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Semiarid ecosystems (including arid, semiarid and dry-subhumid ecosys-

tems) span more than 40% of extant habitats and contain a similar

percentage of the human population. Theoretical models and palaeoclimatic

data predict a grim future, with rapid shifts towards a desert state, with

accelerated diversity losses and ecological collapses. These shifts are a con-

sequence of the special nonlinearities resulting from ecological facilitation.

Here, we investigate a simple model of semiarid ecosystems identifying

the so-called ghost, which appears after a catastrophic transition from a

vegetated to a desert state once a critical rate of soil degradation is overcome.

The ghost involves a slowdown of transients towards the desert state,

making the ecosystem seem stable even though vegetation extinction is

inevitable. We use this model to show how to exploit the ecological ghosts

to avoid collapse. Doing so involves the restoration of small fractions of

desert areas with vegetation capable of maintaining a stable community

once the catastrophic shift condition has been achieved. This intervention

method is successfully tested under the presence of demographic stochastic

fluctuations.
1. Introduction
A major consequence of the habitat-degradation processes associated with the

Anthropocene is the accelerated loss of habitats and worldwide species extinctions

[1–4]. Moreover, the nature of this decay is likely to be catastrophic, and evidence

from field, experimental and palaeoclimatic data along with modelling efforts

strongly indicate that such decay will end up in collapse [5–7]. Such ecological

shifts are a consequence of the multistable nature of ecosystems, which is especially

relevant in semiarid ecosystems. Indeed, recent field studies of vegetation spatial

patterns in drylands have identified multiple ecosystem states [8].

Because of the global relevance of drylands [9,10], dedicated efforts have

been made towards forecasting the so-called green-desert transition from a vege-

tated ecosystem to a desert area [6,11–13]. These warning signals are associated

with the presence of increasing fluctuations that are known to diverge close to

critical points [7] as well as with changes in spatial patterns [14]. The definition

and quantification of these warning signals have been a very active research area

over the last decade [15]. Less attention has been given to another type of non-

linear phenomenon associated with transient behaviour when a parameter

m surpasses a critical value mc. It involves the presence of a special class

of very long transients, also called delayed transition or ghost [16–20].

The importance of transients in ecological systems has been recently dis-

cussed [21,22]. Importantly, transients have been characterized in experimental
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systems with Tribolium sp. [23] as well as in field data for the

crab Cancer magister [24]. In a ghost-related transient, the

system will appear stationary, thus creating the false

impression that the system is stable, despite its assured col-

lapse. In particular, ghosts follow a universal scaling law

[17,25] and the length of transients, t, scales following an

inverse square-root law:

t � (mc � m)�1=2, ð1:1Þ

with m and mc being the control parameter and the bifurcation

value, respectively. This scaling law has been identified in

physical systems [16,26], in mathematical metapopulation

models for autocatalytic species [27], low-dimension [28–30]

and high-dimensional replicator models exhibiting cooperation

[31,32], and single-species discrete models with Allee effects

[33]. In this sense, the presence of very long transients can

force us to redefine the concept of steady state [21,22,34] and

provide essential clues to the persistence and organization of

populations over long timescales.

If ghosts appear in green-desert transitions, the take-home

message is simple but leads to a grim picture: a given ecosys-

tem might be on its way towards collapse despite its apparent

stability. In this paper, we show that ghosts are indeed

expected in the dynamics of semiarid ecosystem models.

However, a positive message is that the ghost can be

exploited to ensure ecosystem’s persistence. We introduce a

simple intervention method based on the recovery of small

fractions of desert areas with vegetation as a way to keep dry-

land dynamics near the phase space regions where delays

occur, thus allowing the ecosystem to remain stable once

the bifurcation towards desertification has occurred.
2. Mathematical model
The starting point of our study will be the model developed

by Kéfi and co-workers as a coarse-grained approximation of

semiarid ecosystems [11]. This model captures the nonlinear

interactions due to facilitation and the relevant alternative

states found in semi-arid ecosystems (vegetated area, fertile

soil with the potential of hosting vegetation and desert

areas). In this context, we will not explicitly take into account

spatial structure [35–37], an explicit coupling with soil moist-

ure [38,39], or some sources of heterogeneity [40], which can

play a relevant role. Here, we aim to understand the properties

and management of long transients close to the green-desert

shift found in a minimal model capturing the main mechanisms

of facilitation.

