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Mathematical models of cardiac action potentials have
become increasingly important in the study of heart
disease and pharmacology, but concerns linger over
their robustness during long periods of simulation,
in particular due to issues such as model drift
and non-unique steady states. Previous studies have
linked these to violation of conservation laws, but
only explored those issues with respect to charge
conservation in specific models. Here, we propose
a general and systematic method of identifying
conservation laws hidden in models of cardiac
electrophysiology by using bond graphs, and develop
a bond graph model of the cardiac action potential
to study long-term behaviour. Bond graphs provide
an explicit energy-based framework for modelling
physical systems, which makes them well suited for
examining conservation within electrophysiological
models. We find that the charge conservation laws
derived in previous studies are examples of the more
general concept of a ‘conserved moiety’. Conserved
moieties explain model drift and non-unique steady
states, generalizing the results from previous studies.
The bond graph approach provides a rigorous method
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to check for drift and non-unique steady states in a wide range of cardiac action potential
models, and can be extended to examine behaviours of other excitable systems.

1. Introduction
Models of the cardiac action potential have been developed to study cardiac diseases, such as
arrhythmia [1–3], ischaemia [4] and acidosis [5]. Increasing model complexity has led to concerns
over the occurrence of drift and non-unique steady states [6–8], particularly for extensions of the
DiFrancesco & Noble [9] and Luo–Rudy [1,3] models. While solutions to these issues have been
proposed using conservation principles [10,11], they have not been universally applied for more
recent models, many of which still use non-conservative stimulus currents that predispose them
to drift [12–14]. More recently, the Food and Drug Administration (FDA) has initiated plans to use
cardiac action potential models to assess potential drug side-effects on cardiac instability through
the human ether-à-go-go-related gene (hERG) K+ channel. Thus, with an increasing emphasis on
model robustness and accuracy, there is a renewed incentive to resolve the issues of drift and
non-unique steady states [15,16].

Drift is the failure of a model to reach a consistent limit cycle when simulated over long
periods, and is often caused by a non-conservative stimulus containing current with no charge
carrier [6,10]. Hund et al. [10] derived a charge conservation law, and found that non-conservative
stimulus currents violate this conservation law, hence they proposed K+ ions as the current
charge carrier to resolve this. A related issue in many models where drift has been resolved is
that steady-state limit cycles under constant pacing depend upon the initial conditions and are
therefore non-unique [7,8,10]. Thus, depending on the initial conditions, the same model may lead
to different conclusions. Like drift, authors have suggested that charge conservation can constrain
initial conditions such that they lead to the same steady state [8,10,11].

While the studies by Hund et al. [10] and Livshitz & Rudy [11] suggest measures to eliminate
drift and attain a unique steady state by using conservation laws, their analyses are limited in
their scope and not a comprehensive solution for all models. Because existing studies [10,11]
explore charge conservation only in specific models, and the conservation laws were derived
from physical intuition rather than a principled mathematical approach, it is difficult to generalize
their findings to other models where charge conservation is routinely neglected. Furthermore,
because these studies focus only on conservation of charge, they may miss other conservation
laws relevant for long-term behaviour, such as those corresponding to ions, ion channels and
buffers. A general approach is, therefore, desirable to deal with the issues of drift and steady
states in a more systematic manner and for a broader range of models.

To facilitate a general approach, we propose the use of bond graphs which explicitly model
energy transfer across physical systems to ensure compliance with conservation principles. Bond
graphs were initially invented to model hydroelectric systems [17] and they have subsequently
been extended to model chemical [18], biochemical [19,20] and electrochemical systems [21]. As
with all physical systems, biological processes must obey the fundamental principles of physics
and thermodynamics [22]; therefore, bond graphs are well suited for constraining models of
biological systems to physically plausible solutions [23], and also for inferring the energetic
cost of biological processes [21,23–25]. Because the bond graph representation emphasizes
analogies between different physical domains, electrophysiological systems can be analysed as
an analogous biochemical system with a stoichiometric matrix that describes the stoichiometry of
each reaction within its columns [20,26–28]. In this context, the ‘conservation principle’ described
in earlier studies is an example of the more general principle of a conserved moiety in metabolic
and bond graph analysis [23,29].

In this study, we develop an abridged bond graph model of the cardiac action potential and
outline a general approach to study the effects of conserved moieties on drift and steady-state
behaviour. Our bond graph model simulates the essential features of the cardiac action potential,



3

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180106

...................................................

and because bond graphs are energy-based this easily provides an estimate of the energetic cost
(in Joules) of the cardiac action potential. Our analysis reveals conservation of charge as one
of the conserved moieties of our model, along with other conserved moieties corresponding to
ions, channels, transporters and buffers. We observed that our model solution was subject to
drift when the stimulus current violated any conservation laws corresponding to the conserved
moieties, and that changes to the initial conditions led to different steady states if the value of
any conserved moiety was changed. To demonstrate that our approach is general, we analyse
variants of our bond graph model where different ions have been fixed at a constant concentration
(corresponding to ‘chemostats’). It should be noted that fixing an ion concentration can change
the conserved moieties of a system, therefore influencing a model’s susceptibility to drift and non-
unique steady states. The bond graph approach is a useful and general method to identify and
interpret conservation principles, and it can link conserved moieties to individual steady states.
Our approach can be used to automatically derive charge conservation laws that are frequently
neglected in existing models of cardiac electrophysiology, and we build upon existing reports
[10,11] to propose solutions for drift and non-unique steady states which work for all cardiac
action potential models that can be represented using bond graphs.

2. Methods

(a) Model components
To study the issues of drift and non-unique steady states, we built an abridged bond graph model
of the cardiac action potential, with the minimal number of channels and pumps required to
simulate the essential features of a cardiac action potential, and maintain ionic concentrations
over long periods of simulation. We note that a series of mathematical equations can only be
described using bond graphs if they describe a thermodynamically consistent system, and that
no existing model of cardiac electrophysiology is entirely thermodynamically consistent. As seen
in Gawthrop et al. [21], an exact translation of existing ion channel models into the bond graph
framework is generally not possible. Therefore, for some transport processes and particularly
for ion channels, it was necessary to build new models under the bond graph framework,
although their parameters and structure can be chosen based on equations in existing models.
Accordingly, many of the essential components of our model were based primarily on the Luo–
Rudy 1994 dynamic model [1], although it is possible to use other models and/or model more
sub-cellular processes. We argue in §2c that some aspects of the equations for the ion channels
described in the Luo and Rudy model are not thermodynamically consistent, and unable to be
represented as bond graphs. We describe our approach to modelling ion channels in §2d. As
we use simple and elementary bond graph structures based on physical principles, our bond
graph representation of ion channels is a physically constrained approximation of the equations
described in Luo and Rudy, although it is still able to simulate the essential features of the cardiac
action potential.

Model components are shown in figure 1a, together with the overall bond graph structure
(figure 1b). Ion channels and Ca2+ buffering components were based upon their representations
in Luo & Rudy [1]. The L-type Ca+ channel in the Luo–Rudy model is permeable to calcium,
sodium and potassium, but we neglected its sodium conductance as this has a relatively small
contribution to the action potential. The Na+/K+ ATPase model was based on the model by
Terkildsen et al. [4], with modifications suggested by Pan et al. [30] to allow conversion into
a bond graph model. The equation for the Na+–Ca2+ exchanger (NCX) current in Luo and
Rudy did not have an obvious correspondence to a bond graph structure, thus we modelled this
component using a simple bond graph module that was fitted to experimental data [31,32]. The
general approach for modelling ion channels is described later in the methods, with details on
the other components, as well as further detail on ion channel modelling given in the electronic
supplementary material.
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Figure 1. Action potential model. (a) Cell schematic, (b) overall bond graph structure. The bond graph modules Na_channel,
NaK, K_channels, LCC, NCX andCa_buffer containmore detailed aspects of the bondgraph structurewhich are described further
in the Methods and electronic supplementary material. Coloured bonds link bond graph modules to the appropriate chemical
species. Definitions: INa, sodium current; IK1, time-independent K+ current; IK, time-dependent K+ current; IKp, plateau K+

current; ILCC, L-type Ca2+ current; NCX, Na+–Ca2+ exchanger; Na/K, Na+/K+ ATPase; TRPN, troponin; CMDN, calmodulin.
(Online version in colour.)

(b) Bond graph modelling
Here, we briefly outline bond graph components as used in electrophysiological modelling. For a
more comprehensive introduction, the texts by Gawthrop & Smith [33] and Borutzky [34] provide
detailed descriptions of bond graph theory, and Gawthrop & Bevan [35] provide a short tutorial
for engineers. Theory for bond graph modelling of biochemical systems can be found in [19,20,
23,36].

Bond graphs consist of components (representing physical objects and processes), bonds
(representing the transfer of energy) and junctions (representing network structure). Each bond
carries two variables: an effort e and a flow f, such that their product determines the power
of the bond (i.e. p = ef ). Thus, bond graphs explicitly account for energy transfer, and are
thermodynamically consistent. Because effort and flow are generalized variables, they can
represent quantities from a variety of physical systems, including mechanical (e = force (N), f =
velocity (m s−1)), electrical (e = voltage (V), f = current (A)) and hydraulic systems (e = pressure
(Pa), f = volumetric flow rate (m3 s−1)) [34].

