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The epidemic threshold of the susceptible–infected–recovered model is a

boundary separating parameters that permit epidemics from those that do

not. This threshold corresponds to parameters where the system’s equilibrium

becomes unstable. Consequently, we use the average rate at which deviations

from the equilibrium shrink to define a distance to this threshold. However,

the vital dynamics of the host population may occur slowly even when trans-

mission is far from threshold levels. Here, we show analytically how such slow

dynamics can prevent estimation of the distance to the threshold from fluctu-

ations in the susceptible population. Although these results are exact only in

the limit of long-term observation of a large system, simulations show that

they still provide useful insight into systems with a range of population

sizes, environmental noise and observation schemes. Having established

some guidelines about when estimates are accurate, we then illustrate how

multiple distance estimates can be used to estimate the rate of approach to

the threshold. The estimation approach is general and may be applicable

to zoonotic pathogens such as Middle East respiratory syndrome-related

coronavirus (MERS-CoV) as well as vaccine-preventable diseases like measles.
1. Introduction
Many infectious disease epidemics occur with sufficient regularity that their

anticipation is straightforward. For example, seasonal influenza has a pro-

nounced winter seasonality in most of the world, with annual outbreaks [1].

Some systems are more episodic but still well understood, such as measles in

sub-Saharan Africa where regional inter-epidemic periods between 1 and 4 years

have been observed in recent times [2]. By contrast, emerging and re-emerging

infectious diseases are rarely anticipated, even though the root causes are often

discerned soon after the event. Many childhood infectious diseases naturally

spread effectively, including measles, chickenpox and rubella. This means that,

in unvaccinated populations, one infectious individual may infect many

others, measured by the pathogen’s basic reproduction number, R0 [3]. Out-

breaks are prevented in these cases by maintaining a very high proportion of

vaccinated individuals, generating herd immunity in which the effective repro-

duction number is below 1, meaning small chains of transmission are quickly

broken [4]. Reduced vaccine uptake rates can move the infectious disease system

from controlled (sub-critical, with effective R0 , 1) to super-critical, when out-

breaks may occur [5]. Alternatively, other features of the system may be slowly

changing, similarly enhancing the transmission of the pathogen. Host demographic

changes, particularly rising birth rates, can increase the supply of susceptible

individuals to the population, and pathogens frequently evolve at high rates,

whereby fitter strains (higher R0) may be favoured by selection [6]. Predicting

a dynamical system’s movement from sub- to super-critical before it happens

has enormous potential to remove the element of surprise associated with emer-

ging infectious diseases, to prioritize mitigation strategies to reverse, stop or slow

the transition, and in worst cases to simply be better prepared for the inevitable.
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Recent work has also illustrated that following a transition

from sub- to super-critical there is a characterizable bifurcation

delay—a waiting time until the outbreak actually occurs fol-

lowing suitable conditions being met [7]. Consequently,

estimates of how far a system is from the epidemic threshold

could help public health officials make judgements about

policy, infer on which side of the threshold the population

lies, and track the movement of a system towards a threshold

(providing early warnings) and even away from a threshold as

a way of evaluating the effectiveness of any external changes to

the system aimed at controlling infectious disease outbreaks.

A potentially robust basis for estimating the distance to a

threshold is the general slowing down of a system’s dynamics

as a threshold is approached. To be more precise, the average

decay rate of deviations from a fixed point of the system

becomes increasingly smaller as the parameters of the system

approach the point at which that fixed point becomes unstable.

Wissel [8] pointed out that this phenomenon, known as critical
slowing down or sometimes simply as slowing down, could be

used to determine whether the parameters of a system were

approaching a threshold that, when crossed, could result in

the system changing in an abrupt and drastic manner. Such

changes have come to be called critical transitions [9]. A great

deal of interest has developed in the possibility of devising

model-independent methods to anticipate critical transitions

in complex systems using early warning signals [10]. In gen-

eral, early warning signals are statistical properties of

observations of systems that can be expected to change in

characteristic ways as a threshold is approached. Perhaps the

most common examples are increasing autocorrelation and

variance of model variables. These signals can often be derived

from the increasingly slow decay of perturbations due to slow-

ing down, and many other early warning signals are in one

way or another quantifications of slowing down. The beauty

of early warning signals is that their basis in generic properties

of dynamical systems means they have the potential to be

reliable even when the system is complex and unidentifiable.

Examples of complex and poorly identified systems abound

in ecology and epidemiology. With application to such systems

in mind, several authors [11–13] demonstrated the application

of early warning signals based on slowing down to forecasting

infectious disease emergence and eradication. Further develop-

ment and integration of these methods into surveillance

systems may provide a novel and broadly applicable method

of evaluating the control of infectious diseases from existing

surveillance data streams.