The original model [11] considers a spatial lattice model

in which each site can be in one of three alternative states:

vegetated (V), non-vegetated but fertile (S) and destroyed

(D). Each state can transition to another with some prob-

ability, e.g. v (V ! S). In this model, these transition

probabilities are given by

v (D! S) ¼ rþ frV ,

v (S! D) ¼ d,

v (S! V) ¼ (dDV þ (1� d)rV)(b� cDV)

and v (V ! S) ¼ m:

Because of the nature of semiarid ecosystems, the transition

probabilities are driven not only by the nearest vegetated

neighbours (rV) but also by non-local processes that depend

on the fraction of global vegetation (DV). Here, r is the
spontaneous regeneration rate of a site due to, e.g., the arrival

of seeds by the wind. The parameters f and d stand for the

facilitation and the soil degradation rates, respectively.

Regarding the spread of the vegetation, the dispersion of

the seeds is modelled by the constant d (ratio of vegetation

due to the whole vegetated sites) and by the development

(b) and death (c) of the seeds. Finally, the rate of vegetation

decay is given by a probability m.

The microscopic transition rules provide the rates of growth

and death that can be incorporated into a time-continuous

(mean-field) modelling framework. The resulting equations

are expressed in terms of balances between different processes:

dD
dt
¼ v (S! D)S� v (D! S)D,

dV
dt
¼ v (S! V)S� v (V ! S)V

and
dS
dt
¼ v (V ! S)V � v (S! V)S

þ v (D! S)D� v (S! D)S:

Ignoring spatial correlations, we have DV ¼ rV ¼ V. This

assumption leads us to the following system of differential

equations:

dD
dt
¼ dS� rD� fVD,

dV
dt
¼ (b� cV)SV �mV

and
dS
dt
¼ V(m� (b� cV)Sþ fD)þ rD� dS:

The state variables of the system (D, V, S) correspond to

the ratio of the area that is occupied by each different state,

with D þ V þ S ¼ 1. Thus, we can reduce the three-variable

system to a two-variable one by means of the linear relation

D ¼ 1 2 (S þ V). The two-variable system is now

dV
dt
¼ V((b� cV)S�m) ð2:1Þ

and

dS
dt
¼ (rþ fV)(1� S� V)� dS� V[(b� cV)S�m]: ð2:2Þ

Given that we consider the whole semiarid ecosystems area,

no income terms are included. In our case, the laws and con-

ditions that affect the ecosystem depend on the variables in

the ecosystem. For this reason, there is no spontaneous recov-

ery of the degraded state to the non-occupied state (i.e. r ¼ 0).
3. Results
3.1. Catastrophic shifts in semiarid ecosystems
The model given by equations (2.1) and (2.2) displays bis-

tability: for a low soil degradation rate, d, two possible

exclusive stable states are present: an ecosystem with veg-

etation and a completely desert ecosystem. Actually, this

system has four fixed points. The first fixed point is (V* ¼

0, S* ¼ 0), which corresponds, in the case of being stable, to

the extinction of vegetation and the destruction of the fertile

soil, with a dominance of the desert state. The extinction state

is locally stable (see electronic supplementary material, Sec-

tion S1), and the system displays an abrupt transition. This

catastrophic shift leads to a collapse of the vegetated
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Figure 1. Catastrophic transition occurring at the critical value of the soil degradation rate, dc (indicated with a dashed red line), found in a mean field version of
the spatial model by Kéfi et al. [11]. The model considers three variables: vegetated area (V), non-vegetated area with fertile soil (S) and desert area (D). The
diagram displays the equilibrium of V against soil degradation (d ) using b ¼ 0.3, c ¼ 0.15, m ¼ 0.1 and f ¼ 0.9. The upper (solid line) and lower (dashed line)
branches are the stable (node) and unstable (saddle) fixed points, respectively. Typical of saddle – node bifurcations, the unstable branch displays a kind of symmetry
and increases monotonically until the two fixed points collide. After the bifurcation occurring at d ¼ dc, a ghost causing a delayed transition appears. The ghost
involves extremely long times towards the desert state (note that V* ¼ 0 is a stable state given by the fixed point P*0; see electronic supplementary material, Section
S1), indicating an apparently stationary state of the vegetation (the small, thin arrows indicate the stability of the branches and of the origin; figure 2). The spheres
are spatial snapshots at t ¼ 100 using d ¼ 0.001 (1); d ¼ 0.21 (2); d ¼ 0.22 � dc (3) and d ¼ 0.25 (4).
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ecosystem once d . dc, and the system falls into the desert

