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Abstract

Metabolic reprogramming of the tumor microenvironment is recognized as a cancer hallmark. To 

identify new molecular processes associated with tumor metabolism, we analyzed the 

transcriptome of bulk and flow-sorted human primary non-small cell lung cancer (NSCLC) 

together with 18FDG-positron emission tomography scans, which provide a clinical measure of 

glucose uptake. Tumors with higher glucose uptake were functionally enriched for molecular 

processes associated with invasion in adenocarcinoma (AD) and cell growth in squamous cell 

carcinoma (SCC). Next, we identified genes correlated to glucose uptake that were predominately 

overexpressed in a single cell-type comprising the tumor microenvironment. For SCC, most of 

these genes were expressed by malignant cells, whereas in AD they were predominately expressed 
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by stromal cells, particularly cancer-associated fibroblasts (CAFs). Among these AD genes 

correlated to glucose uptake, we focused on Glutamine-Fructose-6-Phosphate Transaminase 2 

(GFPT2), which codes for the Glutamine-Fructose-6-Phosphate Aminotransferase 2 (GFAT2), a 

rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), which is responsible for 

glycosylation. GFPT2 was predictive of glucose uptake independent of GLUT1, the primary 

glucose transporter, and was prognostically significant at both gene and protein level. We 

confirmed that normal fibroblasts transformed to CAF-like cells, following TGF-β treatment, 

upregulated HBP genes, including GFPT2, with less change in genes driving glycolysis, pentose 

phosphate pathway and TCA cycle. Our work provides new evidence of histology-specific tumor-

stromal properties associated with glucose uptake in NSCLC and identifies GFPT2 as a critical 

regulator of tumor metabolic reprogramming in AD.

Introduction

Cancer is known to have altered metabolism through the glycolysis pathway to meet 

demands for tumor growth. This phenomenon, termed the “Warburg effect” [1] is widely 

accepted, yet alterations in tumor metabolism are not restricted to enabling tumor growth but 

also promoting tumor invasion and metastatic progression [2]. This broader perspective has 

established metabolic reprogramming as a “cancer hallmark” [2,3]. Recent studies are 

revealing substantial metabolic heterogeneity in tumors [4,5]. Moreover, increasing 

consideration is being given to metabolic reprogramming of stromal cells comprising the 

tumor microenvironment (TME) [6]. For example, cancer-associated fibroblasts (CAFs), a 

major component in tumor stroma, have been reported to have increased glycolysis and 

produce high-energy nutrients that facilitate biogenesis in malignant cells, a process referred 

to as the “reverse Warburg effect” [7]. In support of these findings, studies have reported that 

malignant cells and CAFs express different monocarboxylate transporters (MCTs) for the 

consumption and production of lactate [8]. In this study, we provide new evidence of 

prognostically significant changes in the tumor stroma related to metabolic reprogramming 

of human non-small cell lung carcinoma.

Lung cancer remains the number one cause of cancer mortality in the United States, where 

non-small cell lung cancer (NSCLC) constitutes around 85% of lung cancer cases [9]. 

NSCLC has two major histology subtypes, namely adenocarcinoma (AD) and squamous cell 

carcinoma (SCC). AD and SCC are known to differ in their cell of origin and distribution 

across the lung [10–12]. They also differ in terms of glucose uptake as measured by 
18Fluoro-2-deoxy-D-glucose positron emission tomography (18FDG-PET) scans: SCC has 

been associated with higher levels of uptake than AD. Consistent with these findings, SCC 

has higher expression of the glycolysis markers GLUT1 (SLC2A1), CA9 and MCT1 

(SLC16A1) [13]. Even though higher glucose uptake in general is associated with more 

aggressive disease, SCC has been associated with better survival outcomes than AD among 

symptomatically detected patients [13]. However, it remains unclear how histology-related 

differences in glucose metabolism are related to cancer progression.

We assembled a study cohort of NSCLC patients for whom resected tumor specimens were 

acquired for transcriptomic analysis. To relate gene expression to metabolism, we also 
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acquired a preoperative 18FDG-PET uptake feature, namely the maximum standardized 

uptake value (SUVmax), which is a common clinical measure of glucose uptake in human 

tumors in-vivo. We found that genes associated with glucose uptake in AD vs. SCC cases 

were functionally enriched for invasion vs. growth, respectively. From the transcriptome of 

flow-sorted NSCLC, we identified genes correlated with glucose uptake that were 

predominately expressed in a single cell-type comprising the tumor microenvironment. For 

SCC, the majority of these genes were expressed in malignant cells, whereas they were 

expressed in stromal cells of AD. In AD, we focused on Glutamine-Fructose-6-Phosphate 

Transaminase 2 (GFPT2) because we found it to be a prognostically significant glucose-

related metabolic gene that was predominately expressed in the tumor stroma. GFPT2 is a 

rate-limiting gene of the hexosamine biosynthesis pathway (HBP), known to glycosylate 

proteins yet underreported in its relevance to cancer. Our analysis identifies a significant role 

for GFPT2 in AD CAFs, in association with extracellular matrix remodeling mediated 

through the hexosamine biosynthesis pathway. Overall, our findings provide new evidence 

of the histology-specific tumor-stromal functional properties associated with metabolic 

reprogramming in NSCLC and potential new therapeutic avenues.

