 mAh g~! after 100 cycles at a rate of 0.5 A g ™!

3.2. Doping modification of silicon—carbon anode materials

Heteroatom doping can significantly change the carbon material elements, its surface activity and
improve its electrochemical properties. Non-metallic elements (boron, nitrogen, sulfur, phosphorus)
and metal elements (K, Al, Ga, V, Ni, Co, Cu, Fe) are often applied in doping modification of silicon—
carbon materials. Among the heteroatoms, the atomic radius of the nitrogen atom is closer to that of
the carbon atom than any other atoms, which makes it easier to replace carbon atoms in the atomic
lattice of carbon materials to form the N-doped carbon material [59]. A nitrogen atom has one more
extranuclear electron than a carbon atom, and with the very high electron affinity it can offer carbon
atoms adjacent to the nitrogen atom a higher positive charge density. At the same time, there is a
conjugate effect between lone pair electrons of nitrogen atoms and the big pi bond of the carbon atomic
lattice. As a result, the nitrogen-doped carbon materials display excellent electrochemical properties and
catalytic properties. Nowadays, the doping modification methods of silicon—carbon materials are mainly
dependent on nitrogen doping.

3.2.1. Si/nitrogen-doped carbon anode materials

The N-doped carbon layer with multiple type nitrogen is believed to deliver high electronic conductivity
and electrochemical activity and help transport lithium ions in the interface due to defects caused by
nitrogen doping [60-62]. Among heteroatoms for various doping sources, e.g. nitrogen or boron, nitrogen
is the most attractive dopant in the carbon network, because the atomic size of nitrogen is comparable to
that of carbon and its five valence electrons are available to form strong valence bonds with carbon
atoms [63]. The nitrogen atoms incorporated into carbon networks should lead to the formation of
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Table 2. Electrical properties of nitrogen-doped silicon—carbon composite anodes. Qy, the first reversible capacity; CE, coulombic n
efficiency; QdN(N), discharge capacity in Nth cycle; C.R.N., capacity retention in Nth cycle. NC, nitrogen-doped carbon; SPs, spheres; RGO,
reduced graphene oxide.

0 8
anode Qq (mAhg™")  current QdN (mAhg™) é
material method (initial CE) density g
CNCC=SPs electrospray 1380.0 05Ag™" 1031.0 747 [70] § 52"3,
(720%) (100) ‘E
s combmedapproaches ....................... 235730“9_] ................. oy by [71] %
(84.0%) (100) 1S
won |on|c||qu|da55|stedmethod ............. 2602004“9_1 ............... ey e [72] L:’
(75.4%) (100) g
o solutlonmlxmgand ......................... 2030201Ag—‘ ................. wy P R [73] 5
carbonization process (76.2%) (100) : E
Soncin Iaserphotopyroly5|stechn|que ......... g L s S R [74] :
(95.0%) (300) g=

e pretemplatecoatmgand ................ wes 10Ag—‘ ................. g Gy [75]

chemical acid etching (99.0%) (100)

stronger interactions between the nitrogen-doped carbon layer and lithium, which might be favourable
for lithium insertion [64,65]. The N-doped layer could prevent direct contact between the electrode
material and electrolyte. In addition, it is beneficial to improving the electronic conductivity of the
composite and lithium ion transmission at the interface of the electrode and electrolyte [66]. Nitrogen-
doped carbon-coating layers play a critical role in promoting and preserving the stable SEI layers and
providing an efficient transport pathway for the electrons [67—69]. In table 2, we can see clearly that
nitrogen-doped carbon materials significantly improve the conductivity and coulombic efficiency.