state. These results are summarized in figure 1, where the frac-

tion of vegetated habitat is plotted against d. The increase in d
involves a monotonous decrease of vegetation. As mentioned,

at a given critical value d ¼ dc, an abrupt extinction takes

place due to a saddle-node bifurcation. In the bifurcation dia-

gram, note that the two branches of the fixed points (one

being stable and the other unstable) approach each other as

d increases. Specifically, under the parameter values used in

our analyses (i.e. b ¼ 0.3, c ¼ 0.15, m ¼ 0.1 and f ¼ 0.9), the

bifurcation value would be dc � 0.22 (see Section S2 for an

accurate computation of dc).

The phenomenon that we are investigating here takes place

right after the bifurcation. When d � dc, the system has a single

steady state: the desert state. However, for a value of d close

enough to dc, the time to extinction Te rapidly diverges. This

time divergence always occurs when bifurcation values are

approached [17] and leads to a paradoxical situation: the

system appears to be in a steady state, but it suddenly collapses

after a long time period. This phenomenon is also depicted in

figure 1 by means of the spatial representation of the ecosystem.

The snapshots in figure 1 display the vegetation pattern using

four values of d. For case (1), the ecosystem is fully vegetated,

while for cases (2) and (3), the fraction of vegetation is intermedi-

ate. However, case (3) is obtained with a value of d past the

bifurcation point, but the system remains vegetated for a long

time, eventually decaying into a completely desert state,

represented by the sphere in case (4).
3.2. Dynamics near the green-desert transition
The detailed dynamics under different d values used in

figure 1 are displayed in figure 2 by means of trajectories in
the (V, S) phase space, confined to a simplex, as the sum of

all of the variables is constant (i.e. V þ S þ D ¼ 1). When

d ¼ 0.001, the attractor involving a fraction of vegetated V
and of fertile S soil is close to the boundary of the simplex,

and the basin of attraction of the fixed point (V ¼ 0, S ¼ 0)

is extremely small (see the time series in figure 2(1) and snap-

shot 1 in figure 1). Typically, for a given value of d and for a

given initial fraction of vegetated area V(0), trajectories in

phase space go to the slow manifold (hereafter SM) and

then approach the stable fixed point. The SM corresponds

to the set of points in the phase space from which the attrac-

tor is reached. These dynamics can be clearly observed in the

simplexes as well as in the time series of figure 2. As d
increases, the basin of attraction of the fixed point (0, 0)

(shown in red) becomes larger. For this case, the system is

less vegetated (see sphere (2) in figure 1). Under this scenario,

the dynamics within the basin of attraction of the fixed point

involving a vegetated ecosystem makes the orbits to rapidly

flow to the SM of this equilibrium point. Once this manifold

is reached, there is a slow approach towards this equilibrium

(see the thick trajectory in the zoom of figure 2(2).

The two previous scenarios involved a stable green state,

provided that V (0) and S(0) were large enough. Once d is

slightly above its critical value (figure 2(3)), all of the trajec-

tories end up in the desert state attractor (0, 0). However,

the ghost (or saddle-node remnant) appears close to the

region where the stable node and the saddle collide, leading

to a saddle-node bifurcation [17]. Now, the flows undergo a

very slow passage through a bottleneck before reaching the

desert state. This is confirmed by the slow decay displayed

by the V(t) time series. The extinction dynamics becomes

very fast at high d (see time series in figure 2(4)). Indeed,

for a large d, trajectories usually miss the ‘gap’ on the slow
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Figure 2. Dynamics as the degradation rate of fertile soil, d, increases, with: (1) d ¼ 0.001, (2) d ¼ 0.21, (3) d ¼ 0.22 and (4) d ¼ 0.3. Examples (1) and (2) are
computed for d , dc, where the system is bistable (SFP: stable fixed point (black circles); S: saddle (white circle)). As d increases (2), the basin of attraction for the
desert state grows (illustrated with red orbits). The time series for both cases show the persistence of the vegetation. In panels (3) and (4), the critical point dc has
been overcome. While close to dc (3), the trajectories undergo a slow passage once they reach the slow manifold (SM). The time series display extinction after a long
time period (note the small gap at the left of the trajectory on the manifold, which indicates that the orbit is delayed). When the value of d is further increased,
extinction occurs rapidly (4). The thick trajectories in the zooms and in the time series in all panels are obtained with the initial condition V (0) ¼ 0.28 and S(0) ¼
0.2. Panels (a – c) in the right column: quasi-potential landscapes, log(U ) (see electronic supplementary material, Section S4), before the saddle-node bifurcation (a);
at the bifurcation value (b); and once the bifurcation has taken place (c). Specifically, we use (a) d ¼ 0.001, (b) d ¼ 0.2 and (c) d ¼ 0.3; the other parameters are
the same used in figure 1. The nullclines (electronic supplementary material, Section S2) for each panel are displayed on the V – S plane. The colour lines on the V – S
plane are the isoclines indicating the value of the quasi-potential function. The solid circles are stable fixed points.
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manifold, resulting in shorter transient times towards full