Materials and Methods

Overview

We performed an integrative analysis of primary NSCLC with data obtained on medical 

imaging (18FDG-PET), tissue microarray, transcriptomics, protein expression and survival 

outcomes across multiple cohorts and studies, as detailed below. Briefly, our primary cohort 

is our radiogenomics (RG) cohort (n=130) on which we relate SUVmax and bulk tumor gene 

expression. In addition, we assembled a companion tumor microenvironment (TME) 

NSCLC cohort (n=40) from which we used fluorescence-activated cell sorting (FACS) to 

sort major cell-types of the tumor microenvironment in order to determine which cell-type, 

if any, predominately expressed a specific gene of interest. In addition, we constructed a 

separate validation cohort, tissue microarray analysis (TMA) cohort (n=211), to validate the 

specific findings associated with glucose uptake and survival outcomes on the protein level. 

A workflow is provided in Supplement 1 Figure S1. Throughout our analysis, we focus on 

various gene sets, including: genes correlated with glucose uptake are defined as genes 

significantly correlated to SUVmax in our RG cohort; cell-type-specific genes are defined as 

genes predominately expressed in one cell-type comprising the tumor microenvironment, 

derived from our TME cohort; prognostically significant genes as determined by PRECOG 

database [14]; and metabolic genes, which were collated from metabolic-related pathways in 

Kyoto encyclopedia of genes and genomes (KEGG) [15] and HumanCyc [16]. For the 

metabolic genes, we focused only on genes associated with glucose uptake through the 

glucose transporter gene SLC2A1 (GLUT1) which shunt glucose into one of the three major 

pathways [17]: (i) the glycolysis pathway for energy production, (ii) the pentose phosphate 

pathway (PPP) for biomass production and (iii) the hexosamine biosynthesis pathway (HBP) 

for protein glycosylation.
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Radiogenomics (RG) Cohort

Cohort Characteristics—With Institutional Review Board (IRB) approval in accordance 

with US Common Rule, we studied 130 patients with NSCLC who underwent curative 

surgical resection at Stanford University Hospital or Palo Alto VA Medical Center between 

year 2008 and 2015 and had a pre-operative PET/CT imaging. We refer to this cohort as our 

Radiogenomics (RG) cohort. Patient demographics of the study cohort were summarized in 

Table 1. Ninety-six AD and thirty-one SCC patients were included in the analysis (three 

cases were excluded due to undefined histology). Tissue samples ranged from 30mg–100mg 

and were flash-frozen. Transcriptomic data were obtained through RNA sequencing with 

data alignment and expression estimation performed via Centrillion Biosciences, Inc 

(Supplement 2). Preoperative PET/CT scans for tumor FDG uptake were paired to the tumor 

tissue specimens from which the RNA-seq data was generated. SUVmax was obtained by re-

reading all 130 cases on MimVista software, guided by surgically reported information on 

excised lobe and slice to ensure the RNA-seq data and the annotated lesion were matched. 

Note that a preliminary analysis relating the transcriptome and the 18FDG-PET features on 

the first 26 of 130 patients comprising our current RG cohort was reported by ourselves and 

others [18,19]. The current RG cohort RNA-seq data and imaging data are available at http://

wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics. A list of de-

identified IDs of the patients used in the RG cohort is included in Supplement 3.

RNA-seq gene expression preprocessing and analysis—Genes detected in fewer 

than 50% samples were removed. The estimated gene expression profile using FPKM 

(Fragments Per Kilobase of transcript per Million mapped reads) was log-transformed and 

genes with variances in the lower 50% quartile were filtered out. RNA-seq profiling and data 

processing were performed in three batches through year 2014 to 2015. We observed 

significant batch effect between samples processed in 2014 and 2015 using principal 

component analysis (PCA) (Supplement 4 Figure S2) and applied COMBAT to adjust the 

batch effect [20]. Differentially expressed genes (DEG) between AD and SCC samples were 

identified using R package “multtest” based on permutation multiple testing [21]. A false 

discovery rate (FDR) of 5% was used to assess statistical significance.

Association of glucose uptake and gene expression—Correlation between glucose 

uptake, measured in terms of SUVmax, and individual gene expression was assessed by 

Spearman rank test on AD and SCC samples separately. To reduce false-positive 

correlations, we used Significance Analysis of Microarray (SAM) [22] to calculate a false 

discovery rate for each gene based on permutation testing using gene expression as features 

and SUVmax as a continuous outcome variable. For AD, significant correlations were 

defined with FDR lower than 10%. For SCC, due to the relatively smaller sample size, we 

increased the FDR threshold for significance to 20%. Genes correlated to glucose uptake 

were clustered using R package Weighted Correlation Network Analysis (WGCNA) [23] for 

AD and SCC separately. To identify the relevant biological functions of the gene clusters, we 

investigated the enriched gene ontology categories using MsigDB [24] and ToppFun [25]. 

