
Targeted Proteomics Guided by Label-free
Quantitative Proteome Analysis in Saliva
Reveal Transition Signatures from Health to
Periodontal Disease*
Nagihan Bostanci‡ ‡‡, Nathalie Selevsek§, Witold Wolski§, Jonas Grossmann§,
Kai Bao‡, Asa Wahlander¶, Christian Trachsel§, Ralph Schlapbach§,
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Periodontal diseases are among the most prevalent
worldwide, but largely silent, chronic diseases. They af-
fect the tooth-supporting tissues with multiple ramifica-
tions on life quality. Their early diagnosis is still challeng-
ing, due to lack of appropriate molecular diagnostic
methods. Saliva offers a non-invasively collectable reser-
voir of clinically relevant biomarkers, which, if utilized
efficiently, could facilitate early diagnosis and monitoring
of ongoing disease. Despite several novel protein markers
being recently enlisted by discovery proteomics, their
routine diagnostic application is hampered by the lack of
validation platforms that allow for rapid, accurate and
simultaneous quantification of multiple proteins in large
cohorts. Here we carried out a pipeline of two proteomic
platforms; firstly, we applied open ended label-free quan-
titative (LFQ) proteomics for discovery in saliva (n � 67,
including individuals with health, gingivitis, and periodon-
titis), followed by selected-reaction monitoring (SRM)-tar-
geted proteomics for validation in an independent cohort
(n � 82). The LFQ platform led to the discovery of 119
proteins with at least 2-fold significant difference between
health and disease. The 65 proteins chosen for the sub-
sequent SRM platform included 50 functionally related
proteins derived from the significantly enriched pro-
cesses of the LFQ data, 11 from literature-mining, and
four house-keeping ones. Among those, 60 were repro-
ducibly quantifiable proteins (92% success rate), repre-
sented by a total of 143 peptides. Machine-learning mod-
eling led to a narrowed-down panel of five proteins of high
predictive value for periodontal diseases with maximum
area under the receiver operating curve >0.97 (higher in
disease: Matrix metalloproteinase-9, Ras-related pro-
tein-1, Actin-related protein 2/3 complex subunit 5; lower
in disease: Clusterin, Deleted in Malignant Brain Tumors
1). This panel enriches the pool of credible clinical bio-

marker candidates for diagnostic assay development.
Yet, the quantum leap brought into the field of periodontal
diagnostics by this study is the application of the bio-
marker discovery-through-verification pipeline, which can
be used for validation in further cohorts. Molecular &
Cellular Proteomics 17: 1392–1409, 2018. DOI: 10.1074/
mcp.RA118.000718.

Periodontal diseases are oral biofilm induced chronic in-
flammatory diseases of the tooth-supporting (periodontal) tis-
sues. Despite major improvements in oral hygiene practices in
industrialized countries, severe periodontitis remains the
sixth-most prevalent chronic disease worldwide, affecting al-
most 11.5% of many populations (1, 2). This cluster of oral
diseases do not only affect the tooth-supporting tissues but
also the other body parts by contributing to the development
of life threating conditions, namely, cardiovascular disease or
stroke (3, 4). Therefore, identifying early and abolishing the
onset of these diseases is highly desirable.

Similar to the other chronic diseases in humans, there are
still considerable challenges in diagnosis and classification for
the cases of different forms of periodontal diseases and cur-
rent diagnosis is based on subjective indices, mainly evaluat-
ing the past disease (5). The poor performance of clinical tools
and unpredictability in the progression of the disease has led
to a search for new, more accurate biomarkers in oral bioflu-
ids for periodontal disease screening, classification monitor-
ing, and management since 1960s (6–9). The use of quanti-
tative proteomics for characterizing periodontal diseases
offers significant potential for providing “periodontal disease
related finger prints” (10, 11). In this respect, saliva is a useful
reservoir of clinically relevant biomarkers for reflection of peri-

From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden; §Functional Genomics
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odontal diseases as well as general health (12–14). Early
studied biomarkers in saliva were more etiology oriented and
ranged from specific bacteria or their secreted products to
host immune markers or tissue lysis products (15). A few
biomarkers have been marketed for chair-side use but the
most have disappeared from the market because of their low
specificity (16–18). A single protein marker is less likely to
reliably detect early periodontal disease or to provide a dif-
ferential diagnosis between different forms of the disease (19).
A better approach is to aim for a panel of related markers for
conclusive prediction.

We have demonstrated earlier that label-free quantitative
(LFQ)1 mass spectrometry methods are able to facilitate char-
acterization and concurrent quantitative analysis of the pro-
teome in periodontal health and disease (10, 20). Although the
non-targeted, shotgun proteomic workflows are considerably
successful in the discovery of novel candidate markers and in
generating hypotheses for periodontal diseases, no direct
effect on improved diagnostic capacity has been demon-
strated. This goes in line with the fact that no protein bio-
marker has been incorporated into the daily dental practice or
in a clinical assay, despite more than 600 proteins have been
linked to the disease by proteomics work (21). The main
reason is the lack of validation platforms that allow for rapid,
accurate and simultaneous quantification of multiple proteins
in large cohorts. Targeted mass spectrometry (MS) methods
are at the fore front for accurate (high specificity and sensi-
tivity) measurement of dozens of proteins simultaneously in
complex biological samples decreasing the requirements for
(individual target) antibody-based assays (22, 23). The sepa-
ration and detection methodology, termed selected reaction
monitoring (SRM) or multiple reaction monitoring (MRM), has
matured into a robust technology for reproducible and reliable
quantification of protein panels in complex sample back-
grounds. These advancements within the field has led to an

increasing interest in using liquid chromatography (LC)-MS as
a primary biomarker discovery and validation platform (24).
Despite numerous reports describing the fast-growing appli-
cation of SRM-based workflows for quantification of target
peptides (proteins) in plasma (25–27), studies in saliva has
been very limited (28, 29) and there has been no application to
the field of periodontics.

We have followed two main mass-spectrometry guided
strategies to identify biomarkers of periodontal diseases in
human saliva. First, the discovery study with cross-sectional
case-control design (n � 67) was conducted to dissect com-
parative saliva proteome in (1) periodontal health (2) during
inflammatory but not destructive disease stage (gingivitis) (3)
during advanced disease stage in healthy young individuals
(generalized aggressive periodontitis) (4) during advanced but
chronic disease stage in older individuals (generalized chronic
periodontitis) by LFQ. Second, we have conducted multiplex
LC-SRM assays with an independent cohort (n � 82) in order
to qualify or validate the identified candidate markers by the
discovery approach.