desertification.

Another way to see the qualitative changes associated

with the emergence of a ghost is provided by the so-called

potential functions or quasi-potentials [1]. These surfaces

provide information on the stability of the fixed points.

Specifically, stable and unstable fixed points appear as

valleys and peaks, respectively. The quasi-potential for

equations (2.1) and (2.2) in its general form reads

U(V, S) ¼ �
Ð

[(dV=dt)2 þ (dS=dt)2] dt (see electronic sup-

plementary material, Section S4 for further details). The

different surfaces associated with the previous flows are dis-

played in the right-hand side of figure 2. Two minima are

clearly visible for d , dc, whereas a drastic change occurs

for d � dc, where the quasi-potential function has a single

minimum (figure 2c). The previous two-well shape has now

been replaced by an elongated, almost flat channel associated

with the ghost and the observed bottleneck of the trajectories.
3.3. Delayed green-desert transitions
The dependence on d of the times to extinction, Te, is dis-

played in figure 3a, where we can appreciate the almost

stationary behaviour of the green state within the bottleneck,

as compared with the steady ecosystem before the critical

point. For d , dc but close to criticality, the green state is

stable, with a vegetation cover of V � 27% (dashed line in

figure 3a). If d is slightly increased, the system will achieve

a seemingly stable fraction of vegetated habitat (of about

25%), which actually still holds at t � 3.5 � 105. However,

as the bifurcation has already occurred, the system rapidly

collapses after this extremely long delay at t � 350 000. Sev-

eral examples are represented for slightly larger values of d.

The same behaviour is found, although here, the times to

extinction are shorter. Indeed, the dependence of the extinc-

tion times on the distance of the bifurcation parameter (d )

from the bifurcation value (dc) is shown to follow the inverse

square-root scaling law (figure 3b), in agreement with
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previous works on delayed transitions tied to saddle–node

bifurcations [16–18,28,33]. Here, Te is plotted against the dis-

tance to the bifurcation value using Q ¼ d 2 dc, and the

power-law dependence Te � 1=
ffiffiffiffi
Q
p

is found numerically.

The delaying capacities of the ghost are known to depend

on the initial conditions [27]. Usually, for large enough initial

conditions, the ghost captures the orbits and the delays

appear. This phenomenon is illustrated in electronic sup-

plementary material, figure S3, which displays extinction

times for values of d close to the bifurcation (by using

103 � 103 different initial conditions). Here, two well-differen-

tiated regions are found. One region where times are

extremely long (Te � 5 � 105 in electronic supplementary

material, figure S3a) exists at the right-hand side of the

place where the saddle and the node collided (white area in

the simplexes of electronic supplementary material, figure

S3). The second one, indicated in black (electronic sup-

plementary material, figure S3a), shows the initial

conditions for which the orbits go to the desert state very

rapidly. Indeed, extremely close to the bifurcation value,

these two regions indicate initial conditions with extremely

long transients or initial conditions for which extinction is

almost immediate. Once the bifurcation value is further

increased, the times decrease substantially. In both cases,

long transients are about 1.5 orders of magnitude below the

times of electronic supplementary material, figure S3a. Note

that in electronic supplementary material, figure S3, we dis-

play time series for values at the right side of the simplex

(upper panels with long transients) as well as to the left,

where the transients are much shorter.
3.4. Controlling catastrophic shifts
The nature of the ghost behaviour allows us to enormously

expand the extinction time by using small external interven-

tions with suitable frequencies and magnitudes. In our case

study, the interventions would involve restoring vegetation

in small desert patches. The restoration parameters are the

fraction of replanted area (expressed as the amount of
vegetation increased, DV) and the restoration frequency

(hereafter ‘freq’). Note that the time lapse between interven-

tions is assumed to be much shorter than the timescale of

the ecosystem dynamics. In this context, our restoration

events are assumed to be effectively instantaneous. The inter-

vention strategies can range from very rare (low-frequency)

interventions affecting large areas to small but very frequent

events. The effect of different values for both parameters DV
and freq leads to different dynamical scenarios (see below).