We focused on cancer-related hallmark gene sets, biological processes and cellular 

components with FDR less than 5%.
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Tumor Microenvironment (TME) Cohort

With Institutional Review Board (IRB) approval in accordance with US Common Rule, we 

studied 40 patients with NSCLC who underwent curative surgical resection at Stanford 

University Hospital or Palo Alto VA Medical Center between year 2008 and 2015. Hereon, 

we refer to this cohort as our Tumor Microenvironment (TME) cohort; this cohort enabled 

us to identify the cell-type specific contributions to metabolic reprogramming underlying the 

tumor microenvironment. For each tumor sample in this cohort, we purified malignant and 

stromal cells. We isolated immune cells (CD45+, EPCAM−), endothelial cells (CD31+, 

CD45−, EPCAM−), malignant cells (EPCAM+, CD45−), and fibroblasts (CD10+, CD45−, 

EPCAM−, CD31−), via flow cytometry as described elsewhere [14]. We performed RNA-

seq for each cell type for every patient sample. We performed differential analysis on four 

cell types using SAM [22] to identify specific cell types in which the SUVmax-correlated 

genes were uniquely over-expressed with FDR less than 5%.

Tissue Microarray (TMA) Cohort

We examined the protein expression of GFPT2 (aka GFAT2) and glucose transporter 

SLC2A1 (aka GLUT1) by immunohistochemistry (IHC) using a NSCLC tissue microarray 

(n=211). With Institutional Review Board (IRB) approval in accordance with US Common 

Rule, patient samples were retrieved from surgical pathology archives at Department of 

Pathology, Stanford Medical Center [26]. SUVmax data was obtained from linked clinical 

database STRIDE. Of the 211 patients on the TMA, 52 AD patients had a 18FDG-PET scan 

for which SUVmax was reported. The GFAT2 antibody was validated on controls as shown 

in Supplement 5 Figure S3. TMA staining intensity was assessed by qualitative ordinal 

scoring as 0 (negative), 1 (low), 2 (moderate), and 3 (high) for malignant cells and 

fibroblasts separately. An overall score was given to each sample based on the higher score 

between the malignant cells and fibroblasts. SUVmax was predicted using a general linear 

regression model based on staining scores for GFAT2 and GLUT1 as covariates. Survival 

analysis was performed using R “survival” package on all the AD patients using GFAT2 

overall scores and fibroblast scores. Risk groups were defined by low GFAT2 expression 

(score 0 and 1) and high GFAT2 expression (score 2 and 3). Cox proportional hazard 

regression was used to obtain the p-value, hazard ratio (HR) and confidence interval (CI). A 

multivariate Cox model was used to obtain the prognostic significance of GFAT2 adjusted 

by age, stage, tumor size and gender.

TCGA NSCLC Cohort Analyses

Publicly available TCGA RNA-seq data on AD (n=511) and SCC (n=501) was used as an 

external cohort to verify DEGs between AD and SCC based on the RG cohort and to further 

analyze the relationship among genes correlated to glucose uptake identified in our RG 

cohort. TCGA gene expression profile was measured using Illumina HiSeq 2000 RNA-seq 

by the University of North Carolina genome characterization center, and RSEM normalized 

values were used for gene-level transcription estimates.

Copy number analysis—To identify potential genomic drivers of altered glucose uptake, 

we analyzed TCGA copy number variation (CNV) data of AD and SCC from UCSC Xena 

Zhang et al. Page 5

Cancer Res. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[27]. CNV gene level data were processed by TCGA Firehouse pipeline [28,29]. In the 

UCSC Xena CNV data, 29 significant focal amplification and 46 significant focal deletion 

genomic regions were identified for AD, while 30 significant focal amplification and 53 

significant focal deletion genomic regions were identified for SCC using GISTIC [30].

TGF-β-treated Cell Line Analyses

TGF-β-treated normal fibroblasts—To validate our findings in CAFs, we used the 

Affymetrix microarray gene expression dataset (GSE60880) [31] of normal fibroblast (NF) 

derived from normal human lung tissue treated with TGF-β. The NFs were incubated with 

TGF-β for 0.5, 1, 2 and 8 hours. CAF marker genes were used to assess the transformation 

of the NFs. We compared the expression of genes associated with glucose metabolism and 

SUVmax correlated genes enriched for EMT between the NFs and the CAF-like cells.

TGF-β-treated AD cell lines—To validate our findings on EMT, we analyzed the 

Affymetrix microarray gene expression dataset (GSE49644) [32] of three cell lines (A549, 

HCC827 and NCI-H358) before and after TGF-β treatment. Three replicates were included 

for each condition in each cell line. Replicates for each condition were normalized and 

merged for meta-analysis. Permutation multiple test (multtest) was applied to identify genes 

that changed significantly before and after induced EMT with FDR < 0.05. In particular, we 

investigated genes involved in glucose metabolism and SUVmax correlated genes functional 

enriched for EMT.