The network structure of a bond graph is specified by 0 and 1 junctions. The 0 (or effort)
junctions specify that efforts of all connected bonds are equal, and thus to ensure conservation
of energy through this junction, the flows of the bonds must sum to zero. In the electrical and
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hydraulic domains, 0 junctions represent parallel connections, whereas they represent series
connections in the mechanical domain. By a similar principle, 1 (or flow) junctions specify that the
flows of all connected bonds are equal, ensuring that their efforts sum to zero. Thus, 1 junctions
correspond to series connections in the electrical and hydraulic domains, and parallel connections
in the mechanical domain.

To illustrate the use of a bond graph for electric circuit analysis, we consider the electric circuit
where two capacitors are connected to a resistor in series (figure 2a). All components are linear,
described by the following equations:

VA = qA

CA
(capacitor),

VB = qB

CB
(capacitor)

and I = VR

R
(resistor).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

The 1 junction enforces Kirchhoff’s voltage law, such that:

VR = VA − VB. (2.2)

Combining these equations gives rise to a system of the first-order differential equations:

dqA

dt
= −I = VB − VA

R
= qB

RCB
− qA

RCA
(2.3)

and
dqB

dt
= I = VA − VB

R
= qA

RCA
− qB

RCB
. (2.4)

It should be noted that in this example, the R and C components are linear. More generally (as
required in biochemical and electrophysiological systems), bond graphs allow the definition of
components with nonlinear constitutive equations to give rise to nonlinear ordinary differential
equations (ODEs) that adhere to thermodynamic and physical constraints [34].

More recently, bond graphs have been extended to model biochemical systems [19,20] where
the chemical potential μ (J mol−1) is the effort variable, and molar flow rate v (mol s−1) is the
flow variable. As temperature and pressure are assumed to be constant in biochemical systems,
the measure of thermodynamic potential μ corresponds to Gibbs free energy [37]. For bond graph
modelling of more general systems where temperature and pressure change, the reader is directed
to the text by Thoma & Bouamama [38].

Because mass action equations are nonlinear in general, nonlinear components are required
to model biochemical systems. Each chemical species is represented as a capacitor. However, in
contrast to the electrical domain, the constitutive equation for the capacitor representing each
species is logarithmic:

μ = RT ln(Kx), (2.5)

where x (mol) is the molar amount of the species, K (mol−1) is a species thermodynamic constant,
R = 8.314 Jmol−1K−1 is the gas constant and T is the absolute temperature of the system. Reactions
are modelled as two-port resistors using the Marcelin–de Donder equation as the constitutive
equation:

v = κ(eAf/RT − eAr/RT) (2.6)

where κ (mol s−1) is a reaction rate constant and Af (J mol−1) and Ar (J mol−1) are the forward
and reverse affinities, respectively. The two affinities represent the potential energies present in
the reactants and products, and the reaction proceeds in the direction of decreasing potential. As
illustrated by the example in figure 2b, the reaction A � B has a physical analogy to figure 2a,
with the same equivalent electric circuit. By using the constitutive equations in equations (2.5)
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and (2.6), the reaction velocity for the bond graph model follows mass-action kinetics:

v = κ1(eAf/RT − eAr/RT) = κ1(eμa/RT − eμb/RT) = κ1(Kaxa − Kbxb) = k+xa − k−xb, (2.7)

where the forward and reverse rate constants are k+ = κ1Ka and k− = κ1Kb. For more general
chemical reaction networks, 1 junctions describe the presence of multiple reactants or products
in a single reaction, whereas 0 junctions describe the involvement of a single species in multiple
reactions [20]. For some models, we may wish to keep the amount x of a species constant and this
is achieved by defining the species as a ‘chemostat’ [39]. Because chemostats can be interpreted
as an external flow that balances internal flows, they require energy to be pumped into (or out of)
the system [23].

The bond graph framework for biochemistry can be extended to electrochemical systems [21]
as demonstrated in figure 2c, which models the transport of a positively charged species X
across a membrane. It should be noted that chemical species are described with C components
that have a logarithmic association, whereas the C component corresponding to the (electric)
membrane potential has a linear constitutive relationship. A transformer (TF) is used to
convert the membrane voltage into an equivalent chemical potential through Faraday’s constant
F = 96485 C mol−1, such that:

μP = FV (2.8)

and
I = Fv. (2.9)

Thus, the reaction velocity is:

v = κ1(eAf/RT − eAr/RT) = κ1(e(μi+μP)/RT − eμe/RT) = κ1(Kixi ezFV/RT − Kexe). (2.10)

By setting v = 0 the familiar Nernst equation for the equilibrium potential can be derived [21]:

Veq = RT
zF

ln
(

Kexe

Kixi

)
= RT

zF
ln
(

[Xe]
[Xi]

)
, (2.11)

where the final equality results from the relation KiWi = KeWe, where Wi and We are
the intracellular and extracellular volumes, respectively [21]. Therefore, the thermodynamic
consistency of the bond graph approach enforces constraints on the equilibrium of the ion
channel. However, it should be noted that where electrical circuit representations of the
membrane Nernst potential use voltage sources, the bond graph approach necessarily accounts
for possible changes in ionic concentrations, and thus this ‘voltage source’ is split into two
capacitors that provide an equivalent voltage difference.

We chose to represent ion channels such that conductance was modulated by membrane
voltage, both directly and indirectly through gating processes. A bond graph representation for
this relationship is given in figure 2d. As shown, this model has the same electrical representation
as figure 2c however it uses a variable resistor. The bond graph representation contains the same
states, with C : xi, C : xe, and C : mem (with a transformer) connected through 0 junctions. In this
case however, the Re components that describe the constitutive relation have been changed, such
that Re_GHK : r1 is connected to an additional effort that modulates its velocity, and the gating
affinity Ag is added to both the forward and reverse affinities to describe changes in permeability
due to gating. Further detail on modelling ion channels using bond graphs is given in §2d.

(c) Modelling approach
Because bond graphs constrain the equations of a model to ensure thermodynamic consistency,
they only allow the representation of the subset of general mathematical models that are
thermodynamically consistent. In such models, dissipative processes such as reactions and ionic
currents can only proceed in the direction of decreasing chemical or electrochemical potential,
and when there is no potential gradient (i.e. the process is at equilibrium), the process must stop.
However, many existing models of cardiac electrophysiology are not constrained to ensure this
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behaviour, and in some cases, they describe physically infeasible systems that create energy out
of nowhere [20]. Therefore, many existing models do not have a direct bond graph representation
[23]. An advantage of the bond graph approach is that the discipline required to convert an
existing model into a bond graph helps to highlight thermodynamic issues and inconsistencies in
existing models that would have otherwise been missed or ignored (see Gawthrop et al. [23] for an
example of this process applied to a model of glycolysis). For the currents in this study, the Luo–
Rudy equations for the time-dependent K+ and L-type Ca2+ channels are not thermodynamically
consistent, and therefore cannot be directly converted into a bond graph model. As shown in
equation (2.11), a consequence of the thermodynamic consistency of the bond graph framework
is that there is a constraint on the equilibrium point for each ion channel that is determined
by the Nernst equation. As the equilibrium points of the time-dependent K+ and L-type Ca2+
channels do not correspond to the Nernst potential (see electronic supplementary material, A.1.3
and A.1.5), they are not thermodynamically consistent and therefore their equations cannot be
translated into a dissipative bond graph component. These issues were addressed by finding a
thermodynamically consistent approximation that satisfies the Nernst equation. A second issue
is that it is difficult to simultaneously model open-channel currents and channel gating using
the elementary components, described in §2b and figure 2, thus we approximated these relations
using the components described in that section rather than using more complicated components.
Therefore, rather than attempting to reproduce the Luo–Rudy equations exactly, we built a bond
graph structure as implied by the equations in the Luo and Rudy model, and chose parameters
of our bond graph model to fit aspects of the Luo–Rudy model as closely as possible, specifically
the current-voltage (I-V) curves and gating parameters. For all other components conversion into
a bond graph model was more straightforward, and we used the methods of Gawthrop et al.
[23]. Further information on the bond graph model, and parameter identification is given in the
electronic supplementary material.

(d) Ion channel modelling
(i) Bond graph structure

In this section, we discuss decisions made in developing models of ion channels. The bond graph
structure for the Kp channel is shown in figure 3. The other channels have similar structures that
follow from the discussion in this section.

(ii) Current–voltage relations

While thermodynamic properties can be used to determine how membrane voltage and ionic
concentrations relate at equilibrium, they do not specify behaviour away from equilibrium.
For this purpose, the current-voltage (I-V) relationship defines how the membrane voltage
relates to the current through a specific channel. In many electrophysiology models [1], currents
through ion channels are described through the use of linear I-V relationships based on empirical
fits to data rather than fundamental physical principles. Using bond graphs, it is difficult to
incorporate the effects of gating using a linear I-V equation. While linear I-V equations can
be thermodynamically consistent provided they satisfy the Nernst equation in equation (2.11),
and such equations can be represented by using a linear R component, the modulation of its
conductance would require the use of signal bonds that do not necessarily represent physical
processes [34]. Therefore, we use the Goldman–Hodgkin–Katz (GHK) equation to model ion
channels, as it enables relatively simple incorporation of ion channel gating as a physics-based
biochemical module [21]. The GHK equation defines a nonlinear relationship between current I
and membrane voltage V:

I = P
z2F2

RT
V

(
ci − ce e−zFV/RT

1 − e−zFV/RT

)
, (2.12)
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ion channel. (b) The gate_en_Kp contains the states required for gating. (c) The vRemodule contains a voltage-dependent
reactionused todescribe channel state transitions. (d) The channel current andgatingmodules are combined into an ion channel
model (Kp_channel). (Online version in colour.)

where ci and ce are the ion’s intracellular and extracellular concentrations, respectively [40]. In a
bond graph, the GHK equation for current can be described by a modulated Re component with
a single modulator (see figure 2d, left panel and figure 3a), using the constitutive equation from
Gawthrop et al. [21]:

v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

κ
Am/RT

exp(Am/RT) − 1

[
exp

(
Af

RT

)
− exp

(
Ar

RT

)]
, Am �= 0

κ

[
exp

(
Af

RT

)
− exp

(
Ar

RT

)]
, Am = 0

(2.13)

As discussed in Gawthrop et al. [21], setting

Af = μi + zFV (2.14)

Ar = μe (2.15)

and Am = zFV (2.16)

gives rise to the GHK equation.
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IKp, (e) ICa,L, (f ) IK,L. The standard concentrations in Luo & Rudy [1] ([Na+i ]= 10 mM, [Na+e ]= 140 mM, [K+i ]= 145 mM,
[K+e ]= 5.4 mM, [Ca+i ]= 0.12µM, [Ca+e ]= 1.8 mM) were used to match I-V curves.