Zhang et al. [70] reported the fabrication of silicon/nitrogen-doped carbon/carbon nanotube
(SNCC)nano/micro hierarchical structured spheres through a facile electrospray approach for the first
time by using rice husk (RH) as silicon source. The unique hierarchical hybrid structure of the composite
spheres contributes to fast electronic transport and prevents silicon from pulverization, possessing good
structure stability upon the synergistic lithiation/delithiation of the components. These SNCC spheres
could deliver a high reversible specific capacity of 1380mAh g~ at a current density of 0.5 A g™, and
still maintain 1031 mAh g~! after 100 cycles.

An effective approach was developed to generate a nitrogen-doped carbon coating layer on porous
silicon (CN@P-Si) to minimize the intrinsic drawbacks of low electrical conductivity and large volume
expansion for LIBs [71]. The nitrogen-doped carbon coating layer shows more pronounced effect on the
charge-transfer reaction resistance in the electrode—electrolyte interface. The cell with CN@P-Si electrode
delivers a high specific capacity of 1904mAhg~! at the discharge current of 20 A g~!. After 100 cycles,
the P-Si electrode with pores shows huge pulverization; in contrast the CN@P-Si electrode remains intact
with reasonably low volume expansion.

Shen’s group [72] compared Si@N-doped carbon nanoparticles with Si@carbon nanoparticles, which
is prepared by ionic liquid assist. The synthesis process of Si@C and Si@N-doped carbon is illustrated
in figure 10. The as-prepared Si@N-doped carbon composite exhibited a high reversible capacity of
725 mAh g*1 after 100 discharge/charge cycles at a current density of 420 mAh gfl, about twice higher
than that of Si@C(360 mAh g_1 after 100 cycles at 420 mA g_l). As shown in figure 11, the R value of
Si@N-doped carbon was smaller than that of Si@C before or after 100 cycles, which suggested a lower
charge transfer resistance. In addition, the Z,, value of Si@N-doped carbon was larger than that of Si@C
before or after 100 cycles, indicating a faster speed of Li-ion diffusion in the solid-state electrodes. These
results demonstrated that compared with pure carbon, the N-doped carbon possesses faster Li* ion
diffusion and enhanced electronic conductivity. The improved electrochemical performance could be
ascribed to the stable core-shell structure of the nanocomposite and more importantly the doping of
nitrogen element into the carbon shell.
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Figure 11. Impedance measurements for Si@N-doped carbon and Si@C before and after 100 cycles at 420 mA g~ [72].

A Si-rGO/NCT composite was synthesized by Tang et al. [73], in which Si nanoparticles (SiNPs)
are enwrapped with N-doped carbon and combine with N-doped graphene and CNTs as conductive
matrices. As is obvious in figure 12, the Si-rGO/NCT electrode has the smallest semicircle diameter
compared with the Si-rGO/NC electrode and Si-rGO/T electrode, indicating the lowest charge transfer
resistance during the electrochemical reaction. The EIS result indicates that superior cycle and rate
performances of Si-rGO/NCT are achieved with the well-protected SiNPs and excellent conductivity
provided by the N-doping carbon and CNTs. The Si-rGO/NCT composite exhibits high specific
capacity and good cycling stability (892.3mAh g~! at 100mA g~! up to 100 cycles), as well as improved
rate capability. The N-doped carbon outside SiNPs can not only improve the electrical conductivity
of the composite, but also buffer the stress caused by huge volume change of SiNPs during the
lithiation/delithiation process. Choi et al. [74] fabricated Si@NC NPs using pyrrole and FeCls, and
the coating layer thickness was controlled by varying the amount of added FeCl3. The Si@NC NP
sample with 1g of FeCl; showed a specific capacity of 967mAhg~!, and that with 1.5g of FeCl;
retained 90.7% of its initial capacity (769 mAhg™'); this is quite a high value compared with that
of Si (38.3%). The enhanced cycling stability of the Si@NC NPs was attributed to the formation of
C-N networks resulting from the presence of polypyrrole. A facile approach was presented by Zhou's
group [75] for synthesizing silicon/porous nitrogen-doped carbon composite with a unique core—porous
shell structure via pre-template-coating and chemical acid etching methods. In figure 13, the traditional
post-coating approach for Si/NC and the pre-template-coating approach for Si/p-NC are illustrated.
The silicon/porous nitrogen-doped carbon composite with 88% Si delivers a high reversible capacity
of 1730mAhg~! (based on the total mass of the composite) after 100 cycles at a current density of
1000mA g~! with a coulombic efficiency of approximately 100%. Moreover, a long cycle life at a high
rate is also achieved, with a notable capacity of 665 mAh g~ after 600 cycles at a high current density of
5000mA g~ 1.
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Figure 13. Schematicillustration of (a) the post-coating approach for Si/NCand (b) the pre-template-coating approach for Si/p-NC from
a low-cost Al-Si alloy powder [75].