EXPERIMENTAL PROCEDURES

Phase 1: Discovery Phase (Exploratory Study)

Experimental Design and Rationale

The whole saliva samples were obtained from 67 systemically
healthy subjects (age range 20–64 years) consisting of patients with
generalized chronic periodontitis (CP), generalized aggressive perio-
dontitis (AP), gingivitis (G) and individuals with periodontal health (H).
The use of humans for study satisfied the requirements of the Ege
University Institutional Review Board (Ethics number 16–12.1/16) and
was conducted in accordance with the guidelines of the World Med-
ical Association Declaration of Helsinki. It is confirmed that this cross-
sectional case-control study conforms to STROBE guidelines for
observational studies. Complete medical and dental histories were
obtained from all participants. Systemic exclusion criteria were the
presence of cardiovascular and respiratory diseases, diabetes melli-
tus, HIV infection, systemic inflammatory conditions or non-plaque-
induced oral inflammatory conditions, immunosuppressive chemo-
therapy, and current pregnancy or lactation or smoking. None of the
patients had taken medication such as antibiotics or anti-inflamma-
tory drugs that could affect their periodontal status for at least 6
months before the study. Patients eligible for the study returned to the
clinic for clinical measurement screening one-week after being pre-
screened. Before being enrolled in the study, participants provided
written and informed consent for use of their saliva samples and
clinical data for scientific research purposes.

The clinical periodontal indices including probing depth (PD), clin-
ical attachment loss (CAL), plaque index (PI) and bleeding on probing
(BOP) were recorded by a manual periodontal probe by a trained and
calibrated examiner (V.Ö.Ö.). The extent and severity of alveolar bone
support was evaluated radiographically in each patient. The partici-
pants were classified into four groups based on their periodontal
conditions according to the criteria proposed by the 1999 Interna-
tional Workshop for a Classification of Periodontal Diseases and
Conditions (30). The AP group included 17 patients with �16 teeth.
The patients had a non- contributory medical history and demon-
strated with an early age of clinical manifestations with a generalized
pattern of rapid attachment loss and bone destruction disproportion-
ate to the magnitude of local etiological factors. Additionally, self-
reported family history of periodontitis was a strong indicator of the

1 The abbreviations used are: LFQ, label-free quantitative; ACN,
acetonitrile; ACM3, muscarinic acetylcholine receptor M3; AP, ag-
gressive periodontitis; AUC, area under curve; A2M, alpha-2-macro-
globulin; ARPC5, actin-related protein 2/3 complex subunit 5; BOP,
bleeding on probing; CAL, clinical attachment loss; CDC42, cell divi-
sion control protein 42 homolog; CID, collision-induced dissociation;
CLUS, clusterin; CP, chronic periodontitis; DIA, data independent
analysis; DMBT1, deleted in malignant brain tumors 1; EDTA, ethyl-
enediaminetetraacetic acid; ENOA, enolase; FDR, false discovery
rate; FIBB, fibrinogen beta chain; H, periodontal health; HSP27, heat
shock 27 kDa protein; G, gingivitis; GO, Gene Ontology; GCF, gingival
crevicular fluid; JAK-STAT, Janus kinase-signal transducer and acti-
vator of transcription; IL, Interleukin; IL-1RN, Interleukin-1 receptor
antagonist protein; LC, liquid chromatography; MMPs, matrix metal-
loproteinass; MRM, multiple reaction monitoring; MS/M, tandem
mass spectrometry; PD, probing depth; PI, plaque index; PMNs,
polymorphonuclear cells; PRM, parallel reaction monitoring; RAP1A,
Ras-related protein Rap-1; ROC, receiver operating characteristic;
SLC4A1, solute carrier family 4 member 1; SRM, selected reaction
monitoring; SWATH, sequential window acquisition of all theoretical
spectra.
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diagnosis. These individuals had minimum of CAL greater 5 mm and
PD greater 6 mm on eight or more teeth; at least three of these were
other than central incisors or first molars. Radiographic bone loss was
above 30% of root length affecting more than 3 permanent teeth
other than first molars and incisors. The CP group (n � 17) included
individuals who had a minimum four non-adjacent teeth with sites
with CAL greater 5 mm and PPD greater 6 mm, and above 50%
alveolar bone loss in at least two quadrants which was commensurate
with the amount of plaque accumulation. They also had the mean
BOP values above 63%. The G group (n � 17) had varying degrees of
gingival inflammation with the mean BOP values above 50%, but no
clinical attachment loss �2 mm, no sites with alveolar bone loss
present in radiography (the distance between the cementoenamel
junction and bone crest less 3 mm at above 95% of the proximal tooth
sites). The individuals with periodontal health had no sites with PD
greater 3 mm and CAL greater 2 mm, a mean BOP below 15% at the
time of examination, and no detectable alveolar bone loss. The de-
mographic and clinical details of details of the participants included in
the analysis are presented in supplemental File S1.

Saliva Sampling and Processing

The whole saliva samples were obtained in the morning between
8.00 am–10.00 am, as this is the least variable time point during the
day for saliva composition (31). The unstimulated saliva samples were
collected by expectorating into sterile 50 ml tubes for 5 min as
described earlier (32). Briefly, the participants were asked to avoid
oral hygiene practices including flossing, brushing, and mouth-rinses
as well as eating, and drinking for at least 2 h before collection. Before
clinical periodontal measurements, each participant was asked first to
rinse the mouth completely with water for 2 min, wait for 10 min, and
then expectorate into sterile tubes for 5 min. On the day of analysis,
the samples were thawed on ice and centrifuged at 10,000 � g for 15
min at 4 °C. The obtained supernatants were supplemented with the
EDTA-free Protease Inhibitor Mixture (Sigma-Aldrich, Dorset, UK).

Label-free Quantitative Proteomic Analysis

Protein Digestion and C18 Clean Up—Total protein content of the
collected supernatants were measured with Qubit® Protein Assay Kit
(Thermo Scientific, Wohlen, Switzerland). Despite that the saliva col-
lection was standardized by time, there were considerable inter-
individual variations in the total protein concentrations. The total
protein concentrations for H, G, CP, and AP (�g/ml, median (min-
max)) were 764.3 (522–1290), 1110 (637–1970), 1140 (693–1850),
1118 (694–1760), respectively. The median total protein levels were
found to be significantly different among the groups (p � 0.01).
Therefore, total protein amount per sample was controlled. Solutions
of 80 �g of total protein per sample were subjected to in-solution
trypsin digestion according to the RapiGest protocol. Briefly, the
supernatants were diluted with ammonium bicarbonate buffer to
reach a neutral pH, then RapiGest was added to the samples at the
final concentration of 0.1%. Afterward, the samples were reduced
with dithiothreitol by incubation at 60 °C for 30 min and carbamidom-
ethylated using iodoacetamide at a final concentration of 15 mM for 30
min in dark. The samples were digested with trypsin in 0.05 M trieth-
ylammonium bicarbonate (1:100 w:w) overnight at 37 °C. Trifluoro-
acetic acid (TFA) was added to a final concentration of 0.5% and the
samples were incubated for 30 min at 37 °C. Peptide mixtures were
desalted using reverse phase cartridges Finisterre SPE C18 (Wicom
International AG, Maienfeld, Switzerland) according to the manufa-
cturer’s specifications. Each sample was evaporated using a Speed-
vac (Thermo Scientific) and subsequentially reconstituted in 3% ace-
tonitrile (ACN) and 0.1% formic acid (FA).