To explain some of the current challenges in further devel-

oping approaches to estimating the distance to the threshold,

we will make reference to some elements of dynamical systems

theory. Following Wiggins [14], a general dynamical system

may be written as a system of equations for a vector field

_x ¼ f(x, u), where the overdot indicates a derivative with

respect to time, x is a vector of real numbers that determine

the point of the system in its phase space, and u is a vector of

real numbers that are parameters of the system. A solution to

the system is a function x of time that over some time interval

satisfies _x ¼ f(x(t), u). A fixed point x* of the system is a sol-

ution that does not change with time (i.e. it satisfies 0 ¼ f(x*,

u)). Such a point is also referred to as a steady state or an equi-

librium of the system. A fixed point is called asymptotically

stable if solutions that start at points near the fixed point

move closer to it over time. Because the starting points are

nearby, deviations z ¼ x 2 x* are small and can be accurately
modelled by solutions to the linear system _z ¼ Fz, where F
denotes the matrix of first derivatives of f with respect to x
(i.e. the Jacobian matrix). The general solution of such a

system is z(t) ¼ exp (Ft)z(0). If the real parts of all of the eigen-

values of F are negative, this solution will shrink to zero and it

follows that x* is asympotically stable. If the real parts of any of

the eigenvalues are positive, the solution will not shrink to zero

and x* is not asymptotically stable. Thus, as long as the real

parts of the eigenvalues of F are not zero, their signs tell us

whether or not any fixed point is stable.

The relationship between the speed of a system’s dynamics

and the distance to the threshold arises in the common case that

the eigenvalues of F are continuous functions of the parameters

u of the system and none of the eigenvalues have zero real

parts. In this case for a stable fixed point to become unstable,

one of the eigenvalues must cross zero. Thus as the parameters

approach the threshold where stability is lost, one of the eigen-

values must approach zero in its real part. We call such an

eigenvalue an informative eigenvalue because its value is infor-

mative of how far the system’s parameters are from a

threshold. We call the magnitude of such an eigenvalue a dis-

tance to the threshold. If an informative eigenvalue can be

monitored over time, one can determine whether the system

is approaching a threshold or not and even make a forecast

of when the threshold will be crossed. An informative eigen-

value can be measured by monitoring the decay of small

perturbations away from the fixed point along the eigendirec-

tion of the informative eigenvalue. Identifying trends in such

a decay rate is the goal of early warning signals based on

slowing down.

Despite the simplicity of this goal, it is currently not clear

exactly how it can be achieved when systems have multi-

dimensional phase space. When one of the eigenvalues of F
gets closer to zero, only a small number of the model’s obser-

vable variables may become less resilient to perturbations.

The implication is that early warning signals such as increasing

variance and autocorrelation will not be present in all of the

model’s variables. Several authors have provided examples

of such a case. Kuehn [15] showed that in a susceptible–

infected–susceptible (SIS) model of an epidemic on an

adaptive contact network, only one of the three model vari-

ables had a clear increase in variance as the epidemic

threshold was crossed. Boerlijst et al. [16] even showed that,

depending on the types of perturbations a system experiences,

the autocorrelation of some variables may either increase

or decrease as a threshold is approached. Consequently, a

review [17] identified the selection of appropriate variables in

multivariate systems for detection of slowing down as an

important problem in need of solution. Dakos [18] has recently

used an eigendecomposition of F to derive a simple rule about

which state variables have a decay rate that is most affected by

the dominant eigenvalue of F. However, this approach only

provides a partial answer to the question of variable selection,

because it does not account for the covariance of the pertur-

bations to the system, which can be as important as the

eigenvectors of F on the decay rate of a state variable. Further-

more, another consequence of models having multiple

dimensions is that the informative eigenvalue may not necess-

arily be the dominant eigenvalue. When its real part gets close

enough to zero, the informative eigenvalue will of course

become dominant but, as we shall demonstrate, that may not

happen until it is very small. So although slowing down is

often explained to be a consequence of the dominant



Table 1. Model parameters.

symbol definition default value

h importation rate 1=(3
ffiffiffiffi
N0
p

) yr�1

b transmission rate varied

g recovery rate 365/22 yr21

m death rate 0.02 yr21

N0 initial population size 107 individuals

observation frequency 52 yr21

tf magnitude of environmental

noise in force of infection

0

td magnitude of environmental

noise in death rate

0

Table 2. Transitions of the SIR model.

name (DX, DY, DZ ) propensity

birth (1, 0, 0) N0m

death of X (21, 0, 0) Xm

death of Y (0, 21, 0) Ym

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180034

3
eigenvalue approaching zero, methods to estimate the domi-

nant eigenvalue of F from a multivariate time series may not

reliably estimate the distance to the threshold. There does not

seem to be any general approach for estimating the distance

to the threshold in multidimensional systems.