As many ion channels in the Luo–Rudy model are described using a linear I-V relationship,
the use of GHK equations requires approximation. A comparison of the resulting I-V curves is
given in figure 4. Details of the fitting process, as well as the fitted bond graph parameters, are
given in the electronic supplementary material. The Na+ channel I-V curves appeared to match
reasonably well (figure 4a), with some discrepancies at positive membrane potentials. For K+
channels (figure 4b–d), we attempted to optimize the fit across voltages that correspond to their
physiological function, so that their currents would be most similar to those of Luo and Rudy
when the ion channels are open. Accordingly, for IK1 (−90 mV ≤ V < −30 mV), IK (−20 mV ≤ V ≤
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Figure 5. Channel states of a Na+ channel.

30 mV) and IKp (V > 0 mV) the I-V curves matched reasonably well in these regions. Discrepancies
occurred outside these ranges of voltages, but appeared to only cause minor differences to the
currents. In their implementation of IK, Luo & Rudy [1] use a thermodynamically inconsistent I-V
equation where the current is non-zero at the Nernst potential for K+. Despite this, bond graph
parameters could still be chosen to give a reasonable fit to this I-V equation (figure 4c). Because
the Luo–Rudy model based their L-type Ca2+ I-V curves on the GHK equation, there was a far
closer match between the bond graph and Luo–Rudy models for these currents, (figure 4e,f ) and
the K+ curve was matched exactly (figure 4f ).

(iii) Modulation

While the I-V curves describe currents through open ion channels, a formulation for gating is
required to describe the number of open ion channels at any given time. In the Hodgkin–Huxley
framework, gating is modelled as differential equations that give the proportion of open gates at
any given time. We incorporated the effects of gating through a gating affinity Ag, which is added
to both the forward and reverse affinities of a reaction (figure 3a) to modulate its rate without
changing the equilibrium [21].

(iv) State models

Ion channel models must account for gating and bond graphs require the use of physical
components to achieve this. We model gating as transitions between channel states, known in the
literature as Markov models [41,42]. To illustrate, we use the example of a typical Na+ channel in
which the current I is described by the equation

I = m3hĪ, (2.17)

where Ī is the current when all channels are open. This can be described using the reaction
scheme in figure 5, where S31 represents the open channel. Because individual channel states are
modelled, the current depends only on the amount of S31 and not any of the other closed states.
Thus, incorporation into the gating framework described above is intuitive; each state represents
a structural conformation of the ion channel and the number of channels in each state is explicitly
tracked, facilitating a simple approach to account for the energetics of gating under varying ion
channel densities.

(v) Voltage dependence of state transitions

The transition rates between open and closed states are voltage dependent for ion channels.
Hodgkin–Huxley models describe state transitions using ODEs of the form

dg
dt

= α(V)(1 − g) − β(V)g, (2.18)
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where g is a gating variable such as m, h or n. In typical Hodgkin–Huxley models, these rates
α(V) and β(V) are modelled using mathematical expressions on the basis of empirical fits to data.
However, the gate transitions of the ion channels described in this study are voltage-dependent,
thus they must result from the movement of charge through an electric field [43]. Accordingly,
due to the physics-based nature of bond graphs, the open and closed states of channels must be
explicitly modelled as physical components with a restricted set of constitutive equations. We
note that the equations used to fit to data are not necessarily thermodynamically consistent. This
is particularly common for fits to experimental measurements that do not capture the equilibria of
the processes examined. Therefore, because common expressions for α(V) and β(V) do not obey
the laws of thermodynamics, bond graphs are unable to perfectly replicate existing mathematical
expressions used for ion channel transition rates. We chose to model state transitions by using the
module described in figure 3b, which results in an exponential voltage-dependence for both the
forward and reverse reactions. In the case of the plateau K+ channel, the rate of transition from
the closed state (C) to the open state (O) is as follows:

v = α0 exp
(

zfFV
RT

)
xA − β0 exp

(
zrFV
RT

)
xB, (2.19)

where

α0 = κKC (2.20)

and

β0 = κKO. (2.21)

The parameters α0, zf, β0 and zr are fitted against mathematical equations in the original model,
and then used to determine the bond graph parameters. It is acceptable to fit the kinetic
parameters α0 and β0 to reduce computation time as the equilibrium points of state transitions
are not specified. The incorporation of voltage-dependence for the f -gate was more involved, and
discussed in further detail in the electronic supplementary material.

To assess the quality of fit, we compare steady-state open probabilities gss = α(V)/(α(V) +
β(V)) and time constants τ = 1/(α(V) + β(V)) (figure 6). The curves for gss and τ were generally
in agreement; however, there were some exceptions. In particular, time constants for the Na+
channel gates have lower peaks in the bond graph model when compared to the Luo–Rudy
model (figure 6a–c), but this did not appear to significantly affect Na+ channel function as the
peaks were all decreased by a similar proportion, facilitating coordination between opening and
closing. Similarly, the time constant τd (figure 6h) was lower in the bond graph model for some
voltages, but given that discrepancies occur at time constants much smaller than the time course
of a cardiac action potential we expect that the effects would be negligible. Finally, for the time-
dependent K+ current Xss is substantially higher at negative voltages so that the bond graph
model can provide a better match at positive voltages (figure 6e). The effects of this difference are
partially offset by the lower GHK current at negative voltages which are still above the Nernst
potential of K+ (figure 4c).

(e) Finding conserved moieties
Within a biochemical model, conserved moieties are chemical structures that are neither created,
removed nor broken down. A common example in energy-dependent metabolic networks is the
adenosine moiety found in AMP, ADP and ATP [23,29]. Mass balance specifies that the total
amount of each conserved moiety remains constant, and if information on the molecular structure
of each species of a reaction network is available, these conservation laws can be derived by
counting the number of moieties across all species [29]. In practice, many models do not contain
this structural information and this approach cannot be used; however, the conservation laws
still hold. Here, we outline a method to find conserved moieties using stoichiometric information
rather than chemical structures.
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Figure 6. Fits for bond graph (BG) parameters against corresponding gating equations from the Luo–Rudy (LRd) model.
Steady-state open probabilities are shown on the left panels, and time constants are shown on the right. The bond graph
equations are plotted with solid lines, and the Luo and Rudy equations in dashed lines. Gates include (a)m, sodium activation;
(b) h, sodium inactivation; (c) j, slow sodium inactivation; (d) K1, time-independent K+ activation; (e) X, time-dependent K+

activation; (f ) Xi, time-dependent K+ inactivation; (g) Kp, plateau K+ activation; (h) d, L-type Ca2+ channel activation. Note
that the Xi and Kp gates were originally formulated as steady-state equations, thus time constants are shown only for matched
bond graph parameters.

Models of cardiac electrophysiology can be represented by the differential equation

Ẋ = NV(X), (2.22)

where X(t) is a vector of each state (such as species, or charge difference across a membrane), N
is the stoichiometric matrix [20,26–28] and V(X) is a vector of fluxes (such as reaction velocities
or ion channel currents) [20,26,44], which is, in general, a nonlinear function of X. If the model
contains chemostats, the entries of X, and rows of N corresponding to the chemostats are deleted
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prior to performing the above analysis [39]. Using results from biochemical systems [20], if g is a
row vector in the left nullspace of N, i.e. gN = 0, then

gẊ = gNV(X) = 0, (2.23)

Therefore, the linear combination gX is constant for the duration of the simulation. We call the
linear combination of species represented by gX a conserved moiety. The space of all conserved
moieties can be described by a left nullspace matrix G, whereby linear combinations of the rows
of G give all possible conserved moieties gX [45,46]. Because the left nullspace of N is a vector
subspace and the rows of G form a basis for this subspace, G accounts for all conservation laws.
A further advantage of using the left nullspace matrix is that it does not require information
on chemical structures. The left nullspace matrix for any given system is generally not unique;
however, there are many well-established techniques for calculating nullspace matrices [47],
specialized approaches for finding meaningful conserved moieties in biochemical networks
[29,48,49] as well as methods for finding conserved moieties from the junction structure of a bond
graph [36]. In this study, we chose conserved moieties with clear physical interpretations [49], but
our conclusions hold regardless of our choice of the left nullspace matrix.

(f) Stimulus currents
The cardiac action potential model was stimulated using a constant current stimulus that
contained enough charge to raise the membrane potential by 30 mV over 0.1 ms. The non-
conservative stimulus currents consist of non-specific charge that is not carried by any specific
ion. As recommended by Kneller et al. [8], conservative stimulus currents contained K+ ions as
the charge carrier.