The response of the ecosystem to a given intervention

strategy depends on the actual ecosystem conditions and in

particular on the increase of the soil degradation rate

beyond the tipping point. To evaluate the response of the eco-

system, we have simulated the external interventions

incorporating the external increase of vegetated area, per-

formed at a given frequency (see electronic supplementary

material, section S5). Figure 4a–c summarizes the nature of

the intervention and its effects. Periodic perturbations create

a cyclic behaviour (figure 4a), in which the trajectories are

constantly re-injected close to the ghost. The effect of the

intervention is to preserve (or return) the system within the

region where the ghost has a strong delaying effect (see

also electronic supplementary material, figure S4). When

the pulses fail in re-injecting the trajectory towards the

regions influenced by the ghost—i.e. to the right of

the ‘gap’ on the slow manifold—the ecosystem decays to

the desert state. On the other hand, when trajectories are effi-

ciently sent to the ghost, the ecosystem remains in an stable

green state.

To quantify how optimal the interventions are, we have

to take into account that they depend on two parameters:

freq and DV. For this reason, we obtain a surface that opti-

mizes the intervention parameters for a given Q, given by a

Pareto front (electronic supplementary material, figure 4c).

However, to find an optimal intervention strategy for the

persistence of a given semiarid ecosystem, it is necessary to

design an strategy that optimizes both parameters simul-

taneously. In our case, the optimality of an intervention is

evaluated with a simple cost function, defined as the fraction
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calculations are equal to those used in the previous figures. (c) Limit between extinction and persistence of the vegetation as a function of the frequency and DV
when d increases above the bifurcation threshold Q ¼ d 2 dc. (d ) Time to ecosystem extinction towards desert in the same space as in (c), i.e. extinction times
below the surface displayed in (c). (e) Minimum cost to preserve vegetation at increasing Q using DV ¼ 1024. The straight line shows a power-law fit with
exponent 1.08 (with correlation coefficient 0.9965; see also electronic supplementary material, figure S5 for further examples). The saturation of the minimum
cost in panel (e), indicated with a yellow transparency, is due to the fixed maximum frequencies and values of DV used to perform the analyses. Note that
all of the axes in panels (c – e) are in logarithmic scale.
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of desert areas replanted per unit time ((plants/area) .

time21) that is needed to sustain the system avoiding

desertification, with the following equation:

cost ¼ DV � freq:

In this study, the cost is assumed to increase if the fraction

of replanted area and/or the frequency of planting increases.

The changes in the cost as the degradation rate increases are

shown in figure 4e. Note that the relation between the

increase of degradation (Q) and the optimal cost of interven-

tion is almost close to a hyperbolic function (linear in log–log

scale with exponent 1.08). The slope of this cost changes

depending on the frequency of the interventions and on the

area replanted. In the case of fixing the desired area to be

replanted at each intervention, the optimal frequency will

correspond to the Pareto front surface (electronic supplemen-

tary material, figure S5a). For larger amounts of added

vegetation, DV, the increase in the cost function and the

optimal intervention frequency are lower. The slope goes

from 0.5 for large interventions (DV ¼ 0.1) to 1.08 for very

small replantings (DV ¼ 1024); see electronic supplementary

material, figure S5b.

As previously mentioned, another possible scenario may

be found depending on the magnitude and frequency of the

interventions, which may not be enough to preserve the eco-

system but would increase the extinction times (see electronic

supplementary material, figure S6). Electronic supplementary
material, figure S6a displays the increase in the extinction

times with respect to the non-interventions case in the space

(DV, freq) as a function of Q. A particular example of this

delayed transition is shown in electronic supplementary

material, figure S6b. Here, the orbits can be re-injected mul-

tiple times until they escape from the influence of the ghost

towards ecosystem collapse. Electronic supplementary

material, figure S6c displays several cuts done in the three-

dimensional space, as displayed in electronic supplementary

material, figure S6a. Generically, these kinds of interventions

are less costly than those ensuring full ecosystem preser-

vation, and they could be enough to save time, as a larger

intervention or ecosystem change can be performed. In the

case of semiarid ecosystems, the livestock policy and an

active change in the ecosystem (e.g. increase of the humidity)

are changes that may return the system to a lower degradation

soil condition.
3.5. Interventions under stochasticity
The previous results have focused on the catastrophic tran-

sition towards the desert state found in the mathematical

model, which is deterministic. Here, we extend our analyses

by considering stochastic fluctuations due to the ecosystem’s

finite size, which are not gathered by the deterministic model.