In this work, we derive an explicit relationship between the

eigenvalues of F and the autocorrelation function of each of

the variables in a multivariate system. The resulting equations

lead us to a simple condition for determining the types of

perturbations under which estimation of a variable’s auto-

covariance function can be translated into an estimate of the

distance to the threshold. We demonstrate the application

of this method to the susceptible–infected–removed (SIR)

model for directly transmitted infectious diseases. We find

that, for parameters relevant to many vaccine-preventable dis-

eases, the autocorrelation of the number infected almost

always is indicative of the distance to the epidemic threshold,

while the autocorrelation of the number susceptible is not. We

examine the sensitivity of the accuracy of these estimates to

environmental noise, small population size, the frequency of

observation and observation of case reports instead of the

actual number infected. We also show a simple example of

estimating the change in the distance to the threshold over the

length of a time series. These results demonstrate the general

feasibility of developing statistical systems for forecasting dis-

ease emergence and documenting the approach to elimination.

death of Z (0, 0, 21) Zm

transmission (21, 1, 0) XY b/N0 þ Xh

recovery (0, 21, 1) Yg

2. Methods
2.1. Model
The model that motivated the development of the following

methods is the SIR model with demography. We let X(t) denote

the number of susceptible individuals, Y(t) the number of infected

(and infectious) individuals, Z(t) the number of removed individ-

uals (recovered or vaccinated) and N(t) ¼ X(t) þ Y(t) þ Z(t) the

total population size at time t. Typically, we assume that these

numbers are the integer-valued random variables of a Markov pro-

cess having the parameters defined in table 1 and the transitions

defined in table 2. In the following, we often omit explicit notation

of time dependence for the sake of conciseness. We also consider

models where the death rate or the force of infection (i.e. the per
capita rate at which susceptibles become infected) is subject to vari-

ation over time due to fluctuations in the environment over time.

We follow Bretó & Ionides [19] in modelling such variation as mul-

tiplicative gamma white (temporally uncorrelated) noise. This

noise could represent changes in rates due to weather conditions

or social mixing [20] or even model errors in model specification,

such as a failure to model spatial heterogeneity [21]. Bretó &

Ionides [19] show that the model remains Markovian with such

noise with the modified propensities for the death and trans-

mission events given by the expressions in table 3. Inclusion of

multiplicative gamma noise leads to the possibility that more

than one individual becomes infected or dies in a single event

(i.e. the associated counting processes are compound) and table

3 gives the propensity of birth and death events for all positive

integers k, k1, k2 and k3.

There are several biological assumptions implicit in our model.

We use the standard assumption of frequency-dependent trans-

mission, which has been shown to be a more appropriate model

than the common alternative assumption of density-dependent

transmission for a number of infectious diseases [22]. However,

we calculate frequency using the parameter N0 instead of N(t).
The initial population size N0 is also the expected value of the

population size because we set the birth rate in table 2 as N0m.
Another assumption is that the average death rate of individuals

is constant throughout their lifetimes. According to Anderson &

May [23], this is a common assumption among the traditional lit-

erature in mathematical epidemiology. It is biologically accurate

in that humans are subject to a small and relatively constant mor-

tality rate until they reach old age. A more realistic model would

include much higher mortality at old age, but such realism is not

necessary for our study. Another key feature of our model is the

inclusion of the h term in the force of infection (tables 2 and 3),

which relaxes the assumption that the population is closed to infec-

tion from other populations or environmental reservoirs. We

include such a term to allow our model to represent populations

in which an infectious disease is repeatedly introduced but

unable to persist within the population.

Although the model is stochastic, the expected value of the

model’s variables is deterministic. The rate of change in the

expected value when the system is in a given state can be

approximated by summing over all possible updates in tables 2

and 3 and weighting each update by its propensity [24]. Calculat-

ing the rate of change in the expected value of X, Y and Z in this

way leads to the following system of differential equations:

_kXl ¼ N0m� �lkXl� �mkXl, ð2:1Þ

_kYl ¼ �lkXl� gkYl� �mkYl ð2:2Þ

and _kZl ¼ gkYl� �mkZl, ð2:3Þ

where the overdot indicates a time derivative and where

�l ¼
t�1

f ln 1þ tf
bkYl
N0
þ h

� �� �
, tf . 0,

bkYl
N0
þ h, tf ¼ 0,

8>><
>>: ð2:4Þ



Table 3. Modified transitions of the SIR model allowing for environmental heterogeneity.