3. Results

(a) Simulation of a single action potential
To verify that our bond graph model reproduced the features of a typical action potential, we
simulated the model over a single beat (figure 7a–c). The membrane potential (figure 7a, with
stimulation indicated by the arrow) resembled a typical cardiac action potential, with a distinct
peak and plateau phase. The contributions of ion channel currents reproduce some common
features of cardiac action potentials (figure 7b). Once the action potential is initiated by a stimulus
current, the sodium current INa briefly activates to give rise to a voltage spike. Following this,
the plateau phase occurs where depolarizing L-type Ca2+ currents oppose the repolarizing K+
currents IK and IKp. Towards the end of the action potential, IK1 activates to restore the resting
potential [50]. Our model also simulates the reversal of NCX current across the action potential,
and the consistent outward current of the Na+/K+ ATPase to maintain ionic gradients (figure 7c).
As a consequence of incorporating the voltage-dependence of gating transitions in a physical
framework, transitions between channel states are associated with a gating current resulting from
the movement of such charged residues. Our model reveals that the total gating current across all
channels Igate has minimal contribution to total current (figure 7c).

Figure 7e shows the power consumption of the membrane model over three cardiac cycles
which was integrated to estimate the energetic cost of the cardiac action potential (figure 7f ).
Note that energy continues to be consumed even during the resting state due to the presence of
currents associated with ion transporters. Thus, while energy is predominantly consumed during
the action potential, there is a positive gradient between action potentials (figure 7f ). By setting
the energy consumption at the start of the second action potential to zero (figure 7f, dotted blue
line), we calculated the energetic cost over the duration of the action potential to be 46.8 pJ. As the
capacitive area of membrane for this model is 1.534 × 10−4 cm2, the energy consumed per unit
membrane area is 305 nJ cm−2. When compared to Gawthrop et al.’s [21] estimate of 173 nJ cm−2

for the energetic cost of an action potential in the giant axon of a squid, the cardiac action potential
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Figure 7. A simulation of the cardiac action potential using a bond graphmodel. (a) Membrane voltage, following stimulation
with a conservative stimulus current (arrow); (b) ion channel currents; (c) transporter and gating currents; (d) membrane
voltage over three cycles, for comparison with (e) and (f ); (e) power consumption; (f ) energy dissipated, with the variable
E representing the energy consumption over the duration of the action potential. The model was run initially for 300 ms to
allow the membrane potential and channel gates to stabilize. The intracellular ion concentrations were dynamic variables
with initial concentrations [Na+i ]= 10 mM, [K+i ]= 145 mM and [Ca+i ]= 0.12µM. Constant concentrations were [Na+e ]=
140 mM, [K+e ]= 5.4 mM, [Ca+e ]= 1.8 mM, [MgATP]= 6.95 mM, [MgADP]= 0.035 mM, [Pi]= 0.3971 mMandpH= 7.095.
T = 310 K. (Online version in colour.)

uses 76% more energy. The main reason for this difference is that in contrast to a neuron, the
cardiac action potential contains a plateau phase with opposing currents. Despite the relatively
slow rate of change in voltage, the Ca2+ and K+ currents remain relatively high; therefore, a large
amount of energy is dissipated during the plateau phase.

(b) Chemostats influence the conserved moieties of cardiac action potential models
Because the earliest models of the cardiac action potential did not include active transporters,
they used constant intracellular concentrations to maintain ionic gradients across multiple
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cardiac cycles [9,51]. Later models incorporated ion transporters, allowing them to represent
physiological conditions with dynamic intracellular ion concentrations, and constant extracellular
ion concentrations to model washout from the circulatory system [1,3]. Under ischaemic
conditions, washout is greatly inhibited, thus models of ischaemia use dynamic extracellular
ion concentrations [4]. We investigated the issue of drift in three classes of model: those
with (A) dynamic ion concentrations on both sides of the membrane, representing models
of myocytes under ischaemic conditions; (B) dynamic intracellular ion concentrations but
constant extracellular ion concentrations, representing models of myocytes under physiological
conditions; and (C) constant ion concentrations, representing models without transporters.

We used our bond graph model to represent these classes of models, selecting ions to fix
at constant concentrations that resulted in three variants representative of the classes listed
above. Thus, variant A represents models of cardiomyocytes under ischaemic conditions [4],
variant B represents models of cardiomyocytes under physiological conditions [1,3] and variant
C represents models without ion transporters [9,51]. Conserved moieties of each variant were
found using the left nullspace matrix of the stoichiometric matrix (table 1), and these include for
example, the total amount of K1 channel (moiety 1). Because the channel is neither synthesized
nor degraded in our model, the total amount of channel, i.e. the sum of its closed (CK1) and open
(OK1) states, remains constant over the course of a simulation.

Similarly, moiety 10 for variant (A) represents the total amount of K+ ions, which includes
intracellular K+, extracellular K+ and the K+ ions bound to Na+/K+ ATPase. The total amount of
K+ is constant when ion concentrations are dynamic. However, because fixing the concentration
of K+ requires an additional external flux, the conservation law is broken in variants (B) and (C).
Because the membrane capacitance is included in the stoichiometry of the system, our method
automatically identifies a charge conservation law (moiety 13 for variant (A), and moiety 10 for
variant (B)).

While it is reassuring that our approach reveals the obvious conserved moieties described
above, it also reveals the nontrivial charge conserved moiety that is missed by many existing
cardiac electrophysiology models. The overall amount of intracellular charge can be described as
a sum of contributions from intracellular K+, Na+, Ca2+ (and its buffers) and Markov states from
ion channels and transporters (Σ), similar to forms found in previous studies [10,52]. It should
be noted, however, that when all ion concentrations were held constant, charge conservation was
broken, as indicated by the absence of a conserved charge moiety in the bottom partition of table 1.
In general, holding the concentration of a species constant breaks conservation laws [39] and the
number of conserved moieties progressively decreases as more ion concentrations are modelled
as chemostats. We discuss the consequences of this in latter sections.

(c) Non-conservative stimulus currents cause drift in models with a charge
conservation law

An important feature of cardiac electrophysiology models is that they must be simulated for
extended periods to examine physiologically relevant changes in behaviour, thus we tested
how the type of stimulus current affected each variant of the cardiac action potential model
by pacing at 1 Hz for 30 min. As illustrated (figure 8a,b), a non-conservative stimulus resulted
in drift when the model had dynamic ion concentrations either for all compartments, or only
within the intracellular compartment. The drift was particularly pronounced when all ion
concentrations were dynamic (figure 8a), as extracellular concentrations changed faster than
intracellular concentrations. In contrast, the model was resistant to drift from a non-conservative
stimulus when all ion concentrations were held constant (figure 8c).

These results suggested that drift arose due to violations of the conserved charge moiety.
Charge is a conserved moiety (table 1) in model variants where drift occurred with a non-
conservative stimulus. In this situation, non-conservative stimulus currents cause drift because
every stimulus causes a stepwise increase in the value of the conserved charge moiety (figure 8a,b



17

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180106

...................................................

Table 1. Conserved moieties associated with chemostat selection. Across some biochemical subgroups (moiety), there are
constraints (conserved quantity) on a corresponding sum of species representing the total of the moiety. The conserved
quantities remain constant over the course of a simulation. Q represents contributions of other species to charge imbalance
across the membrane. The symbolΣ represents charge contributions from Markov states of channels and transporters. The
definition ofΣ , and all species can be found in the electronic supplementary material and code.

moiety conserved quantity

conserved moieties common to all variants (A,B,C)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 K1 channel CK1 + OK1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 K channel S00,K + S10,K + S20,K + S01,K + S11,K + S21,K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Kp channel CKp + OKp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Na channel S000,Na + S100,Na + S200,Na + S300,Na + S010,Na + S110,Na + S210,Na +
S310,Na + S001,Na + S101,Na + S201,Na + S301,Na + S011,Na + S111,Na +
S211,Na + S311,Na

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 LCC S000,LCC + S010,LCC + S020,LCC + S100,LCC + S110,LCC + S120,LCC + S001,LCC +
S011,LCC + S021,LCC + S101,LCC + S111,LCC + S121,LCC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Na+/K+ ATPase P1NaK + P2NaK + P3NaK + P4NaK + P5NaK + P6NaK + P7NaK + P8NaK +
P9NaK + P10NaK + P11NaK + P12NaK + P13NaK + P14NaK + P15NaK

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 NCX P1NCX + P2NCX + P3NCX + P4NCX + P5NCX + P6NCX
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 troponin TRPN + TRPNCa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 calmodulin CMDN + CMDNCa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamic ion concentrations (A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chemostats MgADP, MgATP, Pi, H+
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 K+ ion K+i + K+e + 2P1NaK + P2NaK + P12NaK + 2P13NaK + 2P14NaK +2P15NaK
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Na+ ion Na+i + Na+e + P4NaK + 2P5NaK + 3P6NaK + 3P7NaK + 3P8NaK
+ 2P9NaK + P10NaK + 3P1NCX + 3P6NCX

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Ca2+ ion Ca2+i + Ca2+e + 2S001,LCC + 2S011,LCC + 2S021,LCC + 2S101,LCC
+ 2S111,LCC + 2S121,LCC + P3NCX + P4NCX + TRPNCa+ CMDNCa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 charge Q − K+i − Na+i − 2Ca2+i + 2TRPN + 2CMDN + Σ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamic intracellular ion concentrations (B)


chemostats MgADP, MgATP, Pi, H+, K+e , Na
+
e , Ca

2+
e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 charge Q − K+i − Na+i − 2Ca2+i + 2TRPN + 2CMDN + Σ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

constant ion concentrations (C)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chemostats MgADP, MgATP, Pi, H+, K+i , K
+
e , Na

+
i , Na

+
e , Ca

2+
i , Ca2+e

bottom panels). However, because conservation laws are broken as more species are represented
as chemostats [39], charge is no longer a conserved moiety when all ion concentrations are
constant (table 1). Thus, an observation which may not be obvious to intuition is that under these
conditions charge is no longer constant between stimuli, and therefore free to return to its original
value after each stimulus (figure 8c, bottom panel), allowing such models to achieve a steady-state
limit cycle.