Western blot validation on HBP rate-limiting protein GFAT2 on TGF-β-treated 
AD—To investigate the relation between HBP rate-limiting gene GFPT2 (coding protein 

GFAT2) and EMT at protein level, we used western blots with human lung adenocarcinoma 

cells (HCC827). To induce EMT, cells were cultured in the presence of 2% FBS and 10 

ng/ml TGF-β up to 10 days. Fresh media containing TGF-β was replenished every 2 days 

and cells were re-seeded if needed before reaching confluency. Levels of Histone H3 were 

used as an internal standard for equal loading. The blots were incubated with E-cadherin, 

Vimentin as well as GFAT2. Additional experimental details were included in Supplement 6.

Results

Differentially expressed genes reveal metabolic reprogramming differences by NSCLC 
histology

In our RG cohort, we identified 657 differentially expressed genes (DEGs) between AD and 

SCC (FDR<5%, Supplement 7). Genes more highly expressed in AD were enriched for 

processes related to extracellular matrix remodeling, whereas genes more highly expressed 

in SCC were enriched for cell growth and proliferation processes; these findings were 

validated in TCGA (Figure 1A, 1B and Supplement 8 Table S1). DEGs in glucose-driven 

metabolic pathways differed by histology (Figure 1C). SCC showed higher expressed DEGs 

in the glycolysis and pentose phosphate pathways (PPP), whereas AD showed higher 

expressed DEGs in the hexosamine biosynthesis pathway (HBP). Because SCC had higher 

SUVmax than AD (Supplement 9 Figure S4), we confirmed that the metabolic DEGs were 

histology specific and not reflective of differences in SUVmax (Supplement 9 Table S2).
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Among metabolically-associated DEGs more highly expressed in SCC were: (i) SLC2A1 

(FDR <0.0001), the glucose transporter I, (ii) G6PD (FDR= 0.0002), the gate-keeper gene of 

PPP, and (iii) PGD (FDR <0.0001), an indicator of higher production of NADPH, an 

essential reductant in anabolic reactions. These genes have been associated with cell 

proliferation and growth [33], supporting the Warburg effect. Among metabolically-

associated DEGs more highly expressed in AD were: (i) GFPT1 (FDR <0.0001), the rate-

limiting gene of HBP, and protein glycosylation genes (ii) OGT (FDR= 0.004) and (iii) 

GALE (FDR<0.0001); these genes suggest a unique role for HBP in AD that extends 

beyond the Warburg effect.

Glucose uptake is more associated with reactive stroma in AD than SCC

We identified genes correlated with SUVmax in AD and SCC samples separately from our 

RG cohort. In AD (n=96), 169 genes were correlated to glucose uptake (FDR<10%) 

(Supplement 10), of which 96 (57%) were found to be prognostic using PRECOG database 

(FDR<5%) [14]. Using WGCNA to cluster the 169 genes based on their bulk gene 

expression profiles in AD samples in our RG cohort, we obtained 6 gene clusters. We 

performed functional enrichment on each cluster in AD (Figure 2A), and we identified a 

gene cluster that was highly enriched for EMT (FDR= 3×10−38). This particular cluster was 

also enriched for the extracellular matrix (FDR= 9×10−26), suggesting a strong stromal 

factor. Interestingly, GFPT2, a rate-limiting gene in HBP, belonged to the gene cluster 

enriched for EMT and ECM. In SCC (n=31), 141 genes were correlated with SUVmax 

(FDR<20%), most of which were negatively correlated with SUVmax (Figure 2B and 

Supplement 11). Using WGCNA, we obtained 2 gene clusters based on bulk gene 

expression profiles in SCC samples. Functional enrichment analysis showed that SUVmax-

correlated gene clusters in SCC were related to cell development (FDR = 6×10−3) and 

chemical homeostasis (FDR = 4×10−5). Among glucose-driven metabolic pathways in AD, 

we identified genes correlated to glucose uptake in the glycolysis pathway, including glucose 

transporter I (SLC2A1), PFKP, GAPDH and lactate transporter gene (SLC16A1) and 

GFPT2 (Figure 2C). Our findings were consistent with a previous study [19] that reported an 

association between increased glucose uptake and EMT in NSCLC based on bulk tumor 

gene expression and PET SUVmax; our findings extend the results of that study by showing 

that the association is histology specific and holds for AD, but not SCC.

In AD, among the genes correlated to glucose uptake, 55 genes were predominately 

expressed in a single cell-type of the tumor microenvironment: 25 in fibroblasts, 11 in 

immune, 17 in malignant cells, and 2 in endothelial cells, and several were shared across 

multiple compartments (Figure 3A). Of the 55 AD genes predominately expressed in a 

single cell-type, 30 were prognostically significant, including GFPT2 (PRECOG, FDR<5%). 

The vast majority of these prognostically significant genes were secreted factors 

(Supplement 10), likely facilitating cell-cell crosstalk associated with disease progression. In 

SCC, 28 genes correlated to glucose uptake were largely confined to the malignant 

compartment (Figure 3B), suggesting that glucose uptake is more associated with a reactive 

stromal in AD than SCC.
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GFPT2-expressing CAFs are associated with glucose uptake and prognostically significant 
in AD, as validated in an independent tissue microarray (TMA) cohort

In our study, GFPT2 was the only prognostically significant gene in AD correlated to 

glucose uptake which was predominately expressed in a single stromal compartment and 

associated with a glucose-driven metabolic pathway (Supplement 10). We confirmed the 

prognostic significance of GFPT2 in TCGA (p-value=0.002, HR=1.27,CI=[1.1,1.5]) for AD. 