name (DX, DY, DZ ) propensity

death (2k1, 2k2, 2k3)
X
k1

� �
Y
k2

� �
Z
k3

� �P k1þk2þk3
j¼0

k1þk2þk3
j

� 	
�1ð Þk1þk2þk3�jþ1

t�1
d ln ð1þ mtdðX þ Y þ Z � jÞÞ

transmission (2k, k, 0)
X
k

� �Pk
j¼0

k
j

� �
(� 1)k�jþ1t�1

f ln (1þ (bY=N0 þ h)tf (X � j))
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and

�m ¼ t�1
d ln (1þ tdm), td . 0,
m, td ¼ 0:

�
ð2:5Þ

The equations for �l and �m in the case of non-zero environmental

noise are the infinitesimal means derived in Bretó & Ionides [19].

By setting the differential equations equal to zero and solving for

kXl and kYl, we can find the approximate fixed point of the

system for a given set of model parameters.

The equations for the fixed point of the differential equations

allow us to explain what we mean by epidemic threshold. For the

sake of clarity, we consider the equations only when td and tf

are zero. In that case the exact equation for the Y-coordinate of

the fixed point, which we denote Y*, is

Y� ¼ N0

2

m

b
(R0 � 1)� h

b

� �
þN0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

b
(R0 � 1)� h

b

� �2

þ4
mh

(gþ m)b

s
,

ð2:6Þ

where R0 ¼ b/(g þ m). R0 is known as the basic reproduction

number and we consider the epidemic threshold for the SIR

model to be the surface in parameter space where R0 ¼ 1 and

h ¼ 0. To see why, note that, when h ¼ 0, equation (2.6) has a

non-zero value only when R0 . 1; only when R0 . 1 will the intro-

duction of an infection into a susceptible population lead to an

epidemic according to the system of differential equations. Accord-

ingly, one can interpret R0 as the average number of new infections

caused by an infected individual in a susceptible population. From

the point of view of fixed points, the epidemic threshold separates

the region of parameter space where a fixed point occurs with

Y* ¼ 0, a disease-free equilibrium, from the region where a fixed

point occurs with some Y* . 0, an endemic equilibrium. In

short, we define the epidemic threshold for the SIR model as the

location of the model’s bifurcation. In the electronic supplemen-

tary material, we show how this definition remains useful in the

case that h . 0 and the bifurcation is imperfect.

For other more realistic models, such as the structured immu-

nity model of Reluga et al. [25], there may be multiple stable states

for a given value of the parameters. For such models, there may not

be a single bifurcation occurring at R0 ¼ 1 but instead multiple

bifurcations at different points in parameter space. The term epi-

demic threshold is ambiguous for such models because, for

example, the fraction of the population infected may jump up as

the parameters cross one threshold but not jump down until the

parameters move much further backward in the opposite direc-

tion. However, our methods are applicable to estimating the

distance to any threshold parameter values that corresponds to

the loss of an equilibrium’s stability.

2.2. Relating eigenvalues to autocovariance
When the dynamics are characterized by small fluctuations

around a fixed point, the degree of autocorrelation of these fluc-

tuations may be indicative of the distance to the threshold. A first

step in demonstrating this relationship is to derive a probability

density function for the fluctuations. Let z(t) denote a vector of

deviations from the fixed point that is in units of the square

root of the system’s size. Let p(z) be the probability density
function of these deviations. In the limit of a large system size,

this function may be approximated as the solution to the

Fokker–Planck equation

@p(z, t)
@t

¼
X

ij

�fij
@(zjp)

@zi
þ 1

2

X
ij

dij
@2p
@zi@zj

, ð2:7Þ

where the matrix F (with elements fij) determines the expected

trajectory of z towards zero and the matrix D (with elements

dij) describes the covariance of a Gaussian white noise process

that acts on z. The matrices F and D follow directly from the tran-

sition probabilities. For the SIR model in the previous subsection,

we take N0 as the system size, z ¼ ((X � X�)=
ffiffiffiffiffiffi
N0

p
,(Y� Y�)=

ffiffiffiffiffiffi
N0

p
)

and obtain

F(X�, Y�) ¼ ��l� �m � d�l
dY X�

�l d�l
dY X� � g� �m

 !
, ð2:8Þ

where �l and d�l=dY are evaluated at Y ¼ Y*. Note that we have

omitted deviations from Z* in our vector z. Including these devi-

ations would be straightforward but the behaviour of Z is in

many ways similar to that of X and the value of Z does not

affect the rates at which X and Y change (table 2). Therefore,

we have omitted the fluctuations of Z in the following to make

our results more concise. For the covariance matrix, we obtain

D(X�, Y�) ¼
mþmX,Y þmX,; �mX,Y þmXY,;
�mX,Y þmXY,;

gY�
N0
þmX,Y þmY,;

