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Type 1 diabetes (T1D) is associated with increased risk of cardiovascular disease (CVD), but hyperglycemia
(measured by hemoglobin A1c (HbA1c) level), which characterizes T1D, has itself been an inconsistent predictor of
CVD incidence. However, only baseline HbA1c or a summary measure (e.g., mean level over follow-up) is usually
analyzed. Joint models allow simultaneous modeling of repeatedly measured longitudinal covariates, using ran-
dom effects, and time-to-event data. We evaluated data from the Pittsburgh Epidemiology of Diabetes Complica-
tions Study, an ongoing prospective cohort study of childhood-onset T1D that has followed participants since
1986–1988 and has repeatedly found little association between baseline HbA1c or mean follow-up HbA1c and cor-
onary artery disease incidence. Of 561 participants without CVD at baseline, 263 (46.9%) developed CVD over a
period of 25 years (1986–2014). In joint models, each 1% unit increase in HbA1c trajectory was associated with a
1.26-fold increased risk of CVD (95% confidence interval: 1.07, 1.45), after adjustment for baseline levels of other
CVD risk factors, and a 1.13-fold increased risk (95% confidence interval: 0.99, 1.32) after adjustment for updated
mean levels of other CVD risk factors. These findings, which support the need for good glycemic control to prevent
CVD in persons with T1D, underscore the importance of utilizing methods incorporating within-subject variation
over time when analyzing and interpreting longitudinal cohort study data.

cardiovascular disease; glycemic control; longitudinal studies; random effects; type 1 diabetes

Abbreviations: AER, albumin excretion rate; CAD, coronary artery disease; CI, confidence interval; CVD, cardiovascular disease;
DCCT, Diabetes Control and Complications Trial; EDC, Epidemiology of Diabetes Complications; EDIC, Epidemiology of
Diabetes Interventions and Complications; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LEAD, lower-extremity arterial
disease; T1D, type 1 diabetes.

Cardiovascular disease (CVD), comprising coronary artery
disease (CAD), cerebrovascular disease, and peripheral vascu-
lar disease, is a major complication of type 1 diabetes (T1D).
As in the general population, CVD is a significant contributor
to morbidity and early mortality among persons with T1D;
however, the risk of CVD is greatly increased in those with
T1D (1). The reasons for this increased risk are not fully under-
stood, since the hyperglycemia (measured by hemoglobin A1c

(HbA1c) level) that characterizes T1D is itself an inconsistent
predictor of CVD incidence (2–10). In the Diabetes Control
and Complications Trial (DCCT)/Epidemiology of Diabetes
Interventions and Complications (EDIC) Study, persons in the

intensive glycemic control arm of the study had significantly
lower incidence of CAD than persons in the conventional ther-
apy arm (11). In addition, updated mean HbA1c level was an
important predictor of CVD incidence, second only to age (12).
In contrast, observational studies have not foundHbA1c to con-
sistently predict CVD (4, 6, 7, 13–16). One potential explana-
tion for these discordant results is that, in the DCCT, intensive
therapy began early in the course of T1D, raising the suggestion
that glycemia may be associated with the initiation of atherogene-
sis (17). In the Pittsburgh Epidemiology of Diabetes Complica-
tions (EDC) Study, a prospective cohort study of childhood-onset
T1D, HbA1c level at baseline did not predict CAD incidence.
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However, decreasing absolute change between baseline HbA1c
and most recent HbA1c was associated with lower CAD risk
over 16 years of follow-up (8). In the Finnish Diabetic Nephrop-
athy Study, HbA1c variability, but not mean HbA1c level over
time, predicted CVD (16).

In contrast to this inconsistent relationship between HbA1c
and CAD, glycemia has been more consistently associated
with risk of lower-extremity arterial disease (LEAD) (4, 18, 19).
This differencemay indicate that hyperglycemia is more strongly
associated with stable atherosclerosis, which characterizes
LEAD, rather than plaque rupture, which precipitates acute
coronary events (17). Stable atherosclerosis is characterized
by plaques with high fibrous and lower macrophage and lipid
content and evenly distributed atherosclerosis around the cir-
cumference of the vessel lumen (20). Unstable atherosclerosis is
characterized by “vulnerable plaques,” with a necrotic core that
is highly prone to producing a thrombus, or clot, and is covered
by thin, fibrous caps (20). In the general population, most acute
coronary events are precipitated by rupture of vulnerable plaques,
with a small proportion resulting from erosion of more stable
plaques (21, 22). In persons with T1D, these proportions are
reversed, with most events being due to plaque erosion (21, 22),
which is consistent with the hypothesis that hyperglycemia
is associated with more stable atherosclerosis.

