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Endothermy, production and retention of heat by the body, appeared conver-

gently in mammals, birds and four spiny-rayed teleost fish lineages. Of these,

red-muscle endothermy over most or all of the body has only appeared in two

groups: tunas and the opah (Lampris). Hitherto, tunas have been the only

spiny-rayed fishes known to have bones containing embedded osteocyte cells;

others have acellular bone. We examined bone histology in Lampris for the

first time, demonstrating the presence of cellular bone very similar to that of

tunas. This contrasts with the acellular condition of its ectothermic close relatives.

The distribution of this character suggests that it co-evolved with red-muscle

endothermy, hinting at a common physiological mechanism that would link

bone histology to endothermy in these distantly related teleost lineages.
1. Introduction
Endothermy, the capacity to produce and retain metabolic heat, is awell-known trait

of modern mammals and birds. In a spectacular example of convergent evolution,

endothermyalso evolved independently in mackerel (Lamnidae) and thresher (Alo-

piidae) sharks and in four separate teleost lineages [1,2], allowing them to maintain

active and efficient swimming in a broad range of water temperatures [3]. Teleost

endothermy is little studied relative to that in tetrapods, but may provide key

insights into the physiological requirements and evolution of endothermy.

Changes in bone microstructure are thought to correlate with tetrapod

endothermy. This structure–function relationship has been a valuable tool

for unravelling the metabolism and thermal biology of extinct taxa, including

dinosaurs (e.g. [4,5]). However, the scarcity of comparative histological and

microanatomical data on teleost bone hinders our understanding of the relationship

between physiology and bone microstructure in endothermic teleosts.

All known endothermic teleosts belong to the mega-diverse predominantly

marine clade Acanthomorpha, or spiny-rayed fishes [6]. These groups show

two distinct endothermic strategies, different from those of birds and mammals:

(i) billfishes (Xiphioidei) and the butterfly kingfish Gasterochisma melampus
(Scombridae: Gasterochismatinae) independently developed heater organs con-

sisting of modified extraocular muscles that locally warm the brain and eyes

[1,2]; (ii) tunas (Scombridae: Thunnini) generate heat via the activity of red

extraocular and swimming muscles and retain it with specialized counter-current

blood vessels, warming not only the head but also the axial musculature [1,2].

The opah, Lampris sp. (Lampridiformes), has been recently shown to have both
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Figure 1. (a – g) Lampris sp. (MNHN-ZA-AC-A-7506). Sections of the rib (natural transmitted light). (a) Entire cross section showing numerous vascular cavities
(asterisks). (b) Longitudinal section showing numerous osteocyte lacunae. (c) Detail of inset 1 in (a), showing osteocyte lacunae (arrows) in primary bone. (d )
Detail of inset 2 showing an area of primary bone with circularly-oriented osteocytes, and vascular cavities fringed by secondary bone. (e) Detail of an osteocyte
(arrow) in primary bone with its radially-oriented canaliculi. ( f ) Longitudinal section showing osteocytes in primary bone. An osteocyte lacuna is seen in secondary
bone (arrow). (g) Detail of inset 3 showing remodelled secondary bone including osteocytes without canaliculi (arrow). (h) Velifer hypselopterus (MNHN-ICOS-01117).
Cross section of the scapula (transmitted natural light) showing the lack of osteocytes, but the presence of bifurcated (arrows) osteoblastic canaliculi inside the
primary bony tissues. Some areas of secondary bone are visible. pb, primary bone; sb, secondary bone; vc, vascular cavity; *, marrow cavity. Arrowheads point
to reversal lines between primary and secondary bone. Scale bars, (a) 500 mm, (b – d,g) 100 mm, (e – f,h) 50 mm.
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heat-generating extraocular and pectoral fin muscles, and a

counter-exchange blood vessel network that heats cold oxy-

genated blood returning from the gills [7,8]. Thanks to this

unique system, Lampris is the only known teleost to show

endothermy over its entire body, allowing it to spend long

periods of time hunting in the cold water between 50 and

400 m in depth [8].
Bone tissues in teleosts display a great variety of struc-

tures, ranging from: (i) cellular bone in which osteogenic

cells (osteoblasts) are enclosed by the bone matrix and

become trophic cells (osteocytes); to (ii) acellular bone that

is entirely deprived of osteocytes, the osteoblasts withdraw-

ing from the surface during deposition of the bone matrix

[9–12]. Cellular bone is primitive to osteichthyans but is
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Figure 2. Phylogenetic distribution of the osteohistological and metabolic parameters considered in this study among Neoteleostei. Acellular bone is in yellow,
cellular bone in dark blue. Ectothermic taxa are in white, taxa with brain heaters (cranial-only endothermy) in light pink, with red-muscle endothermy in red. Tree
topology is adapted from [1,15,17]. (Online version in colour.)
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lost in the clade Neoteleostei, which includes acanthomorphs

[11,13]. The only acanthomorphs with osteocytes reported

thus far are tunas [9–11], in which bone tissues also show

substantial remodelling [14]. The secondary reacquisition of

osteocytes and the presence of conspicuous bone remodelling

in tunas have been hypothesized to be linked with their

active, endothermic metabolism [11,12,14]. Nevertheless,

this assertion remains conjectural in the absence of compara-

tive observations in lineages that independently evolved

endothermy. In this context, Lampris provides an opportunity

to test the hypothesized link between endothermy and cellu-

lar bone in teleosts. However, the bone microstructure of

Lampris has thus far been unknown. Here we describe

bone histology of this endothermic taxon and some of its

ectothermic close relatives.
2. Material and methods
Histological sections were cut from bones of two extant lampridi-

forms (electronic supplementary material, table S1): Lampris sp.