� �
, ð2:9Þ

where

mX,Y

¼

X��l
N0
þX�ðX� �1Þ½2�l� t�1

f lnð1þ2tfðbY�=N0þhÞÞ�
N0

, tf . 0,

X��l
N0

, tf ¼ 0,

8>><
>>:

ð2:10Þ

mX,; ¼

X��m
N0
þ X�ðX� � 1Þ½2�m� t�1

d ln ð1þ 2tdmÞ�
N0

, td . 0,

X��m
N0

, td ¼ 0,

8>><
>>:

ð2:11Þ

mY,; ¼

Y��m
N0
þ Y�ðY� � 1Þ½2�m� t�1

d ln ð1þ 2tdmÞ�
N0

, td . 0,

Y��m
N0

, td ¼ 0

8>><
>>:

ð2:12Þ

and mXY,; ¼
X�Y�½2�m� t�1

d ln ð1þ 2tdmÞ�
N0

, td . 0,

0, td ¼ 0:

8<
: ð2:13Þ

A solution to equation (2.7) is a Gaussian density function with a

mean of zero and a covariance matrix S (with elements sij) that

depends on F and D. van Kampen [24] provides a detailed

introduction to these methods.

For these Gaussian solutions, the autocovariance function of

the deviations may be written in terms of the eigenvalues of F.

The relationship is particularly simple when the eigenvectors of
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F are used as the basis of the coordinates. Thus, let ~z ¼W�1z,

where W is a matrix of the eigenvectors of F, and let ~S denote

the covariance matrix of ~z. Then, using the decomposition of

Kwon et al. [26], it follows that

~sij ¼ �
~dij

(li þ lj)
, ð2:14Þ

where li denotes an eigenvalue of F and we assume that all of these

eigenvalues are distinct. The autocovariance matrix is defined as

St ¼ kz(t� t)z(t)Tl, where the angular brackets denote the expected

value over time or realizations of the system. It follows from the sta-

tionarity of the solution that St ¼ exp (Ft)S. In the eigenvector

basis, we have ~st,ij ¼ exp (lit) ~sij. Thus, the behaviour of the autoco-

variance along an eigendirection as a function of the lag t is a simple

and identifiable function of the corresponding eigenvalue. If li

is real, then ~st,ii decays exponentially towards zero at the rate li. If

li has an imaginary component, then the real and imaginary

parts of ~st,ii oscillate around zero with a frequency given by the ima-

ginary component of li and an amplitude that decays exponentially

at the rate given by the real component ofli. SinceSt ¼WS̃ tW,st,ii
will be a linear combination of the elements of ~St (see the electronic

supplementary material, equation S4). Therefore, the elements of

the autocovariance matrix St are linear combinations of functions

from which the eigenvalues of F are identifiable.

2.3. Solving for the space of suitable noise parameters
The relationship between the eigenvalues and the autocovariance

established in the previous subsection clarifies the question of

when the autocovariance of a variable contains sufficient infor-

mation to estimate the distance to a threshold. Any threshold

corresponds to an eigenvalue crossing zero. Recall that we call

such an eigenvalue an informative eigenvalue and that the magni-

tude of its real part can be considered the distance to the threshold.

If it is known that the imaginary part of the eigenvalue will also be

zero at the threshold, then the magnitude of the imaginary part can

be considered a second component of the distance. Note that in the

case that an informative eigenvalue is complex it will be a part of a

conjugate pair. Estimation of the decay rate and frequency of

oscillation of a variable’s autocovariance function can provide an

estimate of the distance to the threshold when they are close to

the real and imaginary parts of an informative eigenvalue.

This condition on the autocovariance function for an estimate

to be accurate, together with equation St ¼WS̃ tWT and

equation (2.12), can be translated into conditions on the eigenvec-

tors W of F and the covariance matrix D of the perturbations. Thus,

we now have a general link between the parameters of models and

the potential for a model variable to provide an estimate of the dis-

tance to the threshold. In the electronic supplementary material,

we provide an explicit calculation of the values of D that permit

a distance estimate for each variable.