Using the observations from the bottom row of figure 8, it is possible to develop a systematic
and automated check for drift. Let vs be a row matrix representing the stoichiometry of the
stimulus current (with chemostats removed), Ncd be the stoichiometric matrix after removing
rows corresponding to chemostats, and G be the left nullspace matrix of Ncd. As seen in this
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Figure 8. Effect of stimulus type and variable ion concentrations on drift in the bond graph model. (a) Dynamic ion
concentrations; (b) Dynamic intracellular ion concentrations; (c) Constant ion concentrations. Results are shown for stimuli that
conserve overall charge (blue) and those that do not conserve charge (red).Non-conservative stimulus currents contain non-
specific charge, and conservative stimulus currents contain charge and potassium ions. Charge values are given as differences
from the initial value of −5882.2 fmol. T = 310 K. Definitions: Vdia, diastolic membrane potential; APD, action potential
duration at 90% repolarization. (Online version in colour.)

section, a stimulus current will cause drift if it results in any change to the conserved moieties
GX. Therefore to avoid altering any of the conserved moieties, the stimulus current must have
zero contribution to them, i.e. Gvs = 0 (or equivalently, vs needs to lie in the image of Ncd). Thus,
the model drifts if Gvs �= 0.
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Figure 9. Effect of initial conditions on steady-state behaviour. (a) Dynamic ion concentrations; (b) Dynamic intracellular ion
concentrations; (c) Constant ion concentrations. Themodels were paced at 1 Hz for 30 min using a conservative stimulus current.
[MgATP]= 6.95 mM, [MgADP]= 0.035 mM, [Pi]= 0.3971 mM,pH= 7.095, T = 310 K.Definitions:Vdia, diastolicmembrane
potential; APD, action potential duration at 90% repolarization. (Online version in colour.)

(d) Initial conditions influence steady states through conserved moieties and chemostats
Next, for different sets of conserved moieties (as determined by constrained/dynamic ionic
concentrations) we tested how the steady-state behaviour of the cardiac action potential was
altered under three different initial conditions (figure 9). The first set of initial conditions (IC1)
are common values for comparison (figure 5; at bottom). IC2 is the same as IC1 but with 1mM



20

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180106

...................................................

Table 2. The values of conservedmoieties and chemostats under different initial conditions. All values are in fmol. Chemostats
are indicated with (cs). Values different from IC1 are shown in italics.

value

moiety/chemostat IC1 IC2 IC3

dynamic ion concentrations (A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K+ 5538.1 5500.1 5538.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na+ 1105.6 1143.6 1105.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

charge −5882.2 −5882.2 −5882.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamic intracellular ion concentrations (B)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K+e (cs) 27.98 27.98 38.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na+e (cs) 5510 5510 715.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

charge −5882.2 −5882.2 −5882.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

constant ion concentrations (C)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K+e (cs) 27.98 27.98 38.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na+e (cs) 725.48 725.48 715.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K+i (cs) 5510 5472 5500
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na+i (cs) 380 418 390.36
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

intracellular K+ exchanged for 1 mM of intracellular Na+, such that charge is conserved but K+
and Na+ are not conserved. Similarly, IC3 is the same as IC1, but with some K+ extruded and
an equal amount of Na+ moved into the cell such that charge, Na+, and K+ are all conserved.
When all ion concentrations are dynamic, IC1 and IC3 lead to the same steady state, but IC2
results in a different steady state (figure 9a). If only intracellular ion concentrations are dynamic,
however, IC1 and IC2 result in identical steady states, but IC3 leads to a different steady state
(figure 9b). Finally, keeping all ion concentrations constant leads to different steady states for all
initial conditions (figure 9c).

These results demonstrate that the summed amount for each conserved moiety and/or
chemostat value determines the steady-state behaviour of cardiac action potential models. To
investigate this further, we calculated the values for conserved moieties and chemostats that
resulted from each initial condition (table 2; differences from IC1 indicated in italics). For two sets of
initial conditions to achieve identical steady states, all conserved moieties and chemostats must
have the same value. Thus, under dynamic ion concentrations (figure 9a), IC3 results in the same
steady state as IC1 because all conserved moieties have been preserved (table 2), whereas IC2
causes a different steady state because the K+ and Na+ conserved moieties take on different
values. Similarly, when only intracellular ion concentrations are dynamic, IC2 preserves the
value of all conserved moieties and chemostats, but IC3 changes the values of the chemostats
corresponding to extracellular Na+ and K+ concentrations (table 2), hence the different steady
state. When all ion concentrations were held constant, changes in the chemostat values (table 2)
were associated with different steady states for all three initial conditions (figure 9c).

4. Discussion
In this study, we developed a bond graph model of the cardiac action potential with the
aim of resolving the issues of drift and non-unique steady states. Analysis using conserved
moieties enabled the discovery of all conservation laws within the model, including the charge
conservation law neglected by many existing studies. In addition to the conservation of charge
law from previous studies [10,52,53], we found conservation laws corresponding to ions, states of
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Markov models of channels and transporters, and buffers, demonstrating the comprehensiveness
of our approach. Because the bond graph approach requires species and processes to be resolved
in biophysical detail, calculation of conservation laws is more straightforward than working
purely with the mathematical equations of a model. Two key advantages of our approach over
existing analyses are that it reveals all conservation laws in a comprehensive and systematic
manner, and that it is general for all models of the cardiac action potential that can be represented
as bond graphs. As a result, our approach can be scaled to more complex cardiac models without
manual examination of the equations of a model to identify each individual conservation law,
and the nontrivial charge conservation law will be accounted for when it appears as a conserved
moiety. When simulated over long periods with a non-conservative stimulus, our bond graph
model displayed solution drift, but it became resistant to drift when ion concentrations were held
constant, demonstrating that changes in the value of a conserved charge moiety drive model drift.
We also found that two sets of initial conditions can lead to different steady states if the values
of their corresponding conserved moieties and chemostats are different, suggesting a strong link
between conserved moieties and the steady-state limit cycles of cardiac action potential models.
To demonstrate that our approach is general, we tested how the selection of chemostats (i.e.
fixed concentrations) influenced drift and steady states by using variants of our model that
were representative of existing models in the literature. Our approach highlights the subtle but
relevant observation that holding ion concentrations constant changes the conserved moieties
of the model, which in turn has an effect on the susceptibility of a model to drift and non-
unique steady states. Because chemostats represent connections between a system and its external
environment, they are essential to coupling together biological processes [23]. The coupling of
biological processes generally causes changes in the conservation laws of a system which may be
difficult to capture through observation. Our approach using bond graphs provides a systematic
method of dealing with changes to conservation laws as a result of coupling models together.

(a) Drift
When paced with a non-conservative stimulus, variants of the model with a charge conservation
law (A and B) underwent drift (figure 8a,b) consistent with previous studies on the Luo–Rudy
model [10,11]. Our observations also explain why models with constant ion concentrations
(similar to variant C) are more likely to be resistant to drift [10]. By observing changes in the
charge conserved moiety, the bond graph approach attributes drift to regular perturbations in
charge that cannot be restored due to the presence of a conservation law. Whereas previous
analyses relied solely on intuition to derive a conservation law corresponding to charge [10,11],
we note that our approach automatically derives this conservation law, and can also detect other
conservation laws that may be relevant for drift.

We note that in order to avoid drift, all conserved moieties (and not only the conserved moiety
corresponding to charge) must be preserved by the stimulus current. However, in the examples
explored in this study, we found that the stimulus currents preserved the value of all conserved
moieties apart from charge, and therefore were not plotted. While intuition may suggest that
modelling a stimulus current with K+ would cause an accumulation of intracellular K+, the K+
is passively transported back through K+ channels. Furthermore, the total amount of K+ (the
relevant conserved moiety) remains constant because the loss of K+ from the extracellular side is
offset by accumulation on the intracellular side. By contrast, for charge conservation in variants
A and B, the model contains no mechanism to reverse the change in charge difference caused by
the non-conservative current, thus drift results.

As demonstrated, the bond graph method requires construction of a stoichiometric matrix,
providing a simple approach to check whether a stimulus current will cause drift. While it is
common practice to use K+ as the charge carrier for stimulus currents, it is likely that multiple
species contribute to the current [8,10]. Thus, the automated approach suggested here is well
suited for checking whether more complex stimulus currents satisfy conservation of charge, as
well as other conservation laws within the model. It should be noted, however, that while a
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model satisfying Gvs = 0 will not drift due to violating conservation laws, drift may still occur
due to an imbalance of currents throughout the action potential, for instance, in the absence of
Na+/K+ ATPase, the ionic gradients would gradually disappear in a model with dynamic ion
concentrations.

