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In its evolution, the diverse group of stick and leaf insects (Phasmatodea) has

undergone a rapid radiation. These insects evolved specialized structures to

adhere to different surfaces typical for their specific ecological environments.

The cuticle of their tarsal attachment pads (euplantulae) is known to possess

a high diversity of attachment microstructures (AMS) which are suggested

to reflect ecological specializations of different groups within phasmids.

However, the origin of these microstructures and their developmental back-

ground remain largely unknown. Here, based on the detailed scanning

electron microscopy study of pad surfaces, we present a theoretical approach

to mathematically model an outstanding diversity of phasmid AMS using the

reaction–diffusion model by Alan Turing. In general, this model explains

pattern formation in nature. For the first time, we were able to identify eight

principal patterns and simulate the transitions among these. In addition,

intermediate transitional patterns were predicted by the model. The ease of

transformation suggests a high adaptability of the microstructures that

might explain the rapid evolution of pad characters. We additionally discuss

the functional morphology of the different microstructures and their assumed

advantages in the context of the ecological background of species.
1. Background
Stick and leaf insects (Phasmatodea) are a diverse lineage of phytophagous

insects exhibiting distinct forms of masquerade imitating leaves or twigs [1].

These insects inhabit a wide distributional range, although their mobility is

rather restricted, and underwent rapid radiation during the Cretaceous [2].

This resulted in a high degree of convergent trends due to the realization of

specific ecological niches among different local distributions [2–4].

Attachment in insects is generally achieved by maximization of the actual con-

tact area between the attachment structure and the substrate. In phasmids, this is

achieved by two types of attachment pads, arolia and euplantulae [5–10], which

consist of soft cuticle layers and adapt to the surface profile [11] and thus increase

adhesion and friction [12,13]. The arolium, located on the pretarsus, is reported

to generate adhesion when activated by pulling from the surface [14]. The euplan-

tulae on each of the four proximal tarsomeres, by contrast, mainly generate

friction [14–16]. Depending on the surface structure, however, the contribution

of friction and adhesion is different for specific types of surface microstructures

[15]. The surface of the arolium is smooth in Euphasmatodea and covered by

nubby outgrowths in Timema, the sister group of the remaining phasmatodeans

[5–7,10,17]. Euplantulae (four to five per leg) possess a variety of attach-

ment microstructures (AMS) in Phasmatodea, with one lineage (Dinophasma
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Table 1. Parameters for the mathematical modelling of figure 1.

no. aa ba ca da diff_a ab bb cb db diff_b Fmax Gmax

e 0.07 20.13 0.03 0.03 0.14 0.23 0.01 20.1 0.08 3.7 0.2 0.5

f 0.079 20.08

g 0.11 20.06

h 0.11 20.17

m 0.14 20.10

n 0.23 20.16

o 0.099 20.16

P 0.3225 20.23
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(Aschiphasmatinae)) standing out from the others and bearing

large adhesive setae [17]. These microscopic structures consist

of cuticular protuberances (probably microtrichia according to

Richards & Richards [18]) and resemble a set of patterns similar

to those observed in insects’ corneal patterns [19–21].

The formation of numerous types of patterns in nature can

be explained by Alan Turing’s reaction–diffusion model [22].

Using this mathematical model, it is possible to explain pattern

formation for structures with typical dimensions from 100 nm

onwards, such as corneal nanocoatings of insects. Almost the

entire variety of corneal nanocoatings was previously mod-

elled by a slight change in both properties and amounts of

the reacting elements [19,20]. This mathematical simulation

reflects only the formation of a structure’s patterns and the

size of the cross section of its elements, but is in no way able

to predict their height. Perhaps, the height of these structures

is influenced by the organization of the underlying layers of

chitin and chitosan [23]. The transition from one structure to

another can be also detected within a short evolutionary

period [24], or in different ommatidia of one insect [25,26],

as well as on the corneal lens of one ommatidium, like on

Tipulidae eyes [19].

Various phylogenetic [5–7,10,17,27], biomechanic [15] and

taxonomic [28–31] studies investigated the diversity of

euplantular AMS in Phasmatodea. The AMS provide certain

biomechanic properties that influence attachment performance

and their specificity to substrates [14–16,32,33]. Most probably

various AMS are adapted to different substrates or substrate

families within typical ecological niches [17,27,34]. As the

rapid radiation of Phasmatodea results in a very local set-up

of the ecotypes, similar AMS are found frequently in morpho-

logically similar, but phylogenetic unrelated lineages [17,27].