3.3. Compound modification of silicon—carbon anode materials

Within the mixed silicon and carbon anode materials, silicon and carbon are closely combined to form
a stable and uniform system. In the process of charging and discharging, silicon is the active centre
of electrochemical reaction and the carbon carrier has the effect of lithiation and delithiation. Besides,
the carbon carrier can also be an electron transport channel and structural support. Through making
compound modification by combining different series of carbon materials with silicon, composite
materials with uniform conductive network structures, good electrical conductivity, good adhesion
and high chemical stability can be prepared. From table 3, we can clearly see that the silicon—carbon
composite anode materials with different components can significantly improve the electrochemical
cycling performance of LIBs.

3.3.1. Si/carbon/graphite anode materials

The biggest problem for using silicon as anode is the huge volumetric expansion up to 300% when silicon
is maximally lithiated [89,90]. One of the ways to reduce the large volumetric expansion effect and make
great use of the large specific capacity of silicon is blending graphite and silicon [91]. Graphite is a good
candidate for a new anode material because it has great advantages of stability and cheaper cost as well as
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Table 3. Electrical properties of silicon—carbon composite anodes with different components. Q, the first reversible capacity; CE,
coulombic efficiency; QdN(N), discharge capacity in Nth cycle; C.R.N., capacity retention in Nth cycle. G, graphite; Gr, graphene; RGO,
reduced graphene oxide.
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Si-(NTs/Gpaper  addetching 000 02Ag”"  TO00O a7 185
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Si@RGO@NFs electrospinning mso 08Ag 8870 no [86]
(71.5%) (100)
msieC/er hydrothermal assembly w30 10Ag" 1920 80 | 87
(71.5%) (100)
Si@C@R60 spray dryingand calcination 1599 02Ag” 1575 %9 | [88]
(75.3%) (100)

low working voltage [92]. We may use a composite of graphite, carbon and silicon to provide affordable
anode capacity with minimized anode volume expansion [93,94].

A silicon/graphite/amorphous carbon (Si/C) composite with a low silicon content in a core—shell
structure was synthesized by the spray drying method [76]. The combination of the core—shell structure
for the composite and a porous carbon-coating layer accommodates the large volume change of the
silicon during the lithium intercalation/extraction process, thus stabilizing the electrode structure during
discharge/charge cycles. The as-obtained Si/C composite demonstrates high capacity and excellent cycle
stability with an initial specific discharge capacity of approximately 723.8mAhg~! and a reversible
specific capacity of approximately 600 mAh g~ after 100 cycles at a constant density of 100mA g~1.

Li et al. [77] developed a scalable and cost-effective method, including the processes of
mechanical milling, spray drying, pitch coating and pyrolysis, to fabricate a core-shell structured
graphite/silicon@pyrolysed-carbon (G/Si@C) composite. The synthesis procedures of G/Si@C is
illustrated in figure 14. As a negative electrode material of LIBs, the synthesized G/Si@C composite has