In observational cohort studies which examine these associa-
tions, baseline HbA1c level is most often used to predict CVD
incidence. This approach, while generally providing valid re-
sults, does not account for changes in glycemic control over
time that may affect risk (23). Both stability of predictors and
change in predictors are relevant for estimating the likelihood
of an event; thus, incorporation of within-subject patterns is im-
portant for understanding the risk factor–outcome relationship
(23–26). Analyses of data from longitudinal cohort studies rarely
make full use of serially measured risk factors. Failing to uti-
lize all available data could lead to invalid results (23).

One common approach for accommodating changes in risk
factors in statistical analyses is to model change directly (27).
However, this approach does not account for the actual pattern
of change, assumes a constant, linear increase or decrease over
time, and may underestimate variance (28). Another approach
for utilizing longitudinal data is to model the average level of
the risk factor over the follow-up period. This method has simi-
lar drawbacks to modeling change, leading to a loss of impor-
tant information regarding variability (29).

Joint modeling allows both longitudinal repeated covariates
and time-to-event data to be modeled together, as detailed by
Wulfsohn and Tsiatis (30). Comprehensive overviews of joint
models have also been provided by Tsiatis and Davidian (26),
Rizopoulos (31), and Diggle et al. (32). Briefly, a joint model
consists of 2 submodels. A mixed-effects model characterizes
the trajectory of the longitudinal covariate over time. The mod-
eled random effects are simultaneously included in a survival
model, so the relationship between the covariate trajectory and
time to the event can be estimated (26). These random effects,
or subject-specific deviations from the average effect, are assumed
to be the underlying link between the longitudinal repeated
measures and the subject-specific hazard for the time-to-event
outcome (23).

While survival analyses and repeated-measures analyses
employing mixed models have been performed separately

using EDC Study data, joint modeling of both processes has
not previously been carried out, to our knowledge. Thus, our
objective in this study was to assess the relationship between
serially measured HbA1c level and the incidence of CVD
among persons with T1D using joint modeling. Addition-
ally, we examined the specific manifestations of CVD sepa-
rately to explore whether the relationship with HbA1c differs
by type.

METHODS

Study population

The Pittsburgh EDC Study is a prospective cohort study of
childhood-onset (age<17 years) T1D. All participants (n = 658)
were diagnosed, or seen within 1 year of diagnosis, at Children’s
Hospital of Pittsburgh (Pittsburgh, Pennsylvania) between 1950
and 1980. The cohort has been described in detail elsewhere (33,
34). Briefly, participants have been followed since 1986–1988,
with biennial examinations being carried out for 10 years and
with biennial questionnaires and further examinations being
administered at 18 and 25 years postbaseline thereafter. Follow-
up for the current analysis extended through October 31, 2014.
Research protocols were approved by the University of Pitts-
burgh Human Research Protection Office, and all participants
provided written informed consent.

Ascertainment of cardiovascular outcomes

Participants were followed for 25 years to assess incidence
of total CVD, defined as the first instance of CAD (fatal CAD,
myocardial infarction, revascularization procedure, blockage
≥50%, ischemic electrocardiogram, or angina), stroke, or LEAD
(ankle-brachial index<0.8, lower-limb amputation due to vascu-
lar cause, or intermittent claudication). Fatal events were as-
certained using medical records, death certificates, autopsy
reports, and/or interviews with next of kin and were classified
according to the system used in the Diabetes Epidemiology
Research International Study (35). Myocardial infarction, revas-
cularization/blockage, and strokewere self-reported by the parti-
cipants and confirmed by medical records. Amputation was
ascertained by self-report and/or physician examination. Ankle-
brachial index was determined using a Doppler blood-flow
detector with the subject lying supine. Ratios for each of the
right and left tibialis posterior and dorsalis pedis systolic pres-
sures were calculated, with arm systolic pressure as the denomi-
nator. Intermittent claudication was assessed using the Rose
questionnaire (36). In addition to total CVD, each manifestation
of CVD (CAD, stroke, and LEAD) was assessed as a separate
outcome. Participants with prevalent CVD at baseline were
excluded from analyses of the corresponding outcome.