Shotgun-MS Proteomics—Tryptic digests were analyzed on a LTQ
Orbitrap Velos equipped with a nanospray ion source. Chromato-
graphic separations of peptides on a Eksigent nanoLC-1D device
(ABSciex, Concord, Ontario) coupled to an in-house pulled and
packed tip column, 75 �m diameter, packed with Magic C18 AQ
beads (3 �m bead size, 200 Å pore size) (Bishoff Chromatography,
Leonberg, Germany). Peptides were loaded on the column from a
cooled (4 °C) Eksigent autosampler and separated with a linear gra-
dient of acetonitrile/water, containing 0.1% formic acid, at a flow rate
of 200 nl/min. A gradient from 2 to 30% acetonitrile in 60 min was
used. Mass spectra were acquired in a data-dependent manner, with
an automatic switch between MS and MS/MS using a top 10 method.
MS spectra were acquired in the Orbitrap analyzer with a mass range
of 300–2000 m/z, with a resolution of 30,000 in the Orbitrap. Colli-
sion-induced dissociation (CID) peptide fragments were acquired in
the ion trap with a collision energy of 35, activation energy of 0.25 and
30 ms activation time, excluding singly charged ions for fragmenta-
tion. Fragmented peptides were put on a dynamic exclusion list with
a list size of 500 and an expiration time fo 90 s.

Protein Identification and Quantification—The raw files from the
mass spectrometer were uploaded onto the Progenesis LC-MS (ver-
sion 4.1, Nonlinear Dynamics, Newcastle upon Tyne, UK). The LC-MS
data were normalized and aligned according to the manufacturer’s
specifications. The Mascot generic file (.mgf file format) generated
with Progenesis LC-MS (using up to five tandem mass spectra for
each feature with the top 200 fragment ion peaks, charge deconvo-
lution and deisotoping option applied) was searched against an in-
house built database, constructed using human, bacterial and fungal
species, including combination of common contaminants and re-
versed sequences (a total of 249,061 sequences) using the Mascot
2.4.1 search engine (Matrix Science, London, UK) in order to evaluate
the false discovery rate (FDR) using the target-decoy strategy (http://
fgcz-ms/FASTA/p963_db1_d_20111201.fasta). All sequences were
downloaded from NCBI on May 27, 2016 and concatenated to 261-
sequences known as MS contaminants and reversed (decoyed) to
generate the search database. The selected parameters included
precursor tolerance (15 ppm) and [ss2] fragment ion tolerance (0.6
Da). Trypsin was used as the protein-cleaving enzyme, and three
missed cleavages were allowed. Variable modifications included ox-
idation of methionine, deamidation from glutamine and asparagine
and N-terminal acetylation of proteins whereas carbamidomethyla-
tion of cysteine was selected as a fixed modification. The mascot
result was loaded into Scaffold v4.1.1 using 95% PeptideProphet and
ProteinProphet thresholds and protein cluster analysis. The spectrum
report was exported and loaded into Progenesis LC-MS. The exper-
imental design consisted of the following groups: H Versus G or CP or
AP. For quantification, all proteins identified with at least 2 peptide
ions were assessed. For normalization, the default function was used.

Visualization by Heat Map and Cluster Analysis—The expression
trends of salivary human proteins were visualized by use of heat-
maps generated using the R software (R: A Language and Environ-
ment for Statistical Computing, R Development Core Team) and in
particular the packages SRMService (https://github.com/protViz/
SRMService) which implements the precursor and peptide summa-
ries (See supplemental material) and quantable (https://cran.
r-project.org/web/packages/quantable/index.html).

Statistical Analysis—Normality of the data was assessed by
D’Agostino & Pearson normality test. Chi-squared and one-way
ANOVA tests were used for demographic and clinical data analysis
(GraphPad Software, La Jolla, CA). Differences were considered as
statistically significant at p value �0.05. For quantitative protein ex-
pression analysis, significant differences between the pair-wise group
comparisons were done in the Progenesis LC-MS using normalized
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protein abundances in arcsinh transformation. Differences were con-
sidered as statistically significant at fold-change �2, p value �0.05.

Phase 2: SRM Based Candidate Validation in an Independent
Cohort

Experimental Design and Rationale

We aimed to develop a SRM-based workflow for detecting and
quantitating the relative abundance of the candidate proteins in an
independent saliva cohort. Eighty-two subjects (age range 24–59
years) were recruited for the study at the Department of Periodontol-
ogy, School of Dentistry, Adnan Menderes University, Aydın, Turkey.
Ethical clearance was obtained from the Ethics Committee of the
School of Medicine, Ege University with the protocol number (Ethics
number 70198063–050.06.04). Each participant gave written and
verbal informed consent after the purpose and procedures of the
study were explained. It is confirmed that this cross-sectional case-
control study conforms to STROBE guidelines for observational stud-
ies. A dental and medical history was compiled for all subjects as
detailed in phase 1 and the participants were clustered into four
groups according to the criteria as detailed at Phase 1. The demo-
graphic and clinical details of details of the Phase 2 participants are
presented in supplemental File S1.

SRM Assay Development

Selection of Target Proteins by Prioritization—The discovery LFQ
experiments yielded 119 differentially expressed candidates between
health versus periodontal disease. The next step involved SRM to
establish sensitive, accurate assays for candidate marker measure-
ments. However, reagent costs limited the practicality of developing
assays for all identified candidates, necessitating a further prioritiza-
tion step. To functionally overview the differentially expressed pro-
teins between health and disease (fold change � 2, p value �0.05),
the proteins from the LFQ experiment were processed with MetaCore
to build an analysis of functional ontologies including canonical path-
way maps, Gene Ontology (GO) processes, diseases by biomarkers,
and process networks as described previously (33).

Peptide Selection—Targeted SRM assays for the 65 proteins were
then developed and optimized in saliva samples and can be found in
supplemental Files S8–S9. For each protein, a set of three proteo-
typic peptides preferentially observed in previous LFQ experiments
was selected for SRM analysis. For proteins with no or less than three
proteotypic peptides, additional peptides were selected from the
SRM Atlas (http://www.srmatlas.org). All peptides were ranging be-
tween 6 and 20 amino acids in length and were containing tryptic
ends with no missed cleavages. Stable isotope-labeled standard
peptides corresponding to the proteotypic peptides and containing
either a C-terminal (13C(6) 15N(4)) arginine or a (13C(6) 15N(2)) lysine
residue were chemically synthesized via SPOT synthesis (JPT Peptide
Technologies, Germany) and used in unpurified form for the SRM
analysis.