2.4. Obtaining distance estimates from time series
We estimate the distance to the threshold from a time series as

follows. The main idea is to suppose that the autocorrelation will

exponentially decay with increasing lags at a rate equal to the real

part of the informative eigenvalue and that any oscillations in the

autocorrelation function have a frequency equal in magnitude to

the imaginary part of the informative eigenvalue. The first step is

then to estimate the autocorrelation of the time series for a series

of lags, which we did using the acf function in R. Because sometimes

the autocorrelation can have cycles with a period of several years,

we used lags from 0 to 30 observations less than the length of the

time series. Next, we use a nonlinear least-squares optimizer to fit

two models for the estimated autocorrelation ŝii,t=ŝii,

ŝii,t

ŝii
¼ egt þ et ð2:15Þ
and

ŝii,t

ŝii
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
egt sin (vtþ atan2(1, a))þ et , ð2:16Þ

where et is an error term, g is the decay rate parameter, v is the fre-

quency parameter and a is a phase angle parameter, and atan 2 is the

inverse tangent function with arguments in the order of y, x. We use

the nlsLM function to fit these models. This function is available in

the minpack.lm package [27], and it provides an R interface to the

Levenberg–Marquardt optimizer in the MINPACK library. We

used nlsLM instead of the nls function that comes with R because

it was less sensitive to the choice of initial values of the parameters

for the optimization of the model fit. For initial values, we set a to

zero, g to the least-squares slope of the log of the absolute value

of the estimated autocorrelation versus the lag, and v to the fre-

quency that maximized the spectral density of the estimated

autocorrelation. Only autocorrelations with relatively small lags

were used for the initial estimate of g. Specifically, all lags including

and following the first lag that was less in magnitude than

F(0:975)=
ffiffiffi
n
p

, where F is the cumulative distribution function of a

standard normal random variable and n is the length of the time

series. We fitted the data with and without an oscillation component

in the model and used the following information criterion to

evaluate the models:

2pþ RSS, ð2:17Þ

where RSS stands for the residual sum of squares, p ¼ 1 for model

(2.15) and p ¼ 3 for model (2.16). We used the estimates from the

model with the lower score. If neither model’s information criterion

exceeded
P

t (ŝii,t=ŝii)
2, we concluded that the data contained

insufficient information to provide an estimate. When estimates

were available, we calculated the distance to the threshold

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ g2

p
.

If the input time series consisted of aggregated counts, we

modified the model having no oscillations to

ŝii,t

ŝii
¼ Kegt þ et, ð2:18Þ

and we excluded the lag-0 autocorrelation from our data to be

fitted. This model, which has a new parameter K that determines

the autocorrelation at a lag of 1, matches the form of the auto-

correlation function for counts of deaths in a birth–death–

immigration model [28]. The birth–death–immigration model

can provide a good approximation of the SIR model when

R0 , 1. The information criterion for this model was calculated

with p ¼ 2.
2.5. Simulation experiments
In the following, we apply our theory and estimation methods to

the SIR model. To generate data for estimation, we simulated

time series of the number of individuals in each state according

to our Markov process model using the Euler scheme of He

et al. [20]. The pomp [29,30] R package was used to implement

the model. Our typical procedure was to simulate data with

most of the parameters fixed at the default values in table 1

and for several choices of transmission rate.

The default parameters were chosen to be typical of an acute

infectious disease of humans. Our default infectious period of

22 days is consistent with the combined latent and infectious

period in a past model of pertussis [31], as is our default host

mortality rate of 0.02 per year. Our default initial population

size of 10 million is chosen to be similar to that of a very large

city and to be large enough for the linear noise approximation

to be reasonable. For setting the importation rate h, Keeling &

Rohani [32] suggest using 1:06m(R0 � 1)=
ffiffiffiffi
N
p

based on the time

between extinctions and invasions of measles in England and

Wales. Our own choice for the default h in table 1 is a simplifica-

tion of this relation. The default observation frequency is chosen
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to be weekly because infectious disease notification data are

often available at that frequency.

Simple sensitivity analyses of the distance estimates were

carried out by allowing one or two of the parameters to vary from

the default values. The full set of parameters used for each set of dis-

tance estimates is reported in the results. The initial values of the

states were set to the equilibrium values and the model was run

for 10 simulation years before sampling to allow the initially

sampled states to vary according to the stationary distribution of

the process. The sampling scheme was 1040 observations at a fre-

quency of one observation per week. This corresponds to about

20 years of weekly observations, which is a realistic size for an

epidemiological dataset. Sampled time series of both the number

infected and the number susceptible were used to generate an esti-

mate of the distance to the threshold by the method described

above. The true value for each estimate was calculated by plugging

the simulation parameters into equation (2.8), solving for the fixed

points and calculating the eigenvalues of F. If there were two real

eigenvalues, the informative eigenvalue was identified as the eigen-

value that would cross zero if the parameters were moved through

the bifurcation point where R0 ¼ 1 and h ¼ 0.