Assessment of CVD risk factors

Risk factors for CVD were assessed at baseline and at 2, 4,
6, 8, 10, and 18 years of follow-up. Fasting blood samples
were taken to measure levels of hemoglobin A1/HbA1c, lipids,
and serum creatinine. From baseline through 10 years, HbA1
values were converted to DCCT-aligned HbA1c values using a
regression equation derived from duplicate assays (DCCT
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HbA1c = 0.14 + 0.83(EDC HbA1)) (8). At 18 years, HbA1c
was measured using the DCA 2000 analyzer (Bayer Healthcare
LLC, Elkhart, Indiana) and converted to DCCT-aligned HbA1c
bymeans of the equationDCCTHbA1c= (EDCHbA1c − 1.13)/
0.81. Duplicate assays were performed to compare DCA and
original DIAMAT HbA1 measures (Bio-Rad Laboratories,
Hercules, California); the 2 methods had high agreement (8).
From baseline through 10 years, serum total cholesterol and
triglyceride concentrations were determined enzymatically (37,
38); high-density lipoprotein (HDL) cholesterol level was deter-
mined using a modified precipitation technique (39, 40). At 18
years, serum lipid levels were measured using the Cholestech
LDX analyzer (Cholestech Corporation, Hayward, California).
Non-HDL cholesterol level was calculated by subtracting the
HDL cholesterol value from the total cholesterol value. White
blood cell count was determined using a Coulter counter (Coul-
ter Electronics, Inc., Hialeah, Florida). Three seated blood pres-
sure readingswere takenwith a random-zero sphygmomanometer;
the mean of the second and third readings was used in analy-
ses, according to the Hypertension Detection and Follow-up
Program protocol (41). Hypertension was defined as blood
pressure ≥140/90 mm Hg or use of blood-pressure–lowering
medication. Past and current smoking status was obtained by
self-report.

At study visits, 3 timed urine samples (24-hour, overnight, and
4-hour collections taken over 2 weeks) were collected. Urinary
albumin level was measured in each sample by immunonephe-
lometry (42), and albumin excretion rate (AER) was calculated;
the natural log-transformed median of the 3 AERs was used in
analyses. Serum creatinine level was measured using an Ecta-
chem 400 Analyzer (Eastman Kodak Company, Rochester, New
York). Glomerular filtration rate was estimated by means of the
Chronic Kidney Disease Epidemiology Collaboration creatinine
equation (43). Positive baseline renal disease statuswas defined as
AER ≥200 μg/minute in at least 2 of 3 timed urine samples,
estimated glomerular filtration rate <60 mL/minute/m2, or a
history of renal transplant or dialysis.

Statistical analyses

Longitudinal HbA1c level and time to first CVD event were
the outcomes of interest, and theywere examined simultaneously
using joint models (30, 43). To allow for curvature in the trajec-
tory of HbA1c values at both the individual and cohort levels, we
fitted the longitudinal HbA1c submodel with fixed and random
linear and quadratic terms for time and random intercept. Thus,
the population mean trajectory was assumed to be quadratic and
the individual trajectories for subjects allowed for curvature, but
in participants with fewer than 3 time points, the individuals’
curves were shrunk toward the population mean and fitted as a
quadratic trajectory. Alternative forms of the models were also
fitted, including 1) a model with linear fixed effects (no qua-
dratic term), with both the intercept and linear terms allowed to
be random, and 2) a linear fixed-effect model which allowed a
random quadratic trajectory for each individual. Conclusions
about the relationship of HbA1c to CVD risk did not differ, but
an examination of the mean HbA1c plots indicated curvature in
the cohort trajectories, so only results from the first parameter-
ization described above are presented. HbA1c was censored at
the time point prior to occurrence of the CVD event for cases,

to avoid potential bias associated with glycemic control chang-
ing in response to a CVD event. For the survival submodel, we
employed a Cox proportional hazards model. Interactions
between longitudinal HbA1c and important predefined sub-
groups, specifically diabetes diagnosis cohort (diagnosed in
1950–1964 versus 1965–1980), sex, and renal disease status
at baseline, were tested to determine whether the longitudinal
HbA1c trajectory differed by group. Analyses were repeated
separatelywith time to CAD, stroke, and LEAD as the outcome,
respectively.

In primary analyses, all models adjusted for other baseline
CVD risk factors; final models were selected using backward
selection and likelihood ratio tests. The risk factors considered
for adjustment were diabetes duration (years), non-HDL cho-
lesterol level, hypertension, ln(AER), and white blood cell
count, except in cases where collinearity was a concern (i.e.,
models including the diagnosis cohort indicator did not adjust
for diabetes duration and those including the renal disease sta-
tus indicator did not adjust for ln(AER)). In alternative analy-
ses, models adjusted for the updated mean value of each factor
(i.e., the mean value of all available measurements prior to
event or censoring), instead of baseline values, as an estimate
of mean exposure to the risk factors over the same follow-up
period in which HbA1c was measured. This approach allowed
a more direct comparison with the recent report from the DCCT/
EDIC Study, where updated mean risk factors were found to be
strongly associated with CVD (12). All joint modeling was per-
formed using the joineR (44) routine in R (R Foundation for
Statistical Computing, Vienna, Austria).