Sample Preparation–Protein Digestion—The samples were pre-
pared in the same way as described in Phase 1. The total protein
concentrations for H, G, CP and AP ((�g/ml, median (min-max)) were
664 (422–982), 794 (502–972), 816 (134.5–2830), 830 (345.5–3910),
respectively. The median total protein levels were found to be signif-
icantly different among the groups (p � 0.05). Therefore, total protein
amount per sample was controlled. The samples were blinded and
alternated in random order in each analysis during both the sample
preparation and the measurements. Solutions of 80 �g of proteins per
sample were subjected to in-solution trypsin digestion according to
the RapiGest protocol as described above in the discovery phase.
Peptide mixtures were desalted using reverse phase cartridges Fin-
isterre SPE C18 (Wicom International AG, Maienfeld, Switzerland)

according to the manufacturer’s specifications. Peptides were dried
using a vacuum centrifuge, resolubilized with 30 �l 3% Acetonitrile
(ACN) in 0.1% formic acid, and frozen at �20 °C, until further use.

SRM Measurements—SRM-triggered MS2 and SRM measure-
ments were performed on a QTRAP 5500 instrument (ABSciex, Con-
cord, Ontario) equipped with a nanoelectrospray ion source. Chro-
matographic separations of peptides were performed on a
NanoLC-2D HPLC system (Eksigent, Dublin, CA) coupled to a 15 cm
fused silica emitter, 75 �m diameter, packed with a ReproSil-Pur
C18-AQ 120 A and 1.9 �m resin (Dr. Maisch HPLC GmbH). Peptides
were loaded on the column from a cooled (4 °C) Eksigent autosampler
and separated with a linear gradient of acetonitrile/water, containing
0.1% formic acid, at a flow rate of 300 nl/min. A gradient from 1 to
40% acetonitrile in 29 min was used. For the SRM triggered MS2
measurements, MS2 spectra were recorded upon detection of an
SRM trace above a threshold of 1000 counts per second. An average
of 100 transitions (scan time 10 ms/transition) per run was used and
in SRM mode Q1 and Q3 were set to 0.7-unit mass resolution. MS2
spectra were recorded in enhanced product ion (EPI) mode for the
highest SRM transitions with the following measurement parameters;
dynamic fill time, Q1 at unit resolution, scan speed 10000 Da/s and
m/z range to 300–1000. Collision energies parameters for each tran-
sition were calculated according to the following equations: CE �
0.036 * (m/z) � 8.857 and CE � 0.0544 * (m/z) � 2.4099 (CE, collision
energy and m/z, mass to charge ratio) for doubly and triply charged
precursor ions, respectively.

Spectra Library Building—SRM-triggered MS2 spectra measure-
ments of the stable isotopically labeled standard peptides were
searched with the Mascot search engine (v. 2.4.1, MatrixScience)
against a database containing all the target proteins, concatenated to
a forward and reversed Escherischia coli database as well as com-
mon protein contaminants. Data were searched with full tryptic cleav-
age using 2.0 Da for the parent-ion mass tolerance and 0.8 Da for the
fragment-ion mass tolerance. Carboxyamidomethylation was used as
a fixed modification on cysteine and oxidation as variable modifica-
tion on methionine residues. Additionally, lysine and arginine were
searched with 13(C6)15(N2)(K) and 13(C6)15(N4)(R) as fixed labels,
because the C-terminal K or R residues of the synthetic peptides were
substituted with the corresponding heavy version. The output mascot
search results (i.e. dat files) from the measurements of stable isoto-
pically labeled standard peptides were exported and a spectral library
(i.e. blib file) was built using the skyline open source software. For
each peptide (i.e. light and heavy form), three transitions with optimal
SRM properties (34, 35) were selected. To ensure high sensitivity for
the low abundant proteins, two different time-scheduled SRM acqui-
sition methods were generated (supplemental File S2 and supple-
mental File S3).

SRM Data Processing

Acquired SRM raw files were imported into skyline daily. Automatic
peak picking was performed based on the MProphet algorithm for
SRM data processing and statistical error estimation (36). The sec-
ond-best peaks were used as controls in training the model. The
skyline files (supplemental File S4a) and skyline files quantification
results generated with both time-scheduled SRM acquisition meth-
ods were exported without filtering and merged in a single table
(supplemental File S4b). The file contains the results from 75 samples,
with measurements from 65 Proteins (190 Peptide Sequences, both
heavy and light) with in total 92024 quantitative values. To ensure high
data quality, the peptide assays were filtered according to their Q
Value. All assays with a Q Value greater 0.05 were removed. Also, all
assays with intensities reported as 0 were removed. Subsequentially,
all transitions with more than 30 NA’s (out of 75 measurements) were
removed from the dataset and the log2 foldchange of light to heavy
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ration were computed. The correlation between transitions of a pep-
tide was also assessed and applied for data quality filtering (see. 3A).
Transitions and peptides with a Pearson correlation below 0.5 were
removed (supplemental File S5 and supplemental File S6). To obtain
peptide quantification the median of the log2(l/h) ratio of the transi-
tions was taken. The median was also used to obtain the protein
log2(l/h) ratios for a protein. After filtering, 60 proteins remained for
analysis (supplemental File S7).

Statistical Analysis

Based on the log2(l/h) fold changes, p values using a two-sided, not
paired t test were computed (r-base). The p values were adjusted by
the Benjamini and Hochberg method (p.adjust) to obtain the False
Discovery Rate (FDR). Receiver Operating Charecteristic (ROC)
curves and their Area Under Curve (AUC) were computed using the
package pROC for single proteins to show their specificity and sen-
sitivity to differentiate the two selected conditions. To further improve
the classification accuracy, the generalized linear models (glm) were
used. A binomial family generalized linear model with logit link using
3 proteins as explanatory variable was fitted. To examine the per-
formance of all 60 proteins, all combinations of 3 proteins out of 60
was generated, which resulted in 34220 set. The models were fitted
with only 3 variables (proteins) to prevent model overfitting. For all
the fitted models, the response was predicted, and the AUC was
computed using the predictions. Based on the AUC, the models
were ranked. The top 10% of the models (3422 models with an AUC
larger than 0.916), were examined as to how frequently a protein
was utilized as well as the magnitude of its average coefficient.
Both these statistics, frequency of use and average value of the
coefficient were utilized to asses the utility of the proteins to dif-
ferentiate the healthy controls from the diseased groups (Fig. 5A).