The high degree of independent origins or reversals of the

same type of AMS suggests high adaptability of AMS during

the phasmatodean evolution [27]. Therefore, we approached

the formation of the different patterns which are present in

the AMS of phasmids and evaluated their potential to

transformations.
2. Material and methods
2.1. Animals
Specimens were obtained from various sources either alive, fixed

in 70% ethanol or dried. All samples were processed following

the procedures previously used [10,17,27]. In the case of dried

insects, the cuticle of attachment pads was softened using the

procedure described in [35].
2.2. Scanning electron microscopy
Fixed samples were dried in an ascending alcohol series and

critical-point dried. The dried samples were then sputter-

coated with a 15 nm thick layer of gold–palladium. Specimens

were examined under the scanning electron microscope (SEM)

Hitachi S4800 (Hitachi High-Technologies Corp., Tokyo, Japan)

at 5 kV of acceleration voltage.

2.3. Modelling
For the model simulation, the software ‘Ready’ (a cross-platform

implementation of various reaction–diffusion systems (https://

github.com/GollyGang/ready)) was used with the parameters

illustrated in tables 1 and 2.

Formula:

delta a ¼ max(0,min(aa�aþ ba�bþ ca,FmaxÞÞ
� da�aþ diff a�laplacian aþ d;

delta b ¼ max(0,min( ab�aþ bb�bþ cb,GmaxÞÞ
� db�bþ diff b�laplacian b;

c ¼ aþ b;

d ¼ fmodðdþ laplacian d, 0:2Þ:

The first two equations were successfully used in former

studies [20]. The third is used for visualization. The last

equation is necessary to create an initial noise—a slight

uneven distribution of the reagents.
3. Results
3.1. Attachment microstructures
The evaluation of the euplantular AMS of stick insects

revealed eight types of patterns (figure 1): (i) smooth,

(ii) undulating, (iii) plateaus, (iv) small nubs, (v) big nubs,

(vi) flat pads, (vii) mazes and (viii) ridges (see electronic sup-

plementary material, S1 for descriptions of observed AMS).

Furthermore, various transitions between different patterns

were observed when re-evaluating the AMS in consideration

of the simulated patterns. Certain species possess intermediate

types of AMS between the ones described here and are con-

sidered to represent evolutionary transient forms of the

patterns. In all species, the structures cover the whole euplan-

tula. The AMS were examined at magnifications of 30 000

and 50 000 times to prove the presence of an additional level

of nanostructures. Besides the diversity of the illustrated

microstructures, no further hierarchical structures were

observed (see electronic supplementary material, S2 for high

magnification micrographs of representative AMS).
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Figure 1. The diversity of AMS in Phasmatodea (a – h) and the corresponding mathematically modelled Turing patterns (a0 – h0). (a,a0) Smooth type, Orthomeria
pandora (Aschiphasmatinae). (b,b0) Undulating type, Kalocorinnis wegneri (Korrinninae). (c,c0) Maze type, Leosthenes aquatilis (Xeroderinae). (d,d0) Small nubs,
Mearnsiana bullosa (Obriminae). (e,e0) Big nubs, Hemiplasta falcata (Necrosciinae). ( f,f 0) Flat pad type, Necroscia annulipes (Necrosciinae). (g,g0) Ridges, Argosarchus
horridus (Phasmatinae). (h,h0) Plateau type, Epidares nolimetangere (Dataminae). Scale bars: (a – h) 5 mm. Size of simulated area (a0 – h0) 256 � 256 px.