RESULTS

Of 561 participants without prevalent CVD at baseline, 263
(46.9%) developed CVD during the 25-year follow-up period
(1986–2014). Baseline characteristics are shown in Table 1
according to CVD incidence status. The participants who devel-
oped CVDwere older; had a longer duration of T1D; had high-
er body mass index, waist:hip ratio, non-HDL cholesterol level,
triglyceride level, blood pressures, white blood cell count, and
AER; and had a lower estimated glomerular filtration rate. They
were also more likely to be taking blood-pressure–lowering
medication, to have hypertension, and to have a history of smok-
ing. The median follow-up time for CVD ascertainment was
15.0 years (range, 0.2–27.7 years). Participants had a median of
4 HbA1c measurements (interquartile range, 2–6) prior to their
incident CVD event. The survival curve for total CVD by dia-
betes diagnosis cohort is shown in Figure 1. The observed mean
longitudinal HbA1c profile by CVD incidence status is shown in
Figure 2.

Three models were fitted to associate HbA1c trajectories
(longitudinal component) with time to total CVD (survival com-
ponent): 1) a joint model where both the longitudinal and sur-
vival submodels did not adjust for other covariates; 2) a joint
model where both the longitudinal and survival submodels
adjusted for baseline covariates; and 3) an alternative model
where both the longitudinal and survival submodels adjusted
for covariates averaged over the follow-up period (i.e., updated
mean values) (Table 2). In model 1, the association parameter
was 0.26 (95% confidence interval (CI): 0.07, 0.40), indicating
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that there was strong evidence of an association between the lon-
gitudinal and survival submodels. In other words, HbA1c was
associated with CVD risk at any given time t. In model 2, after
adjustment for baseline diabetes duration, non-HDL cholesterol
level, hypertension, and ln(AER), the association parameter of
0.23 (95% CI: 0.07, 0.37) was only slightly attenuated. Thus,
each 1% unit increase in HbA1cwas associated with a 1.26-fold
increase (exp(0.23) = 1.26) in the risk of CVD (95% CI: 1.07,
1.45), after covariate adjustment. Inmodel 3, adjusted for diabetes
duration and updated mean non-HDL cholesterol and ln(AER),
the association parameter was 0.12 (95%CI: 0.006, 0.28), corre-
sponding to a 1.13-fold increased risk of CVD (95% CI: 0.99,
1.32) per 1% unit increase in HbA1c.

There was a significant interaction between diabetes diagnosis
cohort and time, with respect to HbA1c trajectory (βtime×HbA1c =
0.13 (95% CI: 0.07, 0.19); β = −× 0.01time HbA1c2 (95% CI:

−0.19, −0.04)). The observed longitudinal trajectories of
HbA1c by diabetes diagnosis cohort are depicted in Figure 3.
HbA1c was generally lower in the earlier diagnosis cohort
(1950–1964) throughout follow-up, and this cohort also experi-
enced a more dramatic decline in HbA1c after 6 years of follow-
up than the more recent diagnosis cohort (1965–1980). Despite
this interaction between diagnosis cohort and time, with respect
to HbA1c, the association between HbA1c trajectory and CVD
risk was similar in both cohorts (1950–1964: per 1% unit increase
in HbA1c, hazard ratio = 1.16 (95% CI: 0.92, 1.46); 1965–1980:
per 1% unit increase in HbA1c, hazard ratio = 1.15 (95% CI:
0.94, 1.36)). There were no significant interactions between
sex or baseline renal disease status and time with respect to
HbA1c.

The results from joint models of longitudinal HbA1c and
the incidence of each specific manifestation of CVD, adjusted

Table 1 Baseline Characteristics of a Type 1 Diabetes Cohort by 25-Year Total Cardiovascular Disease Incidence Status (n = 561 Persons Free
of Prevalent Cardiovascular Disease at Baseline)a, Pittsburgh Epidemiology of Diabetes Complications Study, 1986–1988

Incident CVD (n = 263) No CVD (n = 298)

Mean (SD) No. of Persons % Mean (SD) No. of Persons %

Age, years 29.9 (7.4) 24.3 (7.0)

Duration of diabetes, years 21.5 (7.4) 16.2 (6.4)

Age at diabetes onset, years 8.4 (3.9) 8.1 (4.3)

Female sex 130 49.4 147 49.3

Nonwhite race 5 1.9 7 2.4

Bodymass indexb 23.8 (3.2) 23.3 (3.2)

Waist:hip ratio 0.84 (0.07) 0.81 (0.07)