Finally, we believe that this analysis provides a link between the issues of drift and steady
states. Our models show that drift due to a non-conservative stimulus current can be attributed
to changes in the value of the charge conserved moiety with every stimulus, and accordingly the
steady state of the model changes. Model drift then occurs as the solution continually chases a
moving steady state.

(b) Effects of initial conditions on steady states
We also found that initial conditions of cardiac action potential models change their steady states
through the values of chemostats and conserved moieties (figure 9 and table 2). Accordingly, the
same perturbation to initial conditions can have different effects on the steady state depending
on which species are held constant. Therefore, in addition to ensuring that the concentration of
ions is physiological, care should be taken to correctly initialize each state of buffers and Markov
models of ion channels and ion transporters, as they may contain a significant fraction of total
ion abundance. For example, Ca2+ buffers and SERCA can sequester a significant amount of
Ca2+ and they should be initialized with the correct amount of bound Ca2+ when multi-state
models are used [54]. We note that the difficulty of manually deriving conservation laws increases
exponentially as models of cardiac electrophysiology become more complex, and we believe that
our approach extends on existing analyses [10,11] to provide a general method for assessing
steady-state behaviour by comparing the values of conserved moieties and chemostats that result
from each initial condition.

In the field of biochemical network analysis, there is a well-established dependence of
quiescent steady states on conserved moieties, and numerous mathematical techniques for
assessing the uniqueness and stability of these steady states have been developed [55,56].
However, the influence of conserved moieties on limit cycles in an oscillating system that is
regularly stimulated has yet to be investigated. Our results hint at similarities between these
two fields, and while we only tested the uniqueness of steady states using relatively small
perturbations to the initial conditions, it is possible that a set of conserved moieties may have
multiple steady states, and greater perturbations may lead to other limit cycles.

(c) The ‘differential’ and ‘algebraic’ methods
The discovery of conservation principles in cardiac electrophysiology has led to a debate over
whether to use the differential or algebraic methods of simulation [7,10,11,52,53]. The differential
method is the calculation of membrane voltage by integrating total current, and the algebraic
method is the calculation of membrane voltage using an algebraic relationship derived from
charge conservation. We chose the differential method over the algebraic method because it better
supports model reuse and modularity - in particular it is easier to modify the equations to select
different species as chemostats, and to combine equations when two models are coupled. We
note, however, that the algebraic method may reduce computational complexity [10,20]. In bond
graph modelling, the algebraic method can be implemented by using conserved moieties to turn
the system of ODEs into an index-0 differential algebraic equation (DAE) (eqn 3.48 of [20]). This
method generalizes existing algebraic methods to reduce the system of differential equations by
using all conserved moieties and not just the conserved charge moiety. While we did not use the
algebraic approach, we emphasize that the choice of method relates to numerical approaches for
model simulation rather than the underlying physics of the system [10]. Therefore, the differential
and algebraic methods are equivalent in conservative systems provided that the initial conditions
and values of conserved moieties are consistent.
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(d) Integration into whole-cell models
Our bond graph model of the cardiac action potential is the first step towards a fully
integrated whole-cell bond graph model of a cardiomyocyte that couples electrophysiology,
signalling, metabolism and mechanics. As energy drives all biological processes, and energy
supply can be limited under certain pathophysiological states, it is of interest to examine how
cardiomyocytes allocate their energy, and also to estimate the efficiency of processes that are
essential for cardiomyocyte function [57,58]. Modelling studies for the energetic regulation of
a cardiac cell exist across the literature [58], but while some components used in these models
are thermodynamically consistent [59,60], existing whole-cell models are neither energy-based
nor thermodynamically consistent throughout the entire model. Furthermore, because existing
experimental and modelling studies use ATP consumption as a proxy for energy consumption,
they can only estimate the energy consumption of major energy sinks: the Na+/K+ ATPase,
SERCA and crossbridge cycling [58,61]. A bond graph approach may thus provide more detailed
insights into how a cardiac cell uses energy downstream of ATP hydrolysis processes, and help
to identify energy-consuming processes. Because the bond graph approach is energy-based, it
not only provides the necessary constraints to develop a thermodynamically consistent model,
but also allows us to directly assess energy consumption of the model (in Joules). We found that
when normalized against membrane area, the cardiac action potential consumes approximately
76% more energy than an action potential in the axon of a giant squid. To the authors’ knowledge,
this is the first account of energy consumed by electrochemical processes during the cardiac
action potential.

(e) Limitations
A limitation of our approach is that the physical constraints imposed by the bond graph
approach prevent the direct translation of existing models of cardiac electrophysiology into
bond graphs. This points at thermodynamic issues that exist within existing models of
cardiac electrophysiology; while many models contain components that are thermodynamically
consistent, the authors are not aware of any models that are entirely thermodynamically
consistent. Nonetheless, the inability to perfectly replicate properties of existing models as bond
graphs impedes the creation of bond graph models of cardiac electrophysiology, as it requires
new models to be built from the bottom up with existing equations only used as guides for
parameter fitting. As a result of this limitation, our bond graph model represents only a subset
of the ion transport processes within a cardiomyocyte, and only approximates the behaviour
described in existing models. While our model is able to reproduce many essential features of the
action potential, it is unlikely to be physiologically realistic under conditions different to those
used for our fitting process. Thus in future studies, it would be interesting to explore the use
of more complex bond graph components to generate more physiologically realistic models. We
chose to use a restricted set of components and constitutive equations to keep the model simple,
although the bond graph framework is flexible enough to account for a wider range of equations
provided that they are thermodynamically consistent. While many ion channels (including those
for INa, IK1 and IKp in the Luo and Rudy model) are modelled using linear I-V relationships,
the choice of I-V relationship is generally chosen on the basis of providing an empirical fit to
data rather than as a result of physical principles. Thus, a more ideal approach would be to
use nonlinear bond graph components derived from physical principles, and fit their parameters
directly to experimental data. Additionally, empirical equations for gating transition parameters
are generally not expressed in a thermodynamic framework, and are therefore impossible to
replicate exactly with a bond graph model. We used a simple gating mechanism to reduce
equation complexity while maintaining thermodynamic consistency; however, the quality of fit
could be improved by using more complicated gating mechanisms, or other thermodynamically
consistent constitutive equations.
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Because of physical restrictions imposed by the bond graph framework, we were forced to
model ion channels and transporters using Markov states to faithfully represent their underlying
physics. However, this produced a model that had numerous states compared to the number
of biological processes. While it is reassuring to find that our method of identifying conserved
moieties remained robust despite this complexity, simulation of the model was computationally
expensive. For the purpose of integrating this action potential model into a larger whole-
cell model, it would be useful to have simple model components that reduce computational
cost. While current methods for reducing biochemical models in the bond graph framework
are not advanced enough to apply to the biological components in this study, we note that
bond graphs provide a useful foundation for applying model simplification while ensuring that
thermodynamic consistency is maintained [20].

We also decided to limit the transport processes included in our model to those considered
essential for producing a cardiac action potential, while maintaining a limit cycle using dynamic
ion concentrations. Our bond graph model omitted many ionic currents due to their small
amplitudes; however, these channels may have greater contributions under conditions which
vary from those tested here. Thus, an obvious extension of this work would be the integration of
other electrogenic processes within the cardiac membrane. It would be interesting to investigate
whether coupling other models requires further tuning of parameters [62], and whether the
presence of physical bond graph parameters changes this process. A related limitation is that
our model does not account for ion concentrations such as H+ and Cl−, as well as pH buffers
[5]. While including these ions and their transporters would lead to a more accurate model, the
omission of these ions did not cause inconsistencies in the conservation laws described in this
study. These ions were assumed to be membrane impermeable in our model, and thus their
constant contributions to the membrane potential were accounted for in the initial value of the
charge conserved moiety. Similar to how calcium and its buffers were accounted for in our current
approach (table 1), our bond graph approach is sufficiently general to account for other ions and
their buffers.

When formulating the structure and parameters for a bond graph model of the cardiac
action potential (or most other biological processes), it is possible to either fit against existing
mathematical models or the underlying experimental measurements. For all processes in this
study excluding the NCX, we developed our bond graph model to reproduce the behaviour of an
existing model, in an attempt to re-use existing knowledge about these processes. This approach
poses constraints on the bond graph structure used, especially for gating structure. Therefore, it
would be interesting to develop an approach that assesses bond graph structures as well as bond
graph parameters, based on their fits to data [62]. Such an approach may provide a better fit to
the data, and uncover insights into the physical mechanisms of ion channels.

5. Conclusion
In this study, we have developed a bond graph model of the cardiac action potential and used
this to explore the issues of drift and non-unique steady states. We demonstrate that the analysis
of conserved moieties generalizes the concept of charge conservation used in earlier studies, and
found that changes in conserved moieties can explain drift as well as changes in steady-state
behaviour. Importantly, holding ion concentrations constant can have significant consequences
on both drift and steady states as they change the conserved moieties in the model. Our approach
to resolving drift and non-unique steady states is sufficiently general that it can be applied to any
bond graph model of the cardiac action potential model. We hope that the bond graph approach
outlined here will prove useful for the development of future cardiac electrophysiology models,
and eventually whole-cell models of the cardiomyocyte.

Data accessibility. The code associated with this study is available from GitHub (https://github.com/uomsys
temsbiology/bond_graph_cardiac_AP), and archived on Zenodo (https://doi.org/10.5281/zenodo.1172205)
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Fast-Start UOA1703. This research was in part conducted and funded by the Australian Research Council
Discovery Projects funding scheme (project DP170101358).