Interestingly, GFPT2, a rate-limiting gene of HBP, showed the strongest expression in CAFs 

(Figure 3C). To confirm the CAF enrichment of this sorted subpopulation in our TME 

cohort, we verified that this cell subpopulation uniquely over-expressed common CAF 

marker genes (ACTA2, FAP, FGF1, PDGFRB, COL1A1 and FN1) (Figure 3D). In TCGA, 

GFPT2 expression was strongly correlated to secreted glycoproteins that were also 

correlated to glucose uptake (Figure 4A); many of these genes coding these glycoproteins 

are expressed by the CAF compartment in our TME cohort and were associated with EMT 

and extracellular matrix (ECM). This finding is consistent with previous study that showed 

EMT could induce aberrant glycosylation through HBP activation [34].To validate the role 

of GFPT2 in EMT, we showed that at the protein level, GFAT2 (GFPT2 coded protein) 

increased in AD cells following TGF-β induced EMT (Figure 4B).

We validated the GFPT2-SUVmax association in CAFs in an external cohort based on TMA 

(Figure 5A). We found that the TMA overall scores of protein GFAT2 (coded by GFPT2 

gene) expression were predictive of SUVmax. Moreover, in the TMA, we observed that 

CAFs were more likely to express GFAT2 than malignant cells, but if malignant cells 

expressed GFAT2 then GFAT2 was expressed in the CAFs at a similar or higher level. 

Because glucose uptake is commonly associated with GLUT1 (SLC2A1) expression, we 

evaluated the predictive significance of both GLUT1 and GFAT2 for SUVmax. Interestingly, 

GFAT2 in CAFs alone and GLUT1 in malignant cells were both predictive of SUVmax 

(Supplement 12 Figure S5). A side-by-side comparison of GLUT1 and GFAT2 in a 

representative TMA sample with high SUVmax showed GLUT1 confined to the malignant 

cells and GFAT2 to the fibroblasts (Figure 5B). A representative case from our RG cohort 

with relatively high SUVmax expression showed that the GFPT2-expressing CAFs were 

located at the invasive edge of the tumor (Figure 5C). We also found that GFAT2 scores 

overall and fibroblasts only were highly prognostic among AD patients in the TMA cohort 

(n=211) adjusted for age, stage, tumor size and sex (Figure 5D and Supplement 12 Table 

S3). In particular, prognostic significance of GFAT2 fibroblast score implicates the 

importance of reactive stromal as a potential therapeutic target for AD.

In several of our TMA samples, we also found GFAT2 expressed in the malignant cells. To 

investigate the genomic significance of this finding, we observed that GFPT2 gene is located 

on chromosome 5q region that was recurrently amplified in TCGA AD, but recurrently 

deleted in TCGA SCC (Supplement 13 Figure S6). Interestingly, numerous genes correlated 

to glucose uptake are located in the same genomic region, including VCAN, coding 

extracellular matrix protein versican, and TGFBI and FBN2 that are both related to TGF-β 
signaling, a signaling pathway known to play an important role in EMT [35].
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TGF-β induction of EMT and CAF-like phenotypes are associated increased GFPT2

Because GTPF2 is a known driver of HBP and HBP has been associated with EMT, we 

hypothesized that GFPT2 expression would increase with TGF-β treatment in both normal 

fibroblasts (NFs) and malignant cells. Our rationale was based on the observations that TGF-

β transforms NF to CAF-like cells and induces EMT in AD. We found TGFBI, known to be 

induced by TGF-β, was also correlated to glucose uptake (Supplement 10). We investigated 

expression of glucose metabolism genes and EMT-genes associated with glucose uptake in 

human lung NFs before and after TGF-β treatment (GSE60880). Following TGF-β 
treatment, the NFs were transformed to CAF-like cells based on the gene expression of 

common CAF markers (Supplement 14 Figure S7). Consistent with our hypothesis, the HBP 

genes were more expressed in the CAF-like cells than the NFs (Figure 6A); in comparison, 

there were little to no change in genes related to glycolysis, PPP and TCA cycle, suggesting 

no change in genomic regulation of these metabolic pathways with the transformation of NF 

to CAF-like cells. Also, many EMT-genes associated with glucose uptake were upregulated 

in the CAF-like cells (Figure 6A).

With TGF-β treatment, NSCLC AD cell lines (GSE49644) have been shown to undergo 

EMT. We analyzed this transformation in terms of changes in glucose metabolism related 

genes and EMT-genes correlated to glucose uptake. We found that glucose metabolism 

genes associated with energy production and cell proliferation (glycolysis, PPP, TCA cycle) 

were mostly unchanged or reduced after TGF-β induced EMT, whereas several HBP genes 

and most EMT-genes correlated glucose uptake were increased (Figure 6B). This is 

consistent with our prior observation that GFAT2 (GFPT2 coded protein) increased AD cells 

following TGF-β induced EMT (Figure 4B).