String Data Analysis

The STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) was used for critical assessment and integration of protein-
protein interactions (http://string-db.org/). The interactions are drawn
from experimental evidence as well as predictions based on knowl-
edge gained from the other organisms (37) By using STRING, the 60
proteins that were prioritized earlier were mapped and a network
image was created (Fig. 5B).

RESULTS

Phase 1. Discovery Label-free Quantitative Proteomics

General Overview of Discovery Stage, Non-targeted
Quantitative Proteomic Findings—

In analyzing the collected saliva samples, the first approach
was to use a non-targeted shotgun proteomics combined
with a label-free quantitative approach whereby comparative
precursor-ion pattern is used, based on the direct comparison
of MS peptide signals (20, 38) (Fig. 1). Four hundred eighty-six
proteins were quantified including 24 bacterial (4.9%) and 8
fungal (1.6%) proteins (FDR 5.76% at protein level) (supple-
mental File S10). After exclusion of reverse sequences, the
identified bacterial proteins originated from Aggregatibacter
actinomycetemcomitans (n � 3), Campylobacter rectus (n �

1), Fusobacterium nucleatum (n � 2), Porphyromonas gingi-
valis (n � 2), Prevotella oralis (n � 1), Streptococcus angino-
sus (n � 1), Treponema denticola (n � 1), Veillonella dispar
(n � 2), Streptococcus oralis (n � 2). The identified fungal

FIG. 1. Schematic representation of the protein discovery and validation workflow by use of label-free quantitative (LFQ) proteomics
and Selected Reaction Monitoring (SRM) analysis. The shotgun proteomics study with case-control design (n � 67) was conducted to
dissect comparative saliva proteome along the different disease stages. An independent cohort (n � 82) was used to verify sixty-five candidate
markers by SRM. More details can be found under Experimental Procedures.
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proteins were derived from Candida albicans (n � 2) and
Saccharomyces cerevisiae (n � 1). Among those, only 7 were
represented by more than one peptide, therefore, they were
included in further comparative quantification.

Among 486 identified proteins, 126 was represented by a
single peptide whereas 360 proteins with more than 2 pep-
tides (10 of them were microbial origin) were used for further
comparative quantification (FDR 0.83% at protein level) (sup-
plemental File S11).

Discovery of Potential Candidate Proteins as Markers of
Periodontal Diseases—Further comparative analysis aimed to
determine whether significant quantitative differences could
be found between healthy controls and the diseased groups
(G, CP, AP). Only nine proteins were different between the
healthy and gingivitis and groups (Fig. 2A, supplemental File
S11). Clustering of the periodontitis cohort into “chronic (CP)”
and “aggressive (AP)” form subgroups, resulted into 67 and
100 proteins being significantly changed compared with
health, respectively (Fig. 2A, supplemental File S11). Among
those 62 and 63 were found at lower levels, whereas 5 and 37
were found at higher levels, in the CP and AP groups, respec-
tively. In the case of the 7 shared regulated proteins among
the studied groups, the expression levels of all were signifi-
cantly reduced in disease compared with the health (Fig. 2).
These included calmodulin-like protein 5 (CALML5), cysta-
tin-B (CSTB), extracellular matrix protein 1 (ECM1), carboxy-
lesterase 2 (EST2), Ig heavy chain V-III region, antileukopro-

teinase (SLPI) and cornifin-B (SPRR1B). All these proteins
were downregulated in disease compared with health, but the
magnitude of downregulation was much higher in periodon-
titis compared with gingivitis.

Although the abundance of the most microbial proteins was
not significantly altered between health and disease, the lev-
els of metallo-beta-lactamase of Treponema denticola and
glucose-6-phosphate isomerase of Prevotella oralis were sig-
nificantly higher in AP compared with H (by 1.80-fold, 1.88-
fold, respectively, p � 0.05). In contrast, the level of glycer-
aldehyde-3-phosphate dehydrogenase of Streptococcus
oralis was significantly lower by 3.7-fold (p � 0.05) in AP
compared with health.

A visual representation of protein abundances are provided
in the heat-maps of Fig. 2B where proteins are clustered in
rows and samples in columns. The scale represents arcsinh-
normalized protein abundance levels and ranges from low
(red) to high (blue) protein abundance. The colors at the top of
the heat map show the studied groups. The divisions between
the samples were not only based on the specified clinical diag-
nosis, despite the individuals from both periodontitis groups
tend to form clusters which excluded the H and G groups.

These significantly regulated human derived proteins be-
tween healthy controls and the diseased groups were further
categorized using the MetaCore software (https://portal.
genego.com, Thomson Reuters), as described earlier whereby
relevant pathways were then prioritized according to statisti-
cal significance (log2 ratio and p value) (39). The GO pathway
mapping revealed that the three most significantly regulated
processes in CP compared with H were “complement (C5a)
5a-induced chemotaxis”, “immunological synapse formation”
and “IC3b-induced phagocytosis” (supplemental File S12).
The specific proteins mapped on in these pathways were Heat
shock 27 kDa protein (HSP27), Cell division control protein 42
homolog (CDC42), RAP-1A, Ras-related C3 botulinum toxin
substrate 2 (RAC-2). The proteins found to be differentially
expressed in AP compared with H showed significant enrich-
ment of cellular and molecular processes involved in “cyto-
skeleton rearrangement,” “ECM and connective tissue prote-
olysis,” “immune response,” “response to hypoxia and
oxidative stress.” The top three scored GO pathway maps
were “ACM3 signaling,” “Interleukin (IL)-13 signaling,” and
“IL-17 signaling” (supplemental File S13), and the specific
proteins involved in these pathways were mucin 5B, mucin 7,
lactoferrin, Solute carrier family 4 member 1 (SLC4A1), CD14,
lacritin, MMP-8, MMP-9, Interleukin-1 receptor antagonist
protein (IL-1RN), UGRP2, NGAL.