04721 76 ‘P uado 205y BaoBuysiigndiaposeforsos:



sodium lignosulfonate ristine Si nano-silicon dispersion .
g P P coal tar pitch

& e ball milling a Q o a o o
o/ . )
i}‘ ‘\,w'"\ in ethanol S, :C’ S, : © ... pitch coating layer carbon shell
1D + [S— @Do
|
|

o' < 2 G 2 ©
o, : © ¢ :‘3 mixing +
spray drying coating carbonization
L

’ graphite + I °
PN -.. glucose _ -
' OH
+ HOH;KK:&._DH 1 pyrolysed carbon
\ oH glucose

Figure 14. Schematicillustration of the synthesis procedures of G/Si@C [77].

excellent structural stability and electrochemical performance. The G/Si@C composite with 15.7 wt%
silicon shows a high reversible capacity of 637.7 mAh g~! with an initial efficiency of 77.9%, the capacity
retention is 89.5% after 100 cycles. Jeong’s group [78] demonstrated a cost-effective hydrothermal
carbonization approach to prepare a hard carbon-coated nano-Si/graphite (HC-nSi/G) composite as a
high performance anode for LIBs [78]. In this hierarchical structured composite, the hard carbon coating
not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of Si
during charge/discharge processes. The HC—nSi/G composite electrode shows excellent performance,
including a high specific capacity of 878.6mAhg~! based on the total weight of composite, good rate
performance and a decent cycling stability, which is promising for practical applications.

A type of Si/C@NGs composite containing flake-shaped sub-micron sized silicon (Si) enwrapped
by pyrolysed carbon and natural graphite (NG) was successfully prepared by Wang’s group [79] via a
spray-drying-assisted self-assembly method. The Si/C@NGs composite with hierarchical structure was
produced by the granulation of natural graphite (NG) particles and SAN/Si composite microspheres
via spray drying and pyrolysis. Compared with pure silicon and natural graphite, which is shown in
figure 15, the as-synthesized Si/C@NGs composite exhibits better performance with an initial efficiency
of 82.8% and a capacity retention of 428.1 mAh g*1 (1524.0mAh g*1 versus Si) after 100 cycles at
0.1 Ag~!. The better cycling stability of Si/C@NGs than that of pure Si and higher capacity than that
of the NG electrode could be attributed to the reasonable loading of Si (6.7 wt%) and rational structural
design by applying SAN and graphite backbones. Chen et al. [80] have prepared a carbon-coated core—
shell structure artificial graphite@plasma nanosilicon@carbon (AG@PNSi@C) composite as LIB anode
material via a spray drying method. The as-prepared composite shows superior performance as anode
in LIBs with a discharge capacity of 553 mAhg~! and a recharge capacity of 448 mAhg~!. Besides
the remarkable electrochemical performances, the facile and mass-producible synthesis process makes
the AG@PNSI@C composite very promising for its application in LIBs. A porous Si-based composite
has been reported, which consists of nano silicon (obtaining high capacity), graphite (gaining stable
structure), carbon nanotube (increasing electron conductivity), and pitch (porous structure as well as a
binder), prepared by a spray-drying method [81]. It shows an initial reversible capacity of 863.2 mAh g_1
at 100mA g1, and exhibits capacity retention of 81.3% after 100 cycles. The composite also possesses
good rate capability, and up to 89.3% of the reversible capacity can be recovered at 1.0 A g~!. Graphite
ensures the structural stability of the composite and help the dispersion of Si particles.