In parallel to the cell line analyses, we analyzed expression of the metabolic genes and the 

EMT-genes associated with glucose uptake across the different cell-specific compartments 

of AD in our TME cohort, we found metabolic genes associated with energy production and 

cell proliferation (glycolysis, PPP, TCA cycle) were strongly expressed in malignant cells, 

whereas HBP and EMT-genes associated with glucose uptake were mostly expressed among 

the CAFs (Figure 6C). Taken together, these findings indicate that altered glucose 

metabolism in tumor stroma through HBP is related to processes associated with EMT, 

possibly facilitating cancer invasion.

Discussion

The best-characterized metabolic behavior of cancer is the Warburg effect, however, tumor 

metabolic reprogramming is not restricted to support tumor growth and proliferation, and it 

is not restricted to malignant cells. In this analysis, we provided evidence of metabolic 

reprogramming in the tumor stroma of AD that is prognostically significant. We applied a 

radiogenomic analysis, which integrated data on glucose uptake, as measured on 18FDG-

PET scans, and transcriptomics of the bulk and flow-sorted human tumors. Our analysis 

revealed surprising differences in glucose metabolism between AD and SCC, the two major 

histological subtypes of NSCLC. Compared to AD, SCC had more highly expressed genes 

in glycolysis and pentose phosphate pathways, which are associated with Warburg effect, 

whereas AD had more highly expressed genes in the HBP, which have not been associated 
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with the Warburg effect. For AD, genes correlated to glucose uptake were enriched for EMT 

and ECM. The glucose uptake and EMT was previously reported in NSCLC on the first 26 

patients of our RG cohort [19], but we found it held only for AD, not SCC, given the larger 

size of current RG cohort (n=130). For SCC, genes associated with glucose uptake were 

functionally enriched for tumor growth. Using cell-type-specific transcriptomics of the 

NSCLC TME, we found a stronger association of altered glucose uptake in the tumor stroma 

of AD compared to that of SCC. Taken together, our analysis confirmed a prior report that 

metabolic reprogramming in NSCLC is histology-specific [13] and extended this finding to 

show that the molecular pathways and cell-types associated with glucose uptake were also 

histology-specific.

We explored the significance of GFPT2 as a mediator of tumor metabolic programming in 

the stromal compartment of AD and a predictor of survival outcomes. GFPT2 was found to 

be prognostically significant in PRECOG, TCGA and our TMA cohort for AD. GFPT2 and 

its isoform, GFPT1, are both rate limiting genes of HBP, however they have significant 

differences. GFPT1 is expressed in many cell types, but GFPT2 expression is thought to be 

more restricted to specific cell types [36]. In a pathological context, GFPT2 has been 

associated with diabetes, with few reports relevant to cancer, whereas GFPT1 has been well 

studied in the context of both diabetes and cancer [37]. In our analysis, we found GFPT1 

was more highly expressed in AD relative to SCC, but GFPT2 was correlated to glucose 

uptake in AD, suggesting that GFPT2 (not GFPT1) is associated with AD progression. We 

validated the correlation of GFPT2 and SUVmax on TMA of AD. The TMA also supported 

our finding that GFPT2 is largely expressed in CAFs but GFPT2 can be expressed in 

malignant cells. Because it was not common to find GFPT2-expressing malignant cells in 

the absence of GFPT2-expressing in CAFs, it is possible that GFPT2 expression in CAFs 

may be a precursor to GFPT2 expression in malignant cells for AD. Also, because GFPT2 is 

recurrently amplified in AD and deleted in SCC, AD may have a genomic propensity toward 

the HBP through GFPT2 among the malignant cells.

In AD, when we jointly analyzed SLC2A1 (GLUT1) expression in malignant cells and 

GFPT2 expression in CAFs, we found that GFPT2 expression in CAFs was an independent 

predictor of SUVmax, suggesting that the GFPT2-expressing CAFs may have increased 

glucose uptake. Prior work has shown that when NFs were transformed to CAF-like cells, 

through TGF-β treatment, glucose uptake increased [38]. Interestingly, we did not observe 

any changes in the expression of GLUT1 when comparing NF and CAFs. Moreover we did 

not observe significant GLUT1 expression in CAFs on TMA, even at the high SUV levels 

(analysis not shown). It is possible that glucose uptake in the CAFs may be altered through 

other regulatory mechanisms. We did observe that the insulin-regulatory gene IGFBP5 was 

correlated to glucose uptake and uniquely expressed in CAFs (Supplement 10), suggesting 

that it may have a role in regulating glucose uptake [39].

Our findings on GFPT2 and the HBP provide an important link between altered metabolic 

reprogramming and altered cellular signaling in AD. HBP uses glycolytic intermediates to 

generate UDP-GlcNAc and UDP-GalNAc which serve as the substrates for biosynthesis of 

glycoproteins, including many associated with promoting EMT and cancer invasion [40]. 