Hemoglobin A1c level, % 8.78 (1.50) 8.71 (1.53)

Cholesterol level, mg/dL

HDL cholesterol 53.7 (12.6) 54.9 (12.0)

Non-HDL cholesterol 146.5 (42.8) 122.7 (34.8)

Triglyceride level, mg/dLc 88.5 (65–131) 75.0 (56–102)

Systolic blood pressure, mmHg 116.3 (16.2) 109.0 (11.4)

Diastolic blood pressure, mmHg 74.1 (11.6) 70.6 (9.6)

Use of blood pressuremedication 37 14.1 3.2% (9) 9 3.0

Hypertensiond 59 22.4 5.4% (16) 16 5.4

Hemoglobin, g/dL 15.0 (1.7) 15.3 (1.5)

White blood cell count, cells × 103/μL 6.77 (1.97) 6.17 (1.56)

Serum creatinine level, mg/dL 1.11 (1.18) 0.90 (0.61)

Albumin excretion rate, μg/minutec 27.8 (8.8–406.3) 10.9 (6.3–28.7)

Estimated glomerular filtration rate, mL/minute/1.73 m2 98.4 (33.2) 111.7 (28.4)

Insulin dose, units/kg of body weight 0.77 (0.27) 0.81 (0.24)

Smoking status

Never smoker 148 56.3 209 70.1

Former smoker 47 17.9 33 11.1

Current smoker 68 25.9 56 18.8

Abbreviations: CVD, cardiovascular disease; HDL, high-density lipoprotein; SD, standard deviation.
a Total n = 658 persons examined at study baseline; 97 were excluded due to prevalent CVD at baseline.
b Weight (kg)/height (m)2.
c Values are expressed asmedian (interquartile range).
d Hypertension was defined as blood pressure≥140/90 mmHg or use of blood-pressure–loweringmedication.
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for baseline CVD risk factors, are shown in Table 3. The longi-
tudinal trajectory of HbA1c was significantly associated with
each manifestation of CVD, with a 1% unit increase in HbA1c
being associated with approximately 1.2-fold increased risks
of both CAD (95% CI: 1.04, 1.38) and LEAD (95% CI: 1.05,
1.43) and a 1.9-fold increased risk of stroke (95% CI: 1.32,
2.51). Adjustment for updated mean risk factor levels slightly
attenuated these associations (Table 4). In these alternative mod-
els, a 1% unit increase in HbA1c was associated with a 1.1-fold

increased risk of CAD (95%CI: 0.97, 1.31), a 1.7-fold increased
risk of stroke (95% CI: 1.23, 2.10), and a 1.2-fold increased risk
of LEAD (95%CI: 1.01, 1.40).
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Figure 1. Survival free of cardiovascular disease (CVD) among per-
sons with type 1 diabetes (T1D) over 25 years of follow-up, by diabetes
diagnosis cohort, Pittsburgh Epidemiology of Diabetes Complications
Study, 1986–2014. Vertical lines represent censored observations.
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Figure 2. Observed mean hemoglobin A1c (HbA1c) levels among
persons with type 1 diabetes over 25 years of follow-up, by incident
total cardiovascular disease (CVD) status, Pittsburgh Epidemiology
of Diabetes Complications Study, 1986–2014. HbA1c was censored
at the time point immediately prior to the CVD event for cases. Num-
bers of participants represented at each time point are given in Web
Table 1 (available at https://academic.oup.com/aje). Bars, standard
errors.

Table 2. Estimated Coefficients for Time to Total Cardiovascular
Disease From a Joint ModelWith a Quadratic Longitudinal
Hemoglobin A1c Submodel and a Cox Survival Submodel, Pittsburgh
Epidemiology of Diabetes Complications Study, 1986–2014