Phase 2: Verification of Candidate Proteins in Saliva for
Periodontal Disease by LC-SRM-MS

To further verify the findings of our discovery label-free
quantitative proteomics experiments, we conducted a similar
case-control study with an independent large series of saliva

FIG. 2. A, Venn diagram summarizing the number of differentially
expressed proteins (p value �0.05 and �2 fold) and overlaps be-
tween health (H) and the diseased groups (G, AP, CP) by use of
label-free quantitative proteomics (LFQ). Gingivitis (G), Aggressive
Periodontitis (AP), Chronic Periodontitis (CP). B, Heat map of proteins
significantly regulated between H and the diseased groups (G, AP, CP).
Only significant and regulated proteins are represented (�2 fold and p
value �0.05). Each column represents an individual saliva sample, and
each row represents an individual protein. Clustering separating sam-
ples into sub-groups as Healthy (H): Yellow, Gingivitis (G): Green, Ag-
gressive Periodontitis (AP): Red, Chronic Periodontitis (CP): Orange.
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samples (n � 82) using a SRM-based targeted proteomics
approach (Fig. 1). The characteristics of the saliva samples
belonging to the different groups of patients can be found in
supplemental File S1. The proteins chosen for this targeted
study included fifty proteins selected from the top ten most
significantly enriched pathways, GO processes and process
networks (supplemental File S12, S13) of our LFQ data using
GeneGo�s MetaCore Pathway tool. Additionally, we selected
eleven proteins from our LFQ data that were reported to be

involved in disease process or differentially expressed ac-
cording to earlier literature. Although, for SRM quantifica-
tion, normalization of different samples can be done based
on total protein amounts, a more accurate approach is the use
of invariantly expressed housekeeping proteins (35). Therefore,
four invariant proteins (Alpha-2-macroglobulin (A2M), Enolase
(ENOA), Hemopexin (HEMO), Fibrinogen beta chain (FIBB))
were included in our target protein list as housekeeping pro-
teins. Hence, this led to a list of 65 target proteins that were

FIG. 2—continued
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monitored across our cohort of saliva samples by SRM. Pro-
teotypic peptides sequences for each protein were chosen
based on the selection criteria described in the experimental
procedures, which resulted in a total of 193 proteotypic pep-
tides with up to 3 peptides per protein. These SRM assays fall
in Tier 2 category as described earlier (26).

Our SRM assays successfully detected and quantified 143
peptides and 60 proteins across 75 saliva samples, which
correspond to a success rate of 74 and 92% at the peptide
and protein level, respectively. A comprehensive list of pep-
tide/protein identification and quantification can be found in
supplemental File S14. We observed that the use of ENOA for
normalization decreases within group variance and improves
prediction. This may be expected as enolases are highly con-
served proteins found in almost all human tissues (40). An
example of quality check of SRM measurements on precursor
and protein level can be found in Fig. 3A and the expression
trends of these proteins were visualized by heat-maps in Fig.
3B.

SRM Verification of Candidate Proteins as Biomarkers for
Health Versus Periodontal Disease—Further comparative
analysis aimed to determine whether significant quantitative
differences could be found between “healthy” (H) and “dis-
eased” saliva (G, CP, AP). We used different algorithms to
distinguish protein signatures between health and disease, to
provide the diagnostic performance of each protein. Out of 60
proteins, 22 were differentially expressed between health and
disease with a fold change greater than 2 and a p value of less
than 0.05 (Fig. 4A). Only two of those were significantly higher

in disease, whereas 20 were significantly lower in disease.
Predictive power of these proteins are further reported as
ROC area under the curve (AUC). In Figs. 4B and 4C, twelve
proteins with the highest AUC (AUC 0.83–0.91) between
health and disease are presented.

Although it was observed that already a single protein can
have a good discriminating power between health and dis-
ease state (see Fig. 4B), we further assessed if the combina-
tion of three proteins does increase the sensitivity and spec-
ificity. Using the expression levels of all possible protein triplets,
we build 34220 logistic regression models as described under
“Experimental Procedures” and used them to predict health and
disease states. The models were ranked by AUC and then the
top 10% of the models 3422 was selected. It was examined as
to how frequently a protein was utilized and its average coeffi-
cient was computed. Both these statistics, frequency of use and
average value of the coefficient are show in Fig. 5A. These
statistics are a measure of the utility of the proteins to differen-
tiate the healthy controls and diseased groups (Fig. 5A).

The top three proteins associated with positive coefficients
in the logistic regression model are MMP9, RAP1A, ARPC5
which all have higher expression levels in disease than in
health. These proteins can be considered as counterindicative
of health. The top 2 proteins associated with positive coeffi-
cients in the logistic regression model are CLUS and DBMT1,
which have higher levels in health than in disease. We further-
more examined which pairs of protein give the best predic-
tions (Table I). The protein pair with the highest predictive
power is ARPC5 and CLUS. All the models which include the

FIG. 3. A, Quality check (QC) of SRM measurements on precursor and protein level. Top panel shows a line plot of the light to heavy ratios
of the tree fragments y4, y5, y8 for peptide LFDQAFGLPR in all samples, whereas the bottom panel shows the light to heavy ratios of the two
peptides quantified for protein HSPB1. The heatmap on the bottom envisages the correlation between the petides, to the right one can see
the color scale used to encode the correlation [�1,1]. B, Heat map of all quantified proteins in the studied groups (H, G, AP, CP). Each column
represents an individual saliva sample, and each row represents an individual protein. Clustering separating samples into sub-groups as
Healthy (H): Yellow, Gingivitis (G): Green, Aggressive Periodontitis (AP): Red, Chronic Periodontitis (CP): Orange.
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pair (58 in total) have an AUC of between 0.96–0.98 with an
average AUC of 0.97. The second best and third best pairs of
proteins which can be used for prediction are: DMTB1 and
RAP1A with an average AUC of 0.95 and DMTB1 and MMP9
with an average AUC of 0.94.

Protein Network Analysis—The nature of differentially ex-
pressed proteins was further charecterized by generating pro-
tein-protein interaction maps by use of STRING (Fig. 5B). We
used 60 proteins as “seeds,” and checked the interconnec-
tivity between them. The results indicated that several of

highly expressed proteins in health were host-derived proteo-
lytic enzymes involved in anti-microbial activities such as
SERPIN family proteins whereas many of the low abundant
proteins were directly involved in matrix degradation and hy-
perinflammatory responses such as MMP-9 and TREM-1.

DISCUSSION

To compile a robust list of potential biomarkers for peri-
odontal disease we carried out a comprehensive, non-tar-
geted and targeted quantitative proteomic analysis in two

FIG. 3—continued
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large independent cohorts, using saliva as a diagnostic bio-
logical fluid. To the best of our knowledge, this is the first
report combining discovery and targeted proteomics work-
flows for the study of periodontal diseases. The distilled pro-
teomic profiling resulted in a reasonable number of proteins
that can be followed practically, but also successfully identify
a novel panel of candidate disease markers, thus marking a
substantial improvement over the current state of biomarker
evaluation. In a first non-targeted label-free LC-MS step, all
detectable candidate markers were surveyed for a differential
expression between health and disease, in an unbiased man-
ner. Then, together with the already known markers from the
literature, the newly identified candidates from LFQ were sub-
jected to a more rigorous quantitative analysis using targeted
LC-SRM in an independent cohort, for qualifying and validat-
ing the candidate biomarker panel.