For example, elevated O-glycosylated fibronectin (FN1) could induce EMT in human lung 
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carcinoma cells [41]; in our analysis, FN1 was among the genes correlated with glucose 

uptake and uniquely expressed by CAFs and one of many EMT- genes associated glucose 

uptake. Interestingly, because only 2–5% of glucose is typically shunted to the HBP [42], it 

is possible that a small absolute increase of glucose to the HBP could represent a large 

percentage change for HBP and have a dramatic effect. Moreover, if small changes in 

glucose flux to the HBP promote invasion this could explain why AD has poorer prognosis 

for lower overall levels of glucose uptake compared to SCC. Understanding the impact of 

small alterations in glucose uptake to the HBP through carbon-labeled glucose flux analysis, 

in both the malignant and stromal compartment of tumors, promises to provide new insights 

into tumor metabolic reprogramming beyond the Warburg effect.

While our study provides new insights with respect to tumor metabolic behavior, it has its 

limitations. First, the sample size of SCC in our RG cohort was small (n=31), therefore, our 

SUVmax-gene correlation analysis in SCC had relatively large false discovery rate. This 

limited our ability to identify statistically significant genes in SCC that could be driving 

glucose metabolic alterations and cellular processes. Despite this limitation, we can 

conclude that the SCC likely does not involve EMT-SUVmax correlated genes because when 

we repeatedly subsampled the AD cases to match the sample size of the SCC cases, we still 

found the EMT association held with a p-value < 5% in AD (analysis not shown). Second, 

our analysis was limited to genes associated with maximum SUV, but other features of 

glucose uptake measured on PET, such as the total lesion glycolysis (TLG) and SUV 

variation, are worthy of pursuit and may reveal additional insights [18]. Third, on our TME 

cohort, the malignant cells were restricted to the EPCAM-positive subpopulation, and thus a 

more mesenchymal malignant cell type might be lost that could exhibit a higher expression 

of GFPT2 as found in TGF-β-induced EMT in AD (Figure 4B). Moreover, because it has 

been shown that tumor cells that undergo EMT downregulate EPCAM and upregulate CD10 

[43,44], our CAFs sorted based on CD10+, CD45−, EPCAM− and CD31− markers could 

potentially include mesenchymal malignant cells, although that is any contamination by 

malignant cells seems minimal because our CAFs express canonical CAF markers (Figure 

3D). Finally, the TMA analysis was limited to 6mm. Further analysis of whole slide images 

would provide a more comprehensive assessment of GFPT2 spatial distribution in the TME.

Our work highlighted CAFs as a major contributor to the metabolic reprogramming of the 

TME in AD, however the endothelial and immune cells were also implicated in our analysis 

and deserve consideration going forward. Much of our focus was on GFPT2 but our analysis 

provided many more SUVmax-associated genes that deserve further exploration. We focused 

on GFPT2 because it is a metabolic enzyme that has been underreported in the cancer 

context. Its relevance in AD suggests that GFPT2 deserves more consideration in cancers 

and possibly beyond its role in the HBP. Our work provides a spotlight on the HBP for 

promoting tumor invasion in AD and may explain why the lower glucose uptake for AD 

relative to SCC carries worse prognosis. A more in-depth analysis of this behavior is 

warranted. Finally, our findings have therapeutic implications, suggest that hexosamine 

biosynthesis pathway and glycosylation inhibitors (such as ST060266 and Tunicamycin 

[37]) could be effective for AD, whereas, SCC may be more effectively targeted by pentose 

phosphate pathway and glycolytic inhibitors (such as 6-AN and 2-DG [45]).
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In summary, our integrative analysis showed that glucose uptake associated with GFPT2-

expressing CAFs was prognostic for AD. In SCC, glucose uptake was associated with 

glycolysis and higher proliferation potential. In AD, we found a stromal component to 

glucose uptake implicating CAFs, endothelial and immune cells. In AD, we focused our 

analysis on GFPT2 and its relation to hexosamine biosynthesis pathway that could bridge 

the altered glucose metabolism with protein glycosylation. These insights can provide a 

therapeutic approach for targeting tumor-stromal interactions associated with disease 

progression by disrupting the unique metabolic tumor microenvironment of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Differentially expressed genes (DEGs) between AD and SCC. (A) Heatmap of DEGs 

between AD and SCC in the radiogenomics (RG) cohort. (B) Heatmap for TCGA showing 

only the DEGs derived from the radiogenomics cohort. Yellow denotes AD, and Blue 

denotes SCC samples. DEGs are annotated for enrichment of extracellular matrix (coral), 

regulation of transport related to invasion (lavender), proliferation (brown), cytoplasm 

(pink), or unassigned (grey). The enrichment FDRs are shown in parenthesis. (C) Glucose-

driven metabolic pathways: glycolysis, pentose phosphate pathway and hexosamine 

biosynthesis pathway. All DEGs in the glucose metabolic pathways were differentially 
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expressed in both RG cohort and TCGA, except for G6PD and PKM2 which were only 

differentially expressed in TCGA, and OGT which was only differentially expressed in the 

RG cohort.
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Figure 2. 
Heatmap of SUVmax correlated genes in Adenocarcinomas (A) and Squamous cell 

carcinomas (B) in the radiogenomics (RG) cohort. FDRs for functional enrichment are 

indicated in parenthesis. Patients (columns) are sorted from low SUVmax to high SUVmax. 