Table 2. Parameters for the mathematical modelling of figure 2.

no. aa ba ca da diff_a ab bb cb db diff_b Fmax Gmax

a 0.09 20.14 0.03 0.03 0.14 0.23 0.01 20.1 0.08 3.7 0.2 0.5

b 0.099 20.16

c 0.12 20.15

d 0.17 20.15

e 0.21 20.14

f 0.27 20.21

g 0.3225 20.23

h 0.32 20.21

i 0.17 0.10
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3.2. Mathematical simulation of attachment
microstructures

For modelling purposes, we were able to choose the conditions

under which we observed all the types of patterns described
above within the limited area of a two-dimensional section of

a potential 12-dimensional array. This means that only two par-

ameters are variables, when the other 10 are constant. Two axes

on this graph show interactions between reagents: ba—the level

of inhibition of the chemical a by the chemical b and aa—the



aa

ba

Figure 2. Graph showing the examples of patterns in aa and ba coordinate space, overlaid with network, nodes (a – i) depicting different types of structures, edges
showing the most possible ways of transitions between them. (a) Undulating type, (b) maze type, (c) small nubs, (d ) big nubs, (e) flat pad type, ( f,k) the transition
between flat pad and big maze types, and its corresponding AMS (A. lyratus), (g) ridges, (h,j ) dimpled pattern and its corresponding AMS (E. goliath) and (i)
plateau type. Horizontal dimensions of images: ( j,k) are 5 mm.
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self-activation of the component a (figure 2). The two-dimen-

sional patterns show the concentrations of the reagents, but

they do not explain the future formation of three-dimensional

structures. We have identified the following types of patterns

on this two-dimensional surface. First, the ‘smooth’ type corre-

sponds to the absence of any patterns (figure 1a0); probably the

most common type, which rarely includes islets of pattern for-

mation. The undulating type (figure 1b0, 2a) represents unstable

predecessors of the stable patterns that are unable to hold the

form for a long time and to influence their environment, are

prone to large-scale oscillations in the transitional part of the

graph. When this type of patterns is stabilized, it can spon-

taneously pass into maze-type patterns (figure 1g0, 2b) that,

with an increase of the parameter aa, are quickly transformed

into very stable small nubs (figure 1d0, 2c). The difference

between small and big nubs (figure 1e0, 2d) is not only in size,

but also in their types of interaction. With an excessive density,

small nubs merge together, while big nubs start to suppress

each other: this leads to a decrease in the size of smaller nubs

and often to their disappearance. That is why among the big

nubs there is a small variety of existing sizes. These two types

of patterns are mostly uniform in size and together occupy

the largest area of the section of parameters under investi-

gation. With a further increase in the aa parameter, the loss

of the rounded shape of the structures was observed, and

we called such a pattern ‘flat pads’ (figure 1f0, 2e). With a

larger ba parameter, these structures grow evenly in all direc-

tions, while with a smaller one, they tend to form oblong

structures. In turn, these patterns are transformed into a

new type of big maze-like pattern (figure 2f ), similar to the

maze-type pattern, but much larger ones that are also prone

to form parallel ridges (figure 1h0, 2g). Under the condition

of the increased aa parameter, the big maze type of patterns

is transformed to the last stable type of patterns—the dimpled
pattern (figure 2h). At the top of the graph, flat pad-type

structures pass into quasi-stable giant structures separated

by thin partitions—the plateau-type pattern (figure 1c0, 2i).
They do not have any internal size limitation.
4. Discussion
4.1. Functions of attachment microstructures
Especially at elevations or in the canopy, insect attachment

needs to be secure in order to avoid animals dropping

down and suffering damage. The attachment is also impor-

tant in the case of landing on the legs after flight or

jumping [36]. The high diversity of euplantular AMS

suggests their different functions in attachment of Phasmato-

dea. Although the functional significance of only a few of the

AMS have been addressed through experiments so far

[14–16], working principles of some surface patterns can be

inferred from studies carried out on representatives of other

taxa (e.g. [37–40]). In general, previous studies assumed

that different AMS evolved in response to (i) the typical

surface roughness of the environment, (ii) the specific

insect–plant interactions [41] or (iii) other environmental

characteristics [33]. Nubby and smooth AMS are probably

adaptations to the surface roughness [17,27]. Smooth ones

in particular show the best performance on smooth surfaces

[15], while nubby AMS operate more properly on a broad

range of different levels of roughness [14–16,33].

The AMS with derived surface patterns, which split the

actual contact area, such as flat pads, plateaus or mazes, are

possibly adapted to wet areas, in order to reduce hydroplaning

or to reduce stick-slip motions on dry surfaces [17,33].