To consider stochasticity, we performed stochastic simu-

lations using the Gillespie method [41,42] and implemented
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Figure 5. (a,c) Bifurcation diagrams with the deterministic (orange) and stochastic (black, overlapping the values of V at equilibrium for 500 runs) dynamics with
the degradation rate of the fertile soil, d, using two system sizes: S ¼ 103 (a) and S ¼ 102:5 (b). Stochasticity involves a lower critical value for d, labelled ds

c.
Panel (a1) shows the delayed transition near to the critical point (ds

c , d ¼ 0.196). An example of the interventions is shown in panel (a2) for d ¼ 0.22: the red
curve is the non-intervened simulation (vegetation extinction), while the black time series persists using DV ¼ 100.8 and freq ¼ 1024. The same trajectories are
shown in the simplex in panel (a3). (b,d ) Survival probability, PS, in the space of the intervention parameters ( freq, DV ). For each one of these parameter spaces,
we show (with red arrows) the sustained dynamics plotting 25 time series. The interventions analyses have been performed for d ¼ 0.22, with the other parameters
having the same values used in previous figures. In all of the panels, except for the lower three (using S ¼ 102:5), we have used S ¼ 103 (see also electronic
supplementary material, figures S7 and S8).
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the transition probabilities introduced in §2. Despite our

main goal being to test the robustness of the interventions

considering demographic fluctuations, we note that the

impact of stochasticity on delayed transitions remains

poorly explored. Also, we must note that, as our model has

an absorbing boundary (i.e. the desert state), the system

will always achieve this absorbing state under stochasticity.

However, this mean time to extinction is extremely long, typi-

cally being of order exp (S), S being the system’s size or

carrying capacity [43], compared to the timescales we are

looking at.

Firstly, we computed how the stationary states of veg-

etation V change as the degradation rate of fertile soil

increases under stochasticity. Hereafter, sizes of two different

systems will be used: S ¼ 102:5 and S ¼ 103 total sites. The

simulations for both sizes indicate that the catastrophic

extinction of V will take place before the predictions of the

deterministic model (figure 5a,c). As expected, the stochastic

critical value of d, labelled ds
c, becomes lower for smaller

values of S. This is the natural outcome of the so-called

noise-induced transitions. In noise-induced transitions, the

systems’ size (which determines the intensity of the noise)

can act as a bifurcation parameter [44]. In our model, noise

is decreasing the threshold of the degradation rate of fertile
soil causing the catastrophic transition. Interestingly, the

dynamics for d � ds
c also display the characteristic long pla-

teau typical of delayed transitions (figure 5a.1), which now

is found just after the stochastic bifurcation. The delay for

the stochastic system was quantified by computing the

mean extinction times for V for values of d above ds
c. The

results, displayed in electronic supplementary material,

figure S7 for both values of S, indicate that extinction times

increase by about two orders of magnitude when comparing

d ¼ 0.3 to d � ds
c. This delaying behaviour is clearly seen in

the time series of electronic supplementary material, figure

S7. For values of d close to ds
c (see panels (1) and (4) in elec-

tronic supplementary material, figure S7), the stochastic

trajectories undergo the plateau, with some of them being

extremely long. The delaying behaviour is lost when d
increases further away from ds

c (panels (2, 3) and (5, 6) in

electronic supplementary material, figure S7).