The advantage conferred by utilizing a label-free platform
was to simultaneously identify and quantify more than 360
proteins with more than two peptides. This lead to the dis-
covery of many less known regulated proteins, both of host
and microbial origin, beyond those previously established in
the literature. In the case of the 10 identified microbial pro-
teins, the levels of most of them were not significantly altered
between health and disease. Yet, select poteins of T. denti-
cola and P. oralis were significantly higher, and one of S. oralis
was significantly lower in disease, corroborating an upregu-
latory trend of pathogen proteins and a downregulatory trend
of commensal proteins in disease. The numbers of quantified
proteins in this study were considerably higher than those
reported earlier by qualitative workflows such as two-dimen-
sional gel electrophoresis, which identified only few proteins
with altered abundance and pin-pointed already known highly

FIG. 4. A, Volcano plot of proteins significantly regulated between periodontal health and disease. The vertical dashed lines indicate a 2 fold
change whereas the horizontal lines indicate the p value of 0.05. In blue triangles are marked the proteins which were the most frequently used
by the logistic regression models. B, Receiver-operating characteristic (ROC) curve and corresponding area under the curve (AUC) statistics
for the selected markers. The true positive rate (sensitivity) is plotted as a function of the false positive rate (1-specificity). The area under the
ROC curve is a measure of how well the model distinguishes health from disease. C, The regulation pattern of the selected markers between
health and disease.
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abundant proteins, such as ones belonging to the S100 family
(41). Such differences may be attributable to different study
designs, including clinical classification criteria, source of sa-
liva, collection time and stimulation status as well as differ-
ences in instrumentation. A recent in-depth analysis of the
saliva proteome in individuals with a good oral health status
demonstrated that there are considareble changes in the
saliva proteome throughout the day (42). During the morn-
ing, the salivary proteome is possibly more reflective of an
undisturbed host-bacterial interaction status. We have also

identified considerable inter-individual variations in total
protein concentrations despite that the saliva collection was
standardized by time (31). As the sample to sample varia-
bility is inevitable in saliva, for meaningful quantification of
proteins in saliva, an appropriate normalization strategy
including uniform loading with equal amounts of total pro-
tein is necessary.

In the present data set, 67 of the proteins were more than
2-fold regulated in chronic periodontitis compared with
health. In a more recent small-scale study using label-free

FIG. 4—continued
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proteomic workflow in saliva, a total of 152 human proteins
with more than one unique peptide were reported, only 3 of
which (S100P, defensin 3, and Plastin-2) showed a more than
2-fold difference in abundance between health and chronic
periodontitis (43). In the case of Plastin-2, the present findings
corroborate our earlier work showing lack of regulation in
chronic periodontitis (44). Considering the interindividual var-
iability among humans (45, 46), large sample sizes would be
expected to lead to more precise estimations of the analyzed
data. The next analysis applied to the regulated set of proteins
was the enrichment of functional terms as defined in the
Metacore database, instead of individual proteins, which is a
more innovative approach toward biomarker discovery. When
considering the GO classifications for the pathway maps af-
fected in chronic periodontitis, ten pathways passed the
significance level defined by an FDR of 0.01. The analysis
confirmed the C5a-induced chemotaxis pathway at rank 1,
consistent with current knowledge of the biological pathways
implicated in the disease, as its pharmacological inhibition in
experimental models can abrogate periodontitis (47). The
present study also reports that there are at least 100 proteins
which are diffentially expressed in the saliva of healthy indi-

viduals and aggressive periodontitis patients. The ontology
enrichment of proteins with altered expression led to identifi-
cation of the most represented processes including “cytoskel-
eton rearrangement,” “extracellular matrix and connective
tissue proteolysis,” “immune response,” and “response to
hypoxia and oxidative stress.” These findings are well in line
with our earlier work employing label-free LC/MSe in local
gingival tissue exudates collected from a smaller cohort of
aggressive periodontitis patients (10). Although the pathogen-
esis of aggressive periodontitis remains still elusive, the role of
a hyperactive local immune response and oxidative stress
could be important in disease initiation and progression (48).
A significant overpresentation of certain unexpected signaling
pathways was also identified, such as “Transport_Muscarinic
acetylcholine receptor M3 (ACM3) signaling” and “Immune
response_IL-13 signaling via Janus kinase-signal transducer
and activator of transcription (JAK-STAT)”, along with well
known ones such as the “IL-17 signaling” pathway. The top-
scored pathway “ACM3 signaling” is a mediator of both elec-
trolyte and water secretion in salivary and lacrimal glands (49).
Signaling dysfunction of this pathway can lead to decrease in
salivary secretion, which could favor microbial biofilm accu-

FIG. 5. A, Histogram of AUC for all 34220 fitted models. Red line - AUC 90% quantile. Variables frequency (y axis) and average absolute
coefficient weights (x axis) in top 10% of models (3422) with AUC range 0.90–0.97. B, STRING visualization of the proteins quantified by SRM.
The nodes are the proteins and the connecting lines represent STRING interaction. Highlighted green are the proteins with a significant p value
and log2 fold change larger or smaller than 1. In blue are marked the proteins which have passed the p value and fold change threshold as
well as were most frequently used by the logistic regression models (CLUS and DMBT1). In red are the proteins which were used by the logistic
regression models but did not have a fold change larger than 2 (MMP9, ARPC5 and RAP1A).
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mulation on the tooth surfaces. Agonists of ACM3 are often
used clinically to stimulate salivary secretion in patients with
Sjögren’s syndrome (50), which is associated with higher
incidence and severity of periodontitis (51). The regulated
proteins in this pathway included lactoferrin, lacritin, sCD14,
Mucin 5B and Mucin 7, which all were down regulated in
disease, and SLC4A1, which was upregulated. The reduced
levels of lactoferrin and lacritin suggest that anti-microbial

properties of saliva are diminished in these patients with
aggressive periodontitis. Moreover, the reduced levels of mu-
cins suggest a decline in their defensive role in saliva, and
consequently a higher susceptibility for local infection (52).
The IL-17 family is known to play a critical role in periodontal
inflammation, with a strinking influence in young individuals
with immune deficiencies (53). It is therefore not surprising
that the IL-17 signaling pathway was deregulated in this co-

FIG. 5—continued
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hort of aggressive periodontitis patients. Although IL-17 pro-
tein itself was not detected or differentially expressed in the
present data set, it may still be present and involved in the
associated disease processes. This is supported by the fact
that, despite its reasonable accuracy, precision at predicting
protein abundance and its good coverage (54), LFQ it still
lacks absolute accuracy and achievable sensitivity at lower
protein concentrations such as pg/ml (55), where IL-17 is
expected to range. Collectively, these proteomic changes
corroborate the nature of aggressive periodontitis, in that a
local impairment of the immune defense in otherwise system-
ically healthy patients.