(MNHN-ZA-AC-A-7506, Muséum national d’Histoire naturelle,

Paris, France) and Velifer hypselopterus (MNHN-ICOS-01117),

along with six Late Cretaceous neoteleosts, including the stem-
lampridiform [15] †‘Aipichthys’ velifer (MNHN.F.HAK1991).

These fossils were included to document the trait in some of

the earliest representatives of the neoteleost and acanthomorph

clades (electronic supplementary material, table S1). Each

sample was embedded in epoxy resin. The sections were sawn

and ground to obtain 50–60 mm thickness, and examined with

an Axiovert microscope in transmitted natural light.
3. Results
Primary bone in the rib of Lampris includes numerous

elongate osteocyte lacunae (figure 1a,b), with their main

axis perpendicular to the direction of growth. The canaliculi

that housed the cytoplasmic extensions of the cells are

fewer than in typical teleost bone [12]; they are relatively

short, few are ramified (figure 1e), and they all point towards

the periosteum (figure 1d ). Primary bone shows a parallel-

fibred structure, with layers of aligned osteocytes alternating

with lines of arrested growth (figure 1c,d ). The rib is

spongy, with numerous cavities (figure 1a) surrounded by

secondary bone limited by cementing lines (figure 1g).

The secondary bone incorporates fewer osteocytes than

areas of primary bone (figure 1f,g).
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The scapula of Velifer is composed of acellular bone: no

osteocytes are incorporated in the bone tissue. However, it

is perforated by numerous canals that are winding and bifur-

cated, indicating that they probably housed cytoplasmic

extensions from surface osteoblasts (figure 1h). The rib of

every Late Cretaceous taxon sampled (including the stem-

lampridiform †‘Aipichthys’) also consists of acellular bone,

without any identifiable features.
ing.org
Biol.Lett.14:20180270
4. Discussion
Prior to this study, lampridiform osteohistology was only

reported from an unknown bone of Trachipterus [9] and from

the dorsal-fin pterygiophores of Regalecus [16], two elongate-

bodied lampridiforms that collectively are the sister-group of

Lampris [15]. Both have acellular non-hyperostotic bones

(hyperostotic bones occasionally contain a few embedded

osteocytes in bones of species that otherwise have acellular

bones [16]). Therefore, Lampris is the only known lampridi-

form with cellular bone in normal conditions (electronic

supplementary material, table S2). Furthermore, the red

muscles and counter-exchange vascular networks indicative

of endothermy are not found in lampridiforms, suggesting

the absence of endothermy in all lampridiforms other than

Lampris [8] (figure 2).

In scombrids, cellular bone is described in Auxis, Euthyn-
nus, Katsuwonus and Thunnus [9,11,12], i.e. ‘true’ tunas

(Thunnini), which are all red-muscle endotherms [1,2]. Con-

versely, ectothermic scombrids such as the mackerels

Scomber and Scomberomorus [1] have acellular bone [9,10]

(figure 2; electronic supplementary material, table S2).

Among the acanthomorphs that show cranial-only

endothermy [1,2], billfishes also have acellular bone (elec-

tronic supplementary material, table S2) with histological

features indicative of extensive remodelling, such as second-

ary osteons [18,19]. The absence of osteocytes in billfishes

and ecologically comparable large-bodied fast-swimming

pelagic predators (e.g. Coryphaena, Seriola) [9,10] excludes

the possibility of a size-related distribution of osteocytes in

acanthomorphs. Among teleosts virtually all taxa show

either cellular or acellular bone consistently throughout all

bones of the skeleton [10–12]. Therefore, we do not expect

the presence of osteocytes to be affected by proximity with

warmer regions of the body.

The widespread distribution of acellular bone among

lampridiforms and other acanthomorphs (including some of

the stratigraphically oldest fossils) indicates that cellular

bone evolved independently from acellular ancestors in the

Lampris and tuna lineages (figure 2; electronic supplementary

material, table S2). Our survey of endothermic acanthomorphs

and their immediate ectothermic relatives then suggests that

osteocytes are found only in red-muscle endotherms amidst

the whole diversity of the group, this physiology correlating
perfectly with the occurrence of secondarily cellular bone in

the acanthomorph clade (figure 2).

This is reinforced by the observation that, despite their

independent evolutionary origins, bone tissues of Lampris
and tunas share peculiar histological features: conspicuous

remodelled bone [12,14] and similar-looking osteocytes

with an elongate cell body and very few cytoplasmic projec-

tions, differing from the ‘star-shaped’ lacunae of other

teleosts that are typically more rounded with numerous cyto-

plasmic projections [12,20]. These similarities, and their

difference from the primitive condition of cellular bone in

non-acanthomorph teleosts, may reflect either functional

similarity of osteocytes in Lampris and tuna, and/or con-

straints on their morphology resulting from evolutionary

reacquisition. This remains uncertain.

Whether the correspondence documented here is due to a

physiological advantage of reacquiring osteocytes in red-

muscle endotherms, or to a passive consequence of elevated

metabolism, it provides strong evidence for a structure–

function correlation between bone microstructure and

endothermy in acanthomorph teleosts. Unlike in tetrapods,

histological indicators of metabolism have rarely been

addressed by studies of teleost bone [21]. To overcome this

limitation, more comparative structural studies incorporating

physiological considerations, at the inter- and intraspecific

scale, would be needed. Applying such findings to fossil

taxa may permit breakthrough investigation into fish palaeo-

physiology (for instance, in potentially endothermic fossil

acanthomorphs), a field that is currently poorly developed

but is promising considering the advances in tetrapod

palaeophysiology that were enabled by palaeohistology

(e.g. [4,5]). This would allow a better understanding of

bone biology and evolution in a group representing half of

modern vertebrate diversity.
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