Submodel and Covariate Estimatea 95%CI

Model 1b

Longitudinal HbA1c level

Intercept 8.88 8.74, 8.98

Time, years 0.05 0.02, 0.08

Time2 −0.005 −0.007,−0.004

Cox survival

Association parameter 0.26 0.07, 0.40

Model 2c

Longitudinal HbA1c level

Intercept 8.09 7.70, 8.43

Time, years 0.05 0.02, 0.08

Time2 −0.005 −0.007,−0.003

Type 1 diabetes duration −0.03 −0.05,−0.02

Non-HDL cholesterol level 0.01 0.008, 0.01

Hypertension −0.32 −0.67, 0.009

Cox survival

Type 1 diabetes duration 0.07 0.05, 0.09

Non-HDL cholesterol level 0.01 0.005, 0.01

Hypertension 0.56 0.16, 0.93

ln(AER) 0.16 0.07, 0.22

White blood cell count 0.09 0.03, 0.17

Association parameter 0.23 0.07, 0.37

Model 3d

Longitudinal HbA1c level

Intercept 7.82 7.39, 8.29

Time, years 0.05 0.02, 0.08

Time2 −0.006 −0.008,−0.004

Type 1 diabetes duration −0.04 −0.05,−0.02

Non-HDL cholesterol level 0.01 0.006, 0.013

ln(AER) 0.11 0.04, 0.17

Cox survival

Type 1 diabetes duration 0.08 0.05, 0.10

Non-HDL cholesterol level 0.01 0.006, 0.01

ln(AER) 0.24 0.17, 0.33

Association parameter 0.12 −0.006, 0.28

Abbreviations: AER, albumin excretion rate; CI, confidence interval;
CVD, cardiovascular disease; HbA1c, hemoglobin A1c; HDL, high-density
lipoprotein.

a Per unit (see Table 1).
b Unadjusted.
c Adjusted for baseline levels of CVD risk factors.
d Adjusted for updatedmean levels of CVD risk factors.
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DISCUSSION

Our findings show that the longitudinal trajectory of HbA1c
levels was associated with 25-year CVD incidence in this
cohort of persons with long-standing childhood-onset T1D, and
the associations were similar across the specific manifestations
of CVD. The results from these joint models demonstrate that
CVD risk is associated with the combination of a subject’s
baseline Hba1c level and rate of HbA1c change over the course
of follow-up, a longitudinal process best characterized by a qua-
dratic curve. This model allows for both individual-level and
cohort-level quadratic trajectories to be fitted andmeasures their
effect on CVD risk. Taking into account the entire longitudinal
trajectory of HbA1c, a 1% unit increase in the HbA1c trajectory
is associated with a 26% increased risk of developing CVD,
after adjustment for baseline CVD risk factors, and a 13%
increased risk of CVD in alternative analyses adjusting for each
participant’s updated mean values of CVD risk factors over
follow-up.

Our results provide additional insight into the role of HbA1c
in CVD risk in comparison with other methods, such as model-
ing of baselineHbA1c (8, 45), averageHbA1c, change between
the first and last measurements (8), or a measure of cumulative
glycemic exposure (4) as predictors. In prior analyses of EDC
data using baseline HbA1c, investigators were unable to dem-
onstrate an association between glycemia and CAD incidence
(4, 45). As the plots of HbA1c trajectories in Figure 2 show,
baseline HbA1c did not differ between participants who sub-
sequently developed CVD and those who did not. However,
over time, the HbA1c trajectories between the 2 groups grew
farther apart. Interestingly, in both groups, HbA1c level rose
until 6 years of follow-up, albeit more so in the CVD cases, and
began to decline steadily thereafter. This peak corresponds to
the calendar years 1992–1994, and the subsequent decline
probably reflects the implementation of intensive insulin therapy
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Figure 3. Observed mean hemoglobin A1c (HbA1c) levels among
persons with type 1 diabetes, by diabetes diagnosis cohort, Pittsburgh
Epidemiology of Diabetes Complications Study, 1986–2014. Num-
bers of participants represented at each time point are given in Web
Table 2. Bars, standard errors.

Table 3. Estimated Coefficients for Time to SpecificManifestations
of Cardiovascular Disease From Joint ModelsWith a Quadratic
Longitudinal Hemoglobin A1c Submodel and a Cox Survival
Submodel, Adjusted for Baseline Covariates, Pittsburgh
Epidemiology of Diabetes Complications Study, 1986–2014