We also conducted simulations with a linearly increasing

transmission rate to evaluate the performance of estimates of

changes in distance. To ease comparison with estimates from

our other simulations, we used a similar amount of data for

the individual distance estimates used to calculate the change

in distance. The simulations were sampled for twice as long,

the time series were split into two windows of 1040 weekly

observations and an estimate was obtained for each window.
3. Results
3.1. Main determinants of the accuracy of distance

estimates
We first present some general considerations regarding when

the distance to the epidemic threshold can be estimated from

the fluctuation dynamics of the SIR model. Figure 1 shows
representative examples of the kinds of time series that we sup-

pose could become available for statistical analysis. For two of

the parameter values, cycles are visible in both the number of

susceptibles, X, and the number of infecteds, Y; this is a conse-

quence of the eigenvalues of the Jacobian, F, being complex.

This behaviour is typical of parameters for which R0 . 1. We

have explained in the Methods section that, in this case, any

white noise perturbation may allow for the distance estimate

to be obtained from either variable. When R0 , 1, typically

there are two real eigenvalues. Without any knowledge about

the model, we would expect that the ability to obtain an esti-

mate depends on the covariance of the perturbations. With

the knowledge that the observations come from an SIR

model, we could expect that the dynamics of the X and Y vari-

ables will be largely independent of each other. The number

infected will generally be too small to affect the fluctuations

in the number susceptible. Thus, the rate at which susceptible

perturbations decay will depend mostly on the per capita
death rate m, whereas the rate at which infected perturbations

decay will depend on the sum of the per capita rates at which

Y grows and shrinks, bX*/N0 2 g 2 m. Thus, the variable Y
is generally the one that should be observed to estimate the dis-

tance to the threshold when the disease is not widespread. In

the electronic supplementary material, we derive explicit

equations for the autocorrelations that support this conclusion.

Having provided some general insights into why distance

estimates may be obtained from Y and not X when R0 , 1,

we next consider a more specific answer for a specific set of par-

ameters. We use the approach described in the Methods section

to find the set of noise parameters that allow the distance to the

threshold to be estimated with a given accuracy from each

variable. These sets appear as regions in space in figure 2.

Consistently with the conclusions of the previous paragraph,

the regions are much larger for the number infected, Y , than

for the number susceptible, X. The regions for Y include the

perturbations that result from the intrinsic noise present in

simulations of the model with finite population sizes. By
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contrast, a large part of the lower-error region identified for X is

in fact not feasible because the covariance matrix constraint of

d2
12 � d11d22 is not satisfied.

Having shown that, in principle, it is often possible to obtain

distance estimates from the SIR model from at least one of the

variables, we next turn to the question of whether estimates

may be obtained in practice from a simulated time series of rea-

listic length using our estimation method. Figure 3 shows that

for time series of about 1000 observations our estimation

method was generally successful when the perturbations are

predicted to be suitable. The perturbations were simply intrinsic

noise, so the low accuracy of estimates based on X when R0 ¼

(0.1, 0.5, 0.9) is consistent with figure 2. As expected, when

R0 . 1 estimates from both X and Y were similarly accurate.

Therefore, Y permits a distance estimate for all R0 considered.

Fortunately, Y is the variable which is more often observed in

practice. We have included estimates based on X in our results

primarily to evaluate our analytical predictions about when a

variable can provide an accurate distance estimate.

3.2. Effects of observation schemes on distance
estimates

To begin evaluating how the observation scheme may affect

estimates, we varied the frequency of observations in the time

series. To avoid confounding the effects of frequency with the

effects of the length of the time series, its length was kept the

same for all sampling frequencies by adjusting the stop time

of the simulations. In the R0 ¼ 2 panel of figure 4, we see that,

when such a trade-off exists between the duration of obser-

vation and the observation frequency, a high observation

frequency can be detrimental due to the short observation
period. For daily observation frequency, the total duration of

observation was limited to 1000 days, whereas the period

length of the oscillations in the autocorrelation was about

11 years. With weekly observation frequency, the duration of

observation is about 20 years and the estimates are much
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better. A rough guideline for accurate estimation seems to be

that the duration of observation be at least as long as the

period of any oscillation in the autocorrelation function.

Another guideline is that the time between observations be

much less than the period of oscillation of the autocorrelation.