(C) Glucose metabolism genes that are correlated to glucose uptake in AD samples in the 

RG cohort.
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Figure 3. 
Analysis of genes associated with glucose metabolic reprogramming in the tumor 

microenvironment. (A) For AD, genes correlated with glucose uptake are placed on Venn 

diagram by cell-type-specific expression (derived from TME cohort), showing the largest 

number of uniquely expressed genes are in fibroblasts. (B) For SCC, genes correlated with 

glucose uptake are placed on Venn diagram by cell-type-specific expression (derived from 

TME cohort), showing the largest number of uniquely expressed genes are in the malignant 

cells, with few genes expressed in other cell-types. (C) Expression of HBP genes in the four 

cell-types (TME cohort, AD samples), showing fibroblasts and malignant cells have higher 

expression of HBP genes than immune and endothelial cells. (D) Expression of common 

CAF marker genes in the four cell types in the (TME cohort, AD samples), confirming the 

expected behavior of the CAF subpopulation.
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Figure 4. 
Validation of association of GFPT2 and SUVmax-associated secreted glycoproteins and 

EMT. (A) Correlation between GFPT2 and glycoprotein-coding genes correlated with 

glucose uptake in TCGA AD. Genes highlighted in gray were more expressed in CAFs 

compared to other cells in our TME cohort; these genes are among highest correlated. (B) 
Morphological and protein expression changes in HCC827 cells after EMT induction with 

TGF-β treatment. (Top) Phase-contrast microscopy showing HCC827 cells after treatment 

with, or without (control), TGF-β (10 ng/ml) up to 10 days. All images were obtained at a 

magnification of 100×. Scale bar represents 200 μm. (Bottom) Following TGF-β treatment 

on HCC827, protein lysates were harvested at the indicated time points and E-cadherin, 

Vimentin and Glutamine fructose-6-phosphate amidotransferase 2 (GFAT2: protein coded by 

GFPT2 gene) were analyzed by Western blot. Histone H3 was used an internal loading 

control. During the EMT time course, Vimentin increased, E-cadherin decreased and GFAT2 

increased.
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Figure 5. 
Validation of the correlation between GFPT2 and SUVmax in TMA cohort and survival 

analysis based on GFAT2 protein. (A) Statistically significant correlation between GFAT2 

(coded by GFPT2 gene) and GLUT1 (SLC2A1) with SUVmax (GFAT2 p-value: 0.003, 

GLUT1 p-value: 0.005). (B) Representative sample from TMA of paired GFAT2 and 

GLUT1 expression, illustrating GFAT2 expression localization to fibroblasts and 

simultaneous GLUT1 expression localization to malignant cells. (C) Representative whole 

slide microphotograph of GFAT2 expression showing GFAT2 enriched in cancer-associated 

fibroblasts at tumor periphery. (D) GFAT2 staining overall and fibroblast scores were both 
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prognostic for 5-year survival in TMA adenocarcinoma patients. Overall score: p-

value=0.0097, HR=1.86, CI=[1.15, 2.99]. Fibroblast score: p-value=0.0058, HR=2.05, 

CI=[1.20, 3.11].
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Figure 6. 
Glucose metabolism related genes and genes associated with glucose uptake that are 

functionally enriched for EMT in the validation cell line data and TME cohort. (A) TGF-β 
induced cancer-associated fibroblast (CAF) compared to normal fibroblast (NF) 

(GSE60880). (B) AD cell lines with TGF-β induced EMT compared to AD cell lines 

without TGF-β treatment (control) (GSE49644). (C) Heatmap of normalized average 

expression of the genes in each of the four cell types in the TME cohort AD samples.
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Table 1

Overview of patient demographics of various cohorts that contributed to this analysis.

Variable RG TME TCGA TMA

Number of patients 130 40a 1012 211b

Age (mean, standard deviation) (69, 9) (68, 13) NAc (67, 11)

Gender

  Male 96 25 606 85

  Female 34 8 406 126

Histology

  Adenocarcinoma 96 20 511 211

  Squamous cell carcinoma 31 11 501 0

  Undefined 3 2 0 0

Stage

  Stage I 74 12 522 108

  Stage II 30 14 286 60

  Stage III 19 6 168 41

  Stage IV 4 0 33 2

Undefined 3 1 3 0

Median follow-up (months) 22 16 8 38

Number of deaths 27 4 283 108

a
Clinical information is missing from some patients in the TME cohort.

b
In the TMA cohort, there are 211 lung adenocarcinoma patients used in the survival analysis. Out of the 211 patients, there are 52 patients with 

SUVmax data that were included in the GFAT2-SUVmax correlation validation.

c
Age information is not available.

Abbreviations: RG, Radiogenomics cohort; TME, Tumor Microenvironment cohort; TCGA, The Cancer Genome Atlas; TMA, Tissue Microarray 
Cohort
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