Submodel and Covariate Estimatea 95%CI

Coronary Artery Disease

Longitudinal HbA1c level

Intercept 8.05 7.60, 8.40

Time, years 0.05 0.02, 0.08

Time2 −0.005 −0.007,−0.004

Type 1 diabetes duration −0.03 −0.04,−0.02

Non-HDL cholesterol level 0.009 0.005, 0.01

Hypertension −0.45 −0.80,−0.14

ln(AER) 0.08 0.02, 0.12

Cox survival

Type 1 diabetes duration 0.09 0.07, 0.11

Non-HDL cholesterol level 0.008 0.005, 0.01

Hypertension 0.50 0.09, 0.91

ln(AER) 0.15 0.05, 0.23

Association parameter 0.20 0.03, 0.36

Stroke

Longitudinal HbA1c level

Intercept 8.19 7.86, 8.51

Time, years 0.05 0.03, 0.08

Time2 −0.006 −0.007,−0.005

Type 1 diabetes duration −0.02 −0.04,−0.04

Non-HDL cholesterol level 0.01 0.007, 0.01

Hypertension −0.38 −0.68,−0.17

Cox survival

Type 1 diabetes duration 0.08 0.04, 0.11

Non-HDL cholesterol level 0.01 0.007, 0.02

ln(AER) 0.26 0.09, 0.37

Association parameter 0.62 0.28, 0.92

Lower-Extremity Arterial Disease

Longitudinal HbA1c level

Intercept 8.27 7.94, 8.62

Time, years 0.05 0.02, 0.08

Time2 −0.005 −0.007,−0.004

Type 1 diabetes duration −0.03 −0.05,−0.02

Non-HDL cholesterol level 0.009 0.007, 0.012

Cox survival

Type 1 diabetes duration 0.06 0.05, 0.09

Non-HDL cholesterol level 0.01 0.008, 0.016

Association parameter 0.23 0.04, 0.32

Abbreviations: AER, albumin excretion rate; CI, confidence interval;
HbA1c, hemoglobin A1c; HDL, high-density lipoprotein.

a Per unit (see Table 1).
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in clinical practice following publication of the results of the land-
mark DCCT (46). In another prior EDC analysis based on 16-
year follow-up, absolute change in HbA1c was significantly
associated with CAD risk (8). In those analyses, CAD cases had
a mean HbA1c increase of 0.62% between the first and last
measures, while noncases had a mean decrease of 0.09%.
The current analyses added information by incorporating all
available HbA1c measures and within-subject variability, al-
lowing us to quantify the increase in CVD risk associated with
each 1% unit increase in HbA1c trajectory while also adjusting
for the mean levels of other risk factors over time.Wewere also
able to account for the concave downward curvature of the
HbA1c trajectory by incorporating quadratic terms into the lon-
gitudinal submodels.

Attenuation of the association between HbA1c trajectory and
CVD incidence was greater when we adjusted for the updated
mean values of other risk factors, as compared with adjusting
for baseline values. Additional analyses carried out to determine
which factors led to attenuation of the association between
HbA1c and CVD incidence revealed that mean non-HDL cho-
lesterol had the greatest impact (data not shown). Non-HDL
cholesterol is traditionally an important CVD risk factor,
regardless of diabetes status, and persons with T1D typi-
cally do not have higher non-HDL cholesterol levels than
the general population. In a report using data from the National
Health and Nutrition Examination Surveys, Carroll et al. (47)
estimated that US adults had a mean non-HDL cholesterol con-
centration of 155 mg/dL (95% CI: 153, 157) between 1988 and
1994. This value is markedly higher than the mean non-HDL
cholesterol level observed in the EDC cohort both at the
1986–1988 baseline (Table 1) and over the course of follow-
up (mean level over all study cycles = 136.3 (standard devia-
tion), 36.3) mg/dL); thus, non-HDL cholesterol itself does not
seem to explain the increased CVD risk associated with T1D in
this cohort. It is possible, however, that the effect of non-HDL
cholesterol could be modified by diabetes, such that CVD risk
is increased at lower levels of non-HDL cholesterol. Even given
the observed attenuation of the association between HbA1c and
CVD risk after adjustment for non-HDL cholesterol, these re-
sults demonstrate that glycemic control may explain more of
the increased CVD risk than has previously been shown in obser-
vational studies. These findings are consistent with recent data
from the DCCT/EDIC Study, where updated weighted-mean
HbA1c level was found to be an important predictor of CVD
incidence independent of lipid levels (12).

From a clinical perspective, these results provoke questions
regarding how the observed relationship can be used to deter-
mine which patients should be targeted for CVD prevention
based on their level of glycemic control. Data from a longitudi-
nal cohort study can be used to examine etiological pathways
that may take many years of follow-up to be revealed. This
information is in contrast to what is clinically available, where
often only a current snapshot of a risk factor level is accessible.
An important unanswered question is whether some individuals
are resistant to the benefits of intensive insulin therapy and con-
tinue to be at high risk for CVD, regardless of HbA1c control.
As Figure 2 shows, in the Pittsburgh EDC Study, the pattern
of glycemic control was generally worse over time in persons
who developed CVD compared with those who did not. How-
ever, it is unclear whether hyperglycemia in CVD cases was

Table 4. Estimated Coefficients for Time to SpecificManifestations
of Cardiovascular Disease From Joint ModelsWith a Quadratic
Longitudinal Hemoglobin A1c Submodel and a Cox Survival
Submodel, Adjusted for UpdatedMean Covariates, Pittsburgh
Epidemiology of Diabetes Complications Study, 1986–2014