In the R0 ¼ 16 panel of figure 4, no distance estimates were

obtained when the observation frequency went from 0.25 per

week to 1 per year. For these parameters, the autocorrelation

had a period of about 3 years, so three observations per cycle

seems much less likely to provide sufficient information than

40 observations per cycle. A similar guideline on the sampling

frequency holds when the autocorrelation function is not

periodic. In the R0 ¼ 0.9 panel, no estimates based on Y are

available as the sampling frequency dips below 0.25 per

week. Here, the autocorrelation shrinks by a factor of e � 2.7

about every 23 weeks. This time can be used to characterize

the time scale of a decaying function and is sometimes called

the return time. A third guideline, then, is that the time between

samples should be less than the return time. In summary, for

accurate estimates the duration of observation should be

much greater than the time scale of the autocorrelation function

but the time between observations should be much smaller than

the time scale of the autocorrelation function.

In addition to sampling frequency, another key character-

istic of observations is whether they represent direct

observation of the state of the system or cumulative flows

between states. In particular, it is relatively rare for the

number of infections in a population at a given point in time

to be observed. A more typical type of observation is the

count of the number of infected individuals that moved into

the removed class, for example, because these individuals

were diagnosed with infection and then greatly reduced contact

with others [33]. We refer to such counts as case reports. Figure 4

shows that the estimates based on case reports were similar to

those based on direct observation of X or Y . The main difference

is that when the data consist of case reports we concluded more

often that there was insufficient information available for an esti-

mate. For example, many estimates based on Y are plotted when

R0 ¼ 0.9 and the observation frequency is 0.25 per week, but the

same set of simulations resulted in no estimates based on case

reports. When the reporting of each recovery is not sure but

instead occurs with a certain probability, as in the study of
Gamado et al. [34], the number of simulations that resulted in

estimates went down with the reporting probability (figure 5).

In conclusion, estimates based on case reports can be as accurate

as those based on state variables, but also can be less likely to be

available for a given number of observations.

The electronic supplementary material contains the results

of our sensitivity analysis of environmental noise, population

size and our estimation of the rate of change of the distance

to the threshold.
4. Discussion
This work has presented a general solution to the problem of

the selection of appropriate variables in multivariate systems
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for detection of slowing down as a threshold is approached.

The solution is a method of calculating what type of white

noise perturbations, if any, allow slowing down to be detected

based on observation of a given variable. To provide a specific

example, this general solution has been applied to the SIR

model and been shown to be consistent both with a model-

specific analysis and with simulations. This application has

also served to demonstrate and stress-test a method of estimat-

ing a distance to a threshold that is defined as one of the

eigenvalues of the linearized model’s matrix, F. Importantly,

this informative eigenvalue is not always the dominant eigen-

value. When the informative eigenvalue is not dominant it is a

consequence of the vital dynamics of the host occurring on a

time scale that is much longer than the dynamics of small

outbreaks that occur when the infection does not spread

very well in the host population. Such a difference in time

scales seems likely to occur in other multivariate models of

population dynamics.

Looking beyond the SIR model, the question also arises of

whether our method of identifying appropriate variables will

be practical for models with many more than two degrees of

freedom. In the SIR model, the autocorrelation function of

one of the state variables is often very similar to that of one

of the eigendirections. This allowed us to select variables

based on the criterion of how well the autocorrelation function

matched up with that of the eigendirection corresponding

to the informative eigenvalue. In general, as the number of

variables grows we might expect the autocorrelation function

of each variable to become more strongly influenced by mul-

tiple eigenvalues. For this more challenging case, we wonder

whether harmonic inversion methods [35] might be capable

of estimating the values of each of the eigenvalues that strongly

influence each variable from its autocorrelation function. Vari-

ables that allow the informative eigenvalue to be estimated in

this manner could then be considered appropriate for tracking

the distance to the threshold.

The distance to thresholds in systems will generally change

over time, and our results concluded with a simple
demonstration of how these changes might be tracked. In the

context of infectious disease surveillance, an exciting prospect

of this approach is the possibility that surveillance programmes

might be able to determine that some change in the system is

moving it closer to the epidemic threshold long before the

threshold is crossed. Besides increasing awareness, such

measurement may allow for management of the distance to

the threshold in some systems, for example, by guiding the

allocation of resources to vaccination programmes. In this

way, infectious disease control goals could move beyond

early detection of and rapid response to epidemics towards tar-

geted prevention of epidemics. Furthermore, tracking has the

potential to measure the relenting and reversing of system

dynamics in response to control goals. Finally, establishing

the conditions under which statistical analysis of fluctuations

in the number of infected individuals is more informative

than similar analysis of susceptible individuals does not

make a case against susceptible reconstruction methods [36]

in distance-to-threshold studies because such methods esti-

mate major trends in the susceptible population size rather

than fluctuations around them. Rather, our result makes a

case for analysis of the fluctuations in the number infected,

whether estimated from readily available time-series incidence

data or from pathogen sequence data [37].
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