3.3.2. Si/carbon/graphene anode materials

The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing
new properties but also paved the way for a new class of materials often referred to as two-dimensional
(2-D) materials [95]. Graphene has either planar or 3-D morphology [96-101]. Graphene in 2-D planar
form has been intensively explored in fundamental physics and surface chemistry [102-105], electronics
[106,107] and (b) optoelectronics [108,109], but it is less studied in energy [110-112], environmental
[113,114] and biomedical applications [115]. Three-dimensional nanostructured graphene can be used
as a replacement or enrichment material [116]. One of the more common routes to fabricate graphene
is by CVD, which has emerged as the dominant synthesis route since it is already a well-established
process in both industry and laboratories [117-119]. In recent years, graphene has been proposed as
one of the best active carbon sources to prepare silicon-based composite anodes due to its excellent
properties such as high conductivity, high mechanical strength, high chemical stability, super-high
specific surface area and open porous structure. Graphene plays a flexible confinement function for
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Figure 16. (a) Nyquist plots of Si/CNFs and Si/CNFs@rGO electrodes after different cycle numbers from 100 kHz to 0.01 Hz in the fully
charged state and (b) corresponding equivalent circuit for the system [83]. Reproduced with permission from Chen et al. [83] (Copyright
© 2016 Elsevier).

tolerating volume changes to the composite in LIBs [120-122]. Since graphene has large surface area,
high electrical conductivity and discharge capacity, it is an attractive carbon material to improve the
electrochemical performance of the Si-based composite electrodes, leading to a more enhanced cycle
ability at large current densities [123-125].

Sun et al. [82] developed a novel approach to prepare silicon@carbon/graphene sheets (Si@C/G)
composite with a unique structure, in which carbon coated Si nanoparticles are uniformly dispersed
in a matrix of graphene sheets, to enhance the cycle ability and electronic conductivity of Si-based
anodes for Li-ion batteries. It exhibits a high Li-storage capacity of 1259 mAhg~! at a current density
of 0.2Ag*1 in the first cycle. Further, a stable cycle ability with 99.1/88.2% capacity retention from
initial reversible charge capacity can be achieved over 100/300 cycles, showing great promise for
battery applications. Chen et al. [83] prepared a sandwich-structured silicon-based anode prepared to
inhibit the fragmentation of silicon electrodes typically caused by the large volume changes that occur
during charge/discharge processes. The Si/CNFs@rGO composite exhibits a high specific capacity of
1055.1 mAh g~ up to 130 cycles at 0.1 A g1, with slight capacity loss. The Si/CNFs@rGO electrode also
demonstrates outstanding rate behaviour with a reversible capacity of 358.2mAhg~! at 5.0Ag~!. In
figure 16, the electrical conductivities of the as-prepared Si/CNFs and Si/CNFs@rGO, performed by a
DC technique, indicates the enhanced electrical conductivity by introduction of the protecting layer. That
is, the reduced graphene layer significantly improves the electrical conductivity and structural integrity
of the electrode. As is illustrated in figure 17, an electrostatic self-assembly method and hydrothermal
dehydration are used to introduce a reduced graphene oxide layer (rGO) on the surface of silicon/carbon
nanofibres (Si/CNFs), which prevents the exfoliation of nano-Si from the electrode bulk to the liquid
electrolyte, reduces the electric contact loss, stabilizes the electrode’s structural integrity and improves
electrochemical conductivity.
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Figure 17. Schematic fabrication process of the sandwiched Si/CNFs@rGO composite [83].
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Figure 18. Typical charge/discharge curves of (a) Si NPs and (b) Si@RGO@C NFs; (c) cycle properties of Si NPs and Si@RGO@C NFs;
(d) impedance spectra of Si NPs and Si@RGO@CNFs, the inset figure shows the equivalent circuit for the plot fitting [86].

Tao’s group [84] have prepared porous Si/C/reduced graphene oxide (Si/C/rGO) microspheres by
the spray drying and subsequent carbonization process using polyvinyl alcohol (PVA) as cross-linking
agent. The designed micrometre-size reduced graphene oxide wrapped Si/C ball structure offers a
buffer space for the volume change of Si during the charge—discharge process. The fabricated Si/C/rGO
microspheres exhibit a high reversible capacity of 928mAhg~! after 70 cycles at a current density
of 100mA g~!, good rate capability and cycling stability. A flexible self-standing Si~-CNT/graphene
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Figure 19. Schematic llustration of the synthesis of Si@C@RGO [88].
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Figure 20. Nyquist plots of the Si@C@RGO and Si@C composite anodes [88].