Both effects have been demonstrated for similar artificial sur-

faces [42,43]. Ridges represent microstructures, which cause a
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frictional anisotropy with and against their direction. The fric-

tion coefficients of such anisotropic structures differ depending

on the direction the force is applied, because of the attachment

pad’s microsculpture [44]. This anisotropy is possibly ben-

eficial in association with food plants that possess structured

surfaces [17,27], as it potentially generates stronger grip and

propulsion on such surfaces [45]. Hence, the functional prin-

ciples of the AMS are only partially known from

experimental biomechanical analyses. It would be helpful to

investigate the specific functions of hitherto untested types

and provide information about their ecological benefits. The

AMS revealed no further hierarchical level of nanostructures

(see electronic supplementary material, S2). The smooth attach-

ment systems of other insects likewise lack such an additional

level of nanostructures [5,6]. For example, representatives of

Orthoptera [39,40], Hymenoptera [46–48], Plecoptera [49]

and Blattodea [50,51] possess smooth attachment pads, some-

times with a microstructure as in the AMS of Phasmatodea,

but without structures at other hierarchical levels. By contrast,

fibrillar attachment devices, which consist of deformable setae

[6,7,11], often include another level of hierarchical structures on

these setae, as in spiders [52,53], Coleoptera [54–56] or Diptera

[57–59]. In addition to the different AMS, an adhesive

secretion is reported for Phasmatodea [60–65], which increases

the actual contact area between the pad and the substrate [66].

Such secretions possibly ensure the sufficient attachment in this

case and redress the need for additional nanostructures.

4.2. Evolution of attachment microstructures
The realization of certain AMS in nature is discussed to rather

follow ecological circumstances and selective pressures than

generally reflect phylogenetic relationships [17,27]. For

example, smooth and nubby AMS are found in close correlation

to certain ecological preferences. Ground-dwelling stick insects

frequently possess a secondary ovipositor for oviposition into

the soil [3] and exhibit nubby AMS, while the smooth AMS is

more frequent in tree-dwelling species [17,27]. Derived AMS

types, e.g. coarse, plateaus or mazes, are found convergently

in different lineages and probably occur due to specific adap-

tations to the habitat of the particular species. Nevertheless,

closely related species with similar ecological preferences

often possess the same AMS [10,17,27]. However, many unam-

biguously monophyletic lineages reveal a diversity of AMS,

which includes abundant independent origins of both nubby

and smooth AMS [17,27]. The high flexibility in AMS develop-

ment potentially benefits from demonstrated transitions

between different patterns. These transitions enable rapid

adaptation to environmental conditions.

4.3. Development of the Turing model
It is an interesting fact that as the previously studied patterns of

corneal nanostructures, the AMS patterns can be also simulated

using the Turing model. In contrast to the parameters used in
the previous article [20], the AMS simulation yielded another

area with a lower stability but a greater variety of structures.

This feature can be explained by the differences in the chemical

composition and properties of the components forming the cor-

neal nanostructures and the AMS of Phasmatodea. Among the

simulated patterns, parallel ridges of small dimensions emerge

as a more ordered manifestation of the maze-type structures.

However, we did not observe the existence of such structures

in nature, which can be explained by their lack of functionality

or by insufficient sampling. Nevertheless, we were able to find

two types of AMS that are related to the structures predicted by

the simulation by re-evaluating the AMS in consideration of the

modelled patterns. The first of these belongs to Arabidopsis
lyratus and is a transition between the flat pad type and the pre-

dicted, but hitherto not found in nature, one (large maze-type

structures, figure 2f,k). The second type belonging to Eurycnema
goliath is a dimpled pattern type (figure 2h,j), which was

initially ignored from morphological studies as a possible arte-

fact of sample preparation. These examples illustrate the

predictive power of Turing modelling.

As mentioned above, different nubby patterns occupy

more area in our simulation field than any other type of pat-

tern (figure 2), and this is the most common AMS among

Phasmatodea.
5. Conclusion
The euplantular AMS of Phasmatodea reveals a diverse set of

patterns. The formation of these patterns can be mathemat-

ically simulated by the reaction–diffusion model, revealing

easy transformations between different types. As the AMS

appear to be highly dependent on the ecology of the species,

the ease of such transformations suggests their outstanding

adaptability to the set of surface substrates in the specific habi-

tat of the species. This indicates a high potential for the

evolution of AMS during the rapid radiation of phasmatodean

lineages. With a sufficiently resolved phylogeny and a broader

taxon sampling, we expect a better understanding of the

evolutionary pathways of phasmid AMS in the future.
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