References
1. Luo CH, Rudy Y. 1994 A dynamic model of the cardiac ventricular action potential.

I. Simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096.
(doi:10.1161/01.RES.74.6.1071)

2. Luo CH, Rudy Y. 1994 A dynamic model of the cardiac ventricular action potential.
II. Afterdepolarizations, triggered activity, and potentiation. Circ. Res. 74, 1097–1113.
(doi:10.1161/01.RES.74.6.1097)

3. Faber GM, Rudy Y. 2000 Action potential and contractility changes in [Na+]i overloaded
cardiac myocytes: a simulation study. Biophys. J. 78, 2392–2404. (doi:10.1016/S0006-
3495(00)76783-X)

4. Terkildsen JR, Crampin EJ, Smith NP. 2007 The balance between inactivation and activation
of the Na+-K+ pump underlies the triphasic accumulation of extracellular K+ during
myocardial ischemia. Am. J. Physiol. - Heart C. 293, H3036–H3045. (doi:10.1152/ajpheart.
00771.2007)

5. Crampin EJ, Smith NP. 2006 A dynamic model of excitation-contraction coupling during
acidosis in cardiac ventricular myocytes. Biophys. J. 90, 3074–3090. (doi:10.1529/biophysj.105.
070557)

6. Guan S, Lu Q, Huang K. 1997 A discussion about the DiFrancesco–Noble model. J. Theor. Biol.
189, 27–32. (doi:10.1006/jtbi.1997.0486)

7. Fraser JA, Huang CLH. 2007 Quantitative techniques for steady-state calculation and dynamic
integrated modelling of membrane potential and intracellular ion concentrations. Prog.
Biophys. Mol. Biol. 94, 336–372. (doi:10.1016/j.pbiomolbio.2006.10.001)

8. Kneller J, Ramirez RJ, Chartier D, Courtemanche M, Nattel S. 2002 Time-dependent transients
in an ionically based mathematical model of the canine atrial action potential. Am. J. Physiol. -
Heart Circulat. Physiol. 282, H1437–H1451. (doi:10.1152/ajpheart.00489.2001)

9. DiFrancesco D, Noble D. 1985 A model of cardiac electrical activity incorporating
ionic pumps and concentration changes. Phil. Trans. R. Soc. Lond. B 307, 353–398.
(doi:10.1098/rstb.1985.0001)

10. Hund TJ, Kucera JP, Otani NF, Rudy Y. 2001 Ionic charge conservation and long-term steady
state in the Luo—Rudy dynamic cell model. Biophys. J. 81, 3324–3331. (doi:10.1016/S0006-
3495(01)75965-6)

11. Livshitz L, Rudy Y. 2009 Uniqueness and stability of action potential models during
rest, pacing, and conduction using problem-solving environment. Biophys. J. 97, 1265–1276.
(doi:10.1016/j.bpj.2009.05.062)

12. Aslanidi OV, Boyett MR, Dobrzynski H, Li J, Zhang H. 2009 Mechanisms of transition from
normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue
heterogeneity and anisotropy. Biophys. J. 96, 798–817. (doi:10.1016/j.bpj.2008.09.057)

13. Carro J, Rodríguez JF, Laguna P, Pueyo E. 2011 A human ventricular cell model for
investigation of cardiac arrhythmias under hyperkalaemic conditions. Phil. Trans. R. Soc. A
369, 4205–4232. (doi:10.1098/rsta.2011.0127)

14. Grandi E, Pasqualini FS, Bers DM. 2010 A novel computational model of the
human ventricular action potential and Ca transient. J. Mol. Cell. Cardiol. 48, 112–121.
(doi:10.1016/j.yjmcc.2009.09.019)

http://dx.doi.org/doi:10.1161/01.RES.74.6.1071
http://dx.doi.org/doi:10.1161/01.RES.74.6.1097
http://dx.doi.org/doi:10.1016/S0006-3495(00)76783-X
http://dx.doi.org/doi:10.1016/S0006-3495(00)76783-X
http://dx.doi.org/doi:10.1152/ajpheart.00771.2007
http://dx.doi.org/doi:10.1152/ajpheart.00771.2007
http://dx.doi.org/doi:10.1529/biophysj.105.070557
http://dx.doi.org/doi:10.1529/biophysj.105.070557
http://dx.doi.org/doi:10.1006/jtbi.1997.0486
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2006.10.001
http://dx.doi.org/doi:10.1152/ajpheart.00489.2001
http://dx.doi.org/doi:10.1098/rstb.1985.0001
http://dx.doi.org/doi:10.1016/S0006-3495(01)75965-6
http://dx.doi.org/doi:10.1016/S0006-3495(01)75965-6
http://dx.doi.org/doi:10.1016/j.bpj.2009.05.062
http://dx.doi.org/doi:10.1016/j.bpj.2008.09.057
http://dx.doi.org/doi:10.1098/rsta.2011.0127
http://dx.doi.org/doi:10.1016/j.yjmcc.2009.09.019


26

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180106

...................................................

15. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. 2014 Rechanneling the cardiac
proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research
Consortium. Am. Heart J. 167, 292–300. (doi:10.1016/j.ahj.2013.11.004)

16. Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge
N. 2016 The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative—Update on
progress. J. Pharmacol. Toxicol. 81, 15–20. (doi:10.1016/j.vascn.2016.06.002)

17. Paynter HM. 1961 Analysis and design of engineering systems. Cambridge, MA: MIT Press.
18. Borutzky W, Dauphin-Tanguy G, Thoma JU. 1995 Advances in bond graph modelling:

theory, software, applications. Math. Comput. Simulat. 39, 465–475. (doi:10.1016/0378-4754
(95)00106-6)

19. Oster GF, Perelson AS, Katchalsky A. 1973 Network thermodynamics: dynamic modelling of
biophysical systems. Q. Rev. Biophys. 6, 1–134. (doi:10.1017/S0033583500000081)

20. Gawthrop PJ, Crampin EJ. 2014 Energy-based analysis of biochemical cycles using bond
graphs. Proc. R. Soc. Lond. A 470, 20140459. (doi:10.1098/rspa.2014.0459)

21. Gawthrop PJ, Siekmann I, Kameneva T, Saha S, Ibbotson MR, Crampin EJ. 2017 Bond
graph modelling of chemoelectrical energy transduction. IET Syst. Biol. 11, 127–138.
(doi:10.1049/iet-syb.2017.0006)

22. Omholt SW, Hunter PJ. 2016 The Human Physiome: a necessary key for the creative
destruction of medicine. Interface Focus 6, 20160003. (doi:10.1098/rsfs.2016.0003)

23. Gawthrop PJ, Cursons J, Crampin EJ. 2015 Hierarchical bond graph modelling of biochemical
networks. Proc. R. Soc. A 471, 20150642. (doi:10.1098/rspa.2015.0642)

24. Gawthrop PJ. 2017 Bond graph modeling of chemiosmotic biomolecular energy transduction.
IEEE Trans. Nanobiosci. 16, 177–188. (doi:10.1109/TNB.2017.2674683)

25. Gawthrop PJ, Crampin EJ. 2017 Energy-based analysis of biomolecular pathways. Proc. R. Soc.
A 473, 20160825. (doi:10.1098/rspa.2016.0825)

26. Beard DA, Liang Sd, Qian H. 2002 Energy balance for analysis of complex metabolic networks.
Biophys. J. 83, 79–86. (doi:10.1016/S0006-3495(02)75150-3)

27. Beard DA, Babson E, Curtis E, Qian H. 2004 Thermodynamic constraints for biochemical
networks. J. Theor. Biol. 228, 327–333. (doi:10.1016/j.jtbi.2004.01.008)

28. van der Schaft A, Rao S, Jayawardhana B. 2013 On the mathematical structure of balanced
chemical reaction networks governed by mass action kinetics. SIAM J. Appl. Math. 73, 953–973.
(doi:10.1137/11085431X)

29. Haraldsdóttir HS, Fleming RMT. 2016 Identification of conserved moieties in metabolic
networks by graph theoretical analysis of atom transition networks. PLoS Comput. Biol. 12,
e1004999. (doi:10.1371/journal.pcbi.1004999)

30. Pan M, Gawthrop PJ, Cursons J, Tran K, Crampin EJ. 2017 The cardiac Na+/K+ ATPase: an
updated, thermodynamically consistent model. (http://arxiv.org/abs/1711.00989)

31. Kimura J, Miyamae S, Noma A. 1987 Identification of sodium-calcium exchange current in
single ventricular cells of guinea-pig. J. Physiol. (Lond.) 384, 199–222. (doi:10.1113/jphysiol.
1987.sp016450)

32. Beuckelmann DJ, Wier WG. 1989 Sodium-calcium exchange in guinea-pig cardiac cells:
exchange current and changes in intracellular Ca2+. J. Physiol. (Lond.) 414, 499–520.
(doi:10.1113/jphysiol.1989.sp017700)

33. Gawthrop P, Smith L. 1996 Metamodelling: for bond graphs and dynamic systems. Prentice Hall
International Series in Systems and Control Engineering. London, New York: Prentice Hall.

34. Borutzky W. 2010 Bond graph methodology. Berlin, Germany: Springer.
35. Gawthrop P, Bevan G. 2007 Bond-graph modeling. IEEE Control Syst. 27, 24–45. (doi:10.1109/

MCS.2007.338279)
36. Gawthrop PJ. 2017 Bond-graph modelling and causal analysis of biomolecular systems. In

Bond graphs for modelling, control and fault diagnosis of engineering systems (ed. W Borutzky),
pp. 587–623. Cham, Switzerland: Springer. (doi:10.1007/978-3-319-47434-2_16)

37. Atkins PW, De Paula J. 2006 Physical chemistry for the life sciences. Oxford, UK/New York, NY:
Oxford University Press/W.H. Freeman.