The same intervention strategy performed in the previous

section was tested with stochastic simulations. Figure 5 indi-

cates that the intervention method is able to sustain

vegetation after the catastrophic extinction (yellow areas in

panels (b) and (d )). Specifically, we display the probability

of survival of the vegetated state, PS, for different values of

the intervention parameters (freq, DV), setting d ¼ 0.22 .
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ds
c. PS is computed as the number of replicates surviving at

t ¼ 107 from a total of 50 independent runs. The region

where vegetation is sustained becomes larger for larger

values of S. The dynamics tied to the interventions are dis-

played in figure 5 by means of sustained stochastic

trajectories (displayed up to t ¼ 105 but sustained until t ¼
107). An example of the stochastic delayed dynamics is dis-

played in the simplex (V, S), similarly to the analysis shown

in figure 4a for the deterministic model. Finally, several

other examples of successful and failed interventions are dis-

played in electronic supplementary material, figure S8. We

must note that strong stochasticity (small S) and being far

away from the transition involve a much larger frequency

of interventions, increasing the intervention costs for sustain-

ing the vegetation. An example of the former can be seen in

panels (b) and (d ) of figure 5, as the boundary separating

the vegetated state from the desert state is displaced to the

upper-right corner of the space (freq, DV), meaning that the

cost (as defined in the previous section) increases. That is,

for larger S, the vegetation can be sustained by using lower

frequencies and lower values of DV to keep the ecosystem

stable at a lower cost.
4. Conclusion
In this study, we have introduced a dynamical restoration

approach aimed at protecting drylands facing tipping points.

This approach is based on a simple but well-established

model for semiarid ecosystems [11]. The model exhibits

bistable behaviour, specifically a green state (vegetated)

and a desert state, separated by a sharp breakpoint

involving a saddle–node bifurcation (first-order phase tran-

sition). We have shown that an intrinsic property of this

model, namely the presence of a ghost, can be exploited to

restore endangered semiarid vegetation by means of small,

periodic replantings.

Our model considers three variables: vegetated soil, fertile

soil and desert. The presence of a ghost has been identified as

a function of soil degradation levels. Because of the appar-

ently stationary nature of transients close to the tipping

point, a given system might have already crossed the bifur-

cation but display vegetation cover until a rapid decline

occurs. The shift is irreversible: a decrease in degradation d
will not restore previous vegetated states once the desert

state has been achieved. As a consequence, prevention strat-

egies should help to avoid collapse, even when the tipping

point has already being crossed. Such a goal has been

shown to be achievable. We have quantified how these inter-

ventions (in terms of newly vegetated areas and frequency of

application) might be useful depending on how far the

system is placed beyond the bifurcation. Moreover, this inter-

vention strategy has been tested successfully under

demographic stochastic fluctuations, under which delayed

transitions are also found. As expected, stochasticity involves

a different bifurcation value, which results in lower critical

degradation rates of fertile soil at decreasing systems’ sizes.

The lower soil degradation rates make the ecosystem more

fragile under stochasticity. However, the intervention meth-

odology also has been shown to work under demographic

noise. Here, it is important to highlight two aspects. The

first is that delayed transitions are extremely local phenom-

ena. That is, the ghost effect rapidly disappears as d
increases beyond dc. Another important point is that our

approach neglects spatial correlations, which are known to be

crucial in ecological systems [45–47]. It is known that space

usually enlarges transients [21,22]. However, the impact

of space in delayed transitions remains unknown for ecologi-

cal systems as well as for other spatially extended systems

exhibiting saddle-node bifurcations.

Another important point is that the success of the inter-

ventions might depend on the spatial patterns involved in

each habitat. Depending on the local or regional climatic con-

ditions (e.g., moisture, slope and degradation) the vegetation

can be homogeneous or organized in gaps, stripes and spots

[48–50]. That is, for the same fraction of vegetated area intro-

duced during the interventions, differences in the dynamics

could arise depending on where vegetation is replanted and

thus on the specific spatial patterns of the existing vegetation

at the moment of applying the interventions. These points

should be addressed in future research. Finally, a practical

intervention will require the right choices, such as regarding

the specific biological components used to restore local

patches. Restoration ecology has already considered different

strategies to speed the recovery of degraded land [51],

including explicit consideration of alternative states [52,53].

Drylands have also been studied under the restoration per-

spective [54], and several strategies have been presented,

involving different restoration approaches [55,56]. In our

suggested scenario, plants play a central role as islands of

fertility [57] along with the rich communities inhabiting

soil crusts [57–59]. Both plants and soil crust interact and

could be used as potential restoration agents, but we

should not discard other, perhaps complementary stategies,

such as synthetic biology approaches [60,61] or resource aug-

mentation [55,62] with a local enrichment of soil patches in

nutrients and/or moisture. The different methods outlined

above should also be considered in potential practical

alternatives to our basic intervention approach.
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