As a next step, we applied the SRM-based targeted pro-
teomics approach, which confers greater sensitivity toward
low abundance proteins, high-level of reproducibility and
sample throughput capabilities (23, 56). Accurate quantifica-
tion is crucial, as periodontal diseases reflect modifications of
the abundance of the proteins, rather than a binary state.
Although we have not used all the identified proteins from the
LFQ step and selected approximately half of them from the
top ten most significantly enriched pathways, this approach
does not disqualify the non-selected ones. In fact, these
constitute a database for future validations. The developed
SRM assays detected simultaneously 60 of the 65 LFQ-driven
candidate protein biomarkers in an independent cohort.
Choosing the proteotypic peptides with high ionization prop-
erties was essential for the successful detection of the pro-
teins in saliva by SRM. Most of the peptides that were se-
lected from our LFQ-driven part of the study resulted into a
high detection rate (92%) in saliva by SRM. Additionally, we
used the publicly available SRM database such as SRM atlas
to increase the number of detectable proteotypic peptides per
protein (57). However, a well-known trade-off between the
number of peptides/transitions and the sensitivity of the SRM
assay narrowed down our assay list to only three peptides/
protein during the assay development phase. Novel emerging
targeted technologies such as Parallel Reaction Monitoring
(PRM) (58), Sequential Window Acquisition of all Theoretical
Spectra (SWATH) (59), or data independent analysis (DIA)-
based workflows (60) may well improve the degree of multi-
plexing in terms of analytes, for which our study could serve
as a benchmark for other saliva-related studies. Although
SRM have several advantages for detection and accurate
quantification of a predetermined proteins in saliva, selection

of signature peptides that uniquely represent the target pro-
tein may be a major challenge in the case of some class of
proteins. Out of 193 peptides, 26 peptides were not unique for
a given protein (supplemental File S15). However, these pep-
tides were mainly matching proteins belonging to the same
families. Though this approach may be effective for most
protein targets, it was not so for serpins, histones and cyst-
atins. Earlier studies have shown that top-down approaches
may be advantageous for detection of detection of post-
translational modifications of cystatins, as well as their se-
quence polymorphisms (61–63).

Performance of a diagnostic test is often measured by
paired comparisons, or sensitivity and specificity, rather than
one single statistics summary. Selection of a small, highly
predictive set of markers is a general problem in any study of
classification nature. Common approaches used to evaluate
the quality of biomarker signatures include the determination
of ROC and the measurement of AUC (64). In our set of data,
sensitivity and specificity analysis by ROC narrowed-down to
12 out of the 60 SRM-measured proteins giving good predic-
tive power between periodontal diseases and health. Yet, only
Cystatin SN exhibited predictive power with AUC � 0.90.
Cystatin SN is a major secreted cysteine proteinase inhibitor
and its levels are reportedly higher in the saliva of periodon-
tally healthy individuals, compared with diseased ones (65,
66). Logistic regression is another common method for se-
lecting the best set of markers, for improving sensitivity and
specificity simultaneously (64). In the present study, this ap-
proach has led to improvement of the classification accuracy
by increasing ROC values from 0.83–0.90, to up to 0.97. The
analysis has shown that building a good predictive model
requires the inclusion of proteins which are both down-, as
well as upregulated in the disease. Among the most frequently
utilized proteins in the best performing logistic regression
models were MMP9, RAP1A, ARPC5, CLUS, and DBMT1
(Table I). CLUS and DBMT1 are significantly upregulated with
a fold change greater than two, whereas MMP9, ARPC5, and
RAP1A are significantly downregulated (Fig. 4A). Although the
available literature does not directly implicate CLUS and
DMBT1 in periodontal diseases, DMBT1 (deleted in malignant
brain tumors 1), or namely glycoprotein-340, is an abundant
protein in multiple body fluids including saliva (67, 68). DMBT1
is an antimicrobial and inflammation-regulating molecule in-
volved mucosal innate immunity, and its saliva-purified form

TABLE I
Prediction accuracy of protein pairs

a b mean (AUC) min (AUC) max (AUC)

ARPC5 CLUS 0.966061904 0.961873638 0.976034858
DMBT1 RAP1A 0.95404177 0.946623094 0.970588235
DMBT1 MMP9 0.944200285 0.935729847 0.959694989
ARPC5 DMBT1 0.941026219 0.924836601 0.969498911
CLUS RAP1A 0.941026219 0.927015251 0.968409586
ARPC5 HSPB1 0.937852152 0.927015251 0.970588235
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has been shown to suppress a variety of bacteria and viruses
(69). Hence, reduced DMBT1 levels in saliva may impair innate
immunity, and it is therefore reasonable to postulate that it
could serve as a risk indicator for the disease. Clusterin
(CLUS) is a secreted multifunctional glycoprotein with impor-
tant roles in protein homeostasis/proteostasis. Although it has
been functionally implicated in age-related diseases, includ-
ing tumorigenesis, cardiovascular and metabolic syndrome
(70) its role in periodontal disease is under-investigated.
CLUS is reportedly detected more often in gingival crevicular
fluid in health than periodontal disease, as identified by LCMS
(71). As the main role of CLUS is to counter-balance the
deleterious effects of oxidative stress, it is reasonable to
hypothesize that its reduced levels in the periodontal milieu
may lead impaired resistance against oxidative stress, one of
the driving forces of periodontal tissue damage (72).

To investigate whether these five statistically significant
associations described above have a proven biological func-
tional association, we further characterized protein-protein
interactions between the selected biomarkers. Understanding
protein-protein interactions and their functional implications is
imperative for dissecting mechanisms of disease at the mo-
lecular level (73). The analysis by STRING reveled that CLUS
was one of the center nodes strongly over-connected with
RAP1A, MMP-9, and several SERPIN family proteins. MMP-9
has a well-established role in disease, demonstrated also by
the higher salivary levels of MMP-9 in periodontitis com-
pared with health (74, 75). RAP1A, a unique member of the
Ras G protein family, is known to regulate several proteins
controling diverse biological functions (76), including inflam-
mation (77) and regulation of osteoclast function and bone
resorption (78), consistent with the histopathological traits
of periodontitis.

The present study approached salivary biomarker discov-
ery and validation for periodontal diseases by coupling label-
free untargeted and SRM-based targeted proteomics meth-
ods. The initial open-ended LFQ-proteomics platform led to
the discovery of more than a hundred protein candidates
which is becoming community available resource. These were
subsequently utilized for SRM-guided validation of 60 repro-
ducibly quantifiable proteins, which finally yielded a panel of
five biomarkers with high predictive value for periodontal
diseases. This narrowed-down protein panel displayed
high specificity and sensitivity, enriching the pool of credible
clinical biomarkers for the development of more sensitive
antibody-based diagnostic assays. Yet, the quantum leap
brought by this study lies in the possibility to apply in the
field of periodontal diagnostics an earlier proposed innova-
tive top-to-bottom operational pipeline (79), confirming that
this platform can be pursued further for periodontal bio-
marker discovery and clinical validation in periodontal pa-
tient cohorts.
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