38. Thoma J, Bouamama BO. 2000 Modelling and simulation in thermal and chemical engineering.
Berlin, Germany: Springer.

39. Polettini M, Esposito M. 2014 Irreversible thermodynamics of open chemical networks. I.
Emergent cycles and broken conservation laws. J. Chem. Phys. 141, 024117. (doi:10.1063/
1.4886396)

http://dx.doi.org/doi:10.1016/j.ahj.2013.11.004
http://dx.doi.org/doi:10.1016/j.vascn.2016.06.002
http://dx.doi.org/doi:10.1016/0378-4754(95)00106-6
http://dx.doi.org/doi:10.1016/0378-4754(95)00106-6
http://dx.doi.org/doi:10.1017/S0033583500000081
http://dx.doi.org/doi:10.1098/rspa.2014.0459
http://dx.doi.org/doi:10.1049/iet-syb.2017.0006
http://dx.doi.org/doi:10.1098/rsfs.2016.0003
http://dx.doi.org/doi:10.1098/rspa.2015.0642
http://dx.doi.org/doi:10.1109/TNB.2017.2674683
http://dx.doi.org/doi:10.1098/rspa.2016.0825
http://dx.doi.org/doi:10.1016/S0006-3495(02)75150-3
http://dx.doi.org/doi:10.1016/j.jtbi.2004.01.008
http://dx.doi.org/doi:10.1137/11085431X
http://dx.doi.org/doi:10.1371/journal.pcbi.1004999
http://arxiv.org/abs/1711.00989
http://dx.doi.org/doi:10.1113/jphysiol.1987.sp016450
http://dx.doi.org/doi:10.1113/jphysiol.1987.sp016450
http://dx.doi.org/doi:10.1113/jphysiol.1989.sp017700
http://dx.doi.org/doi:10.1109/MCS.2007.338279
http://dx.doi.org/doi:10.1109/MCS.2007.338279
http://dx.doi.org/doi:10.1007/978-3-319-47434-2_16
http://dx.doi.org/doi:10.1063/1.4886396
http://dx.doi.org/doi:10.1063/1.4886396


27

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180106

...................................................

40. Keener J, Sneyd J. 2009 Mathematical physiology. Interdisciplinary Applied Mathematics,
vol. 8/1. New York, NY: Springer.

41. Rudy Y, Silva JR. 2006 Computational biology in the study of cardiac ion channels and cell
electrophysiology. Q. Rev. Biophys. 39, 57–116. (doi:10.1017/S0033583506004227)

42. Fink M, Noble D. 2009 Markov models for ion channels: versatility versus identifiability and
speed. Phil. Trans. R. Soc. A 367, 2161–2179. (doi:10.1098/rsta.2008.0301)

43. Hodgkin AL, Huxley AF. 1952 A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.
(doi:10.1113/jphysiol.1952.sp004764)

44. Liebermeister W, Uhlendorf J, Klipp E. 2010 Modular rate laws for enzymatic reactions:
thermodynamics, elasticities and implementation. Method. Biochem. Anal. 26, 1528–1534.
(doi:10.1093/bioinformatics/btq141)

45. Palsson B. 2006 Systems biology: properties of reconstructed networks. Cambridge, UK: Cambridge
University Press.

46. Klipp E. 2009 Systems biology: a textbook. New York, NY: Wiley-VCH.
47. Anton H, Rorres C. 2014 Elementary linear algebra: applications version. Hoboken, NJ: John

Wiley & Sons Inc.
48. Schuster S, Hilgetag C. 1995 What information about the conserved-moiety structure of

chemical reaction systems can be derived from their stoichiometry? J. Phys. Chem. 99,
8017–8023. (doi:10.1021/j100020a026)

49. Schuster S, Höfer T. 1991 Determining all extreme semi-positive conservation relations in
chemical reaction systems: a test criterion for conservativity. J. Chem. Soc. Faraday Trans. 87,
2561–2566. (doi:10.1039/FT9918702561)

50. Noble D, Rudy Y. 2001 Models of cardiac ventricular action potentials: iterative
interaction between experiment and simulation. Phil. Trans. R. Soc. Lond. A 359, 1127–1142.
(doi:10.1098/rsta.2001.0820)

51. Luo CH, Rudy Y. 1991 A model of the ventricular cardiac action potential. Depolarization,
repolarization, and their interaction. Circ. Res. 68, 1501–1526. (doi:10.1161/01.RES.68.6.1501)

52. Varghese A, Sell GR. 1997 A conservation principle and its effect on the formulation of Na–Ca
exchanger current in cardiac cells. J. Theor. Biol. 189, 33–40. (doi:10.1006/jtbi.1997.0487)

53. Endresen LP, Hall K, Høye JS, Myrheim J. 2000 A theory for the membrane potential of living
cells. Eur. Biophys. J. 29, 90–103. (doi:10.1007/s002490050254)

54. Higgins ER, Cannell MB, Sneyd J. 2006 A buffering SERCA pump in models of calcium
dynamics. Biophys. J. 91, 151–163. (doi:10.1529/biophysj.105.075747)

55. Gross E, Harrington HA, Rosen Z, Sturmfels B. 2016 Algebraic systems biology: a case study
for the Wnt pathway. B. Math. Biol. 78, 21–51. (doi:10.1007/s11538-015-0125-1)

56. Feliu E, Wiuf C. 2012 Variable elimination in chemical reaction networks with mass-action
kinetics. SIAM J. Appl. Math. 72, 959–981. (doi:10.1137/110847305)

57. Neubauer S. 2007 The failing heart—an engine out of fuel. Eng. J. Med. 356, 1140–1151.
(doi:10.1056/NEJMra063052)

58. Tran K, Loiselle DS, Crampin EJ. 2015 Regulation of cardiac cellular bioenergetics:
mechanisms and consequences. Physiol. Rep. 3, e12464. (doi:10.14814/phy2.12464)

59. Tran K, Smith NP, Loiselle DS, Crampin EJ. 2009 A thermodynamic model of the cardiac
sarcoplasmic/endoplasmic Ca2+ (SERCA) pump. Biophys. J. 96, 2029–2042. (doi:10.1016/
j.bpj.2008.11.045)

60. Smith NP, Crampin EJ. 2004 Development of models of active ion transport for whole-cell
modelling: cardiac sodium–potassium pump as a case study. Prog. Biophys. Mol. Biol. 85,
387–405. (doi:10.1016/j.pbiomolbio.2004.01.010)

61. Schramm M, Klieber HG, Daut J. 1994 The energy expenditure of actomyosin-ATPase, Ca2+-
ATPase and Na+, K+-ATPase in guinea-pig cardiac ventricular muscle. J. Physiol. 481, 647–662.
(doi:10.1113/jphysiol.1994.sp020471)

62. Babtie AC, Stumpf MPH. 2017 How to deal with parameters for whole-cell modelling. J. R.
Soc. Interface 14, 20170237. (doi:10.1098/rsif.2017.0237)

63. Pan M, Gawthrop PJ, Tran K, Cursons J, Crampin EJ. 2018 Supporting code for ‘Bond graph
modelling of the cardiac action potential: implications for drift and non-unique steady states’.
Zenodo. (doi:10.5281/zenodo.1172205)

http://dx.doi.org/doi:10.1017/S0033583506004227
http://dx.doi.org/doi:10.1098/rsta.2008.0301
http://dx.doi.org/doi:10.1113/jphysiol.1952.sp004764
http://dx.doi.org/doi:10.1093/bioinformatics/btq141
http://dx.doi.org/doi:10.1021/j100020a026
http://dx.doi.org/doi:10.1039/FT9918702561
http://dx.doi.org/doi:10.1098/rsta.2001.0820
http://dx.doi.org/doi:10.1161/01.RES.68.6.1501
http://dx.doi.org/doi:10.1006/jtbi.1997.0487
http://dx.doi.org/doi:10.1007/s002490050254
http://dx.doi.org/doi:10.1529/biophysj.105.075747
http://dx.doi.org/doi:10.1007/s11538-015-0125-1
http://dx.doi.org/doi:10.1137/110847305
http://dx.doi.org/doi:10.1056/NEJMra063052
http://dx.doi.org/doi:10.14814/phy2.12464
http://dx.doi.org/doi:10.1016/j.bpj.2008.11.045
http://dx.doi.org/doi:10.1016/j.bpj.2008.11.045
http://dx.doi.org/doi:10.1016/j.pbiomolbio.2004.01.010
http://dx.doi.org/doi:10.1113/jphysiol.1994.sp020471
http://dx.doi.org/doi:10.1098/rsif.2017.0237
http://dx.doi.org/doi:10.5281/zenodo.1172205

	Introduction
	Methods
	Model components
	Bond graph modelling
	Modelling approach
	Ion channel modelling
	Finding conserved moieties
	Stimulus currents

	Results
	Simulation of a single action potential
	Chemostats influence the conserved moieties of cardiac action potential models
	Non-conservative stimulus currents cause drift in models with a chargeconservation law
	Initial conditions influence steady states through conserved moieties and chemostats

	Discussion
	Drift
	Effects of initial conditions on steady states
	The `differential' and `algebraic' methods
	Integration into whole-cell models
	Limitations

	Conclusion
	References