Submodel and Covariate Estimatea 95%CI

Coronary Artery Disease

Longitudinal HbA1c level

Intercept 7.79 7.33, 8.23

Time, years 0.05 0.02, 0.08

Time2 −0.006 −0.007,−0.004

Type 1 diabetes duration −0.03 −0.05,−0.02

Non-HDL cholesterol level 0.010 0.006, 0.01

ln(AER) 0.12 0.06, 0.17

Cox survival

Type 1 diabetes duration 0.10 0.08, 0.12

Non-HDL cholesterol level 0.008 0.005, 0.01

ln(AER) 0.23 0.15, 0.30

White blood cell count 0.10 0.02, 0.17

Association parameter 0.11 −0.03, 0.27

Stroke

Longitudinal HbA1c level

Intercept 7.90 7.41, 8.27

Time, years 0.05 0.02, 0.08

Time2 −0.006 −0.007,−0.004

Type 1 diabetes duration −0.03 −0.05,−0.02

Non-HDL cholesterol level 0.009 0.006, 0.01

ln(AER) 0.11 0.07, 0.16

Cox survival

Type 1 diabetes duration 0.07 0.03, 0.12

Non-HDL cholesterol level 0.01 0.005, 0.02

ln(AER) 0.43 0.25, 0.60

Association parameter 0.52 0.21, 0.74

Lower-Extremity Arterial Disease

Longitudinal HbA1c level

Intercept 7.96 7.53, 8.35

Time, years 0.05 0.02, 0.07

Time2 −0.005 −0.007,−0.004

Type 1 diabetes duration −0.04 −0.05,−0.03

Non-HDL cholesterol level 0.009 0.006, 0.012

ln(AER) 0.11 0.06, 0.17

Cox survival

Type 1 diabetes duration 0.06 0.04, 0.08

Non-HDL cholesterol level 0.014 0.008, 0.018

ln(AER) 0.16 0.06, 0.24

Association parameter 0.19 0.01, 0.34

Abbreviations: AER, albumin excretion rate; CI, confidence interval;
HbA1c, hemoglobin A1c; HDL, high-density lipoprotein.

a Per unit (see Table 1).
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undertreated or if this group is resistant to the benefits of appro-
priate treatment. The mean insulin dose between CVD cases
and noncases did not differ at baseline (Table 1) or at any other
point during follow-up (data not shown), suggesting the possi-
bility that equivalent treatment for glycemia was less effective
in persons who went on to develop CVD. It is possible that
there are genetic factors driving both resistance to glycemic
control and CVD risk. Identifying such factors is an important
area of future research.

Our study had many strengths. The Pittsburgh EDC Study is
a well-characterized, prospective cohort study with 25 years of
follow-up that was designed to ascertain CVD incidence and
clinical risk factors. CVD events were verified using death certi-
ficates and medical records by reviewers who were masked to
participants’ risk factor status. Only HbA1c measurements
taken prior to CVD incidence were included in these analyses,
to minimize the potential for reverse causality. Using joint
modeling, we were able to incorporate all HbA1c measure-
ments and model the longitudinal trajectory while taking
within-subject variability into account. The major advan-
tage of joint modeling is that it allows the relationship between
longitudinal repeated measures and a time-to-event outcome
to be examined. As Lim et al. (23) emphasized, joint modeling
may be particularly useful when the goal is to use longitudinal
measures of biomarkers to improve prediction of an event. An
objective of future research is to utilize this method to fit and
validate a prediction equation for CVD that incorporates
HbA1c trajectories. Another advantage of using joint modeling
in this type of application is that it is able to reduce the poten-
tial for bias associated with event-free survival far beyond the
last measurement of a longitudinal covariate by accounting for
the subject-specific random effects (26). Use of simpler meth-
ods, such as modeling the two processes separately, may lead
to bias if some subjects survive far beyond the most recent
follow-up. Joint modeling is able to account for this differential
follow-up time by including the subject-specific random effects
within the survival model (23, 48).

One limitation of our study is that the cohort is 98% white,
due to the demographics of Allegheny County, Pennsylvania
(<15% African-American) and the lower incidence of T1D
among African Americans during the period when the cohort
was diagnosed. Consequently, it is unknown whether these re-
sults apply to more diverse groups. There was also a potential
for “survivor bias,” particularly in the older diagnosis subco-
hort (1950–1964), because prevalent cases of CVD at baseline
were excluded. A related issue is the potential problem of
competing risks, particularly death from other causes. Here we
presented results from cause-specific hazard models which esti-
mated the association of HbA1c trajectory with the hazard func-
tion of CVD. It has been demonstrated that when the objective
is to estimate the association between a risk factor and an out-
come, rather than to predict the outcome, the cause-specific haz-
ard provides a valid estimate (49). In the current study, the
effect of competing risks was expected to