paper was fabricated with 3-D sandwich-like structure by Cai’s group [85] after combining with
graphene sheets. The self-standing Si-CNT/graphene paper anode exhibited a high specific capacity
of 1100mAhg~! even after 100 cycles at 200mA g~! current density with a coulombic efficiency of
above 99%. The silicon/graphene/carbon composite nanofibres (Si@RGO@C NFs) with a hierarchical
structure were prepared by encapsulating graphene-coated Si nanoparticles in the interconnected
carbon nanofibres based on electrospinning technology [86]. As is exhibited in figure 18, the well-
defined Si@RGO@C NFs demonstrate a better electrochemical performance with a reversible capacity
of 1228 mAhg~! and a capacity retention of 72% after 100 cycles with a current density of 800mA g~
With the current density gradually increasing to 4000 mA g~!, the electrode displays a specific capacity
of 954 mAh gfl, exhibiting superior rate capability compared to the Si nanoparticles. These excellent
electrochemical properties are attributed to the hierarchical core—shell structure and cross-linked network
for SI@RGO@C NFs.

Lee et al. [87] provided a new opportunity based on Si waste in fabricating sustainable and scalable
Si-based anodes for high-capacity LIBs. During the electrode fabrication, the sub-micron Si particles were
encapsulated with 3-D carbon matrix including a carbon coating on the Si particles and interconnected
reduced graphene layers, which can effectively mitigate volume variation of the Si as well as supporting
electrical conductivity. The sub-micron Si particle-based electrodes exhibit a reversible capacity of
1192mAhg~! at 100th cycle, retaining up to 84% of initial capacity. Pan et al. [88] have prepared

0L€721. %5 DS Uado 205y BioBuysiigndiyapos(eorsos:



a micro-sized silicon@carbon@graphene spherical composite (Si@C@RGO) by an industrially scalable
spray drying approach and a subsequent calcination process. The obtained SI@C@RGO anode exhibits a
high initial reversible specific capacity of 1599 mAh g~! at a current density of 100mA g~! with a good
capacity retention of 94.9% of the original charge capacity at a higher current density of 200mA g~ !.
Moreover, the SI@C@RGO anode shows a high reversible specific capacity of 951 mAhg™! even at a
high current density of 2000mA g~!. As is illustrated in figure 19, the combination of carbon shells and
flexible graphene can effectively enhance the electrical conductivity of the composite and accommodate
significant volume changes of silicon during cycling. According to the fitting results (based on equivalent
circuit in figure 20), we find that the incorporation of graphene can inhibit the growth of the SEI layer and
the unique structure of the SI@QC@RGO composite can effectively enhance the conductivity and increase
the cycling stability of the electrode.

From the literature survey above, we can conclude that graphene is an effective buffer element to
prevent structural changes of silicon against volume expansion and extraction of the electrode during
Li alloying/de-alloying processes because graphene greatly improves the reversible capacity, cycling
stability and rate capability [126,127].

4. Conclusion and perspective

In general, the research on silicon-carbon anode materials is mainly aimed at the development of a
higher energy density, greater charge—discharge performance, stable cycle performance and higher safety
performance aspects, and the development of large-scale preparations of low cost, stable performance
silicon—carbon composite materials. Methods such as structural modification can effectively increase
the surface area, thus the first reversible capacity of the silicon-carbon anode material is improved.
Heteroatomic doping can change the conductivity of the material and has effectively improved the
coulomb efficiency of silicon—carbon anode materials. Through combination with carbon materials with
excellent mechanical flexibility, high electronic conductivity and chemical stability in the electrolyte,
we can clearly find that the cycling stability of silicon—carbon anode materials is greatly improved. In
addition, research on the mechanism of lithiation—delithiation and the exploration of adhesives and
electrolytes that are more compatible with the silicon—carbon materials will also be hot topics in the
following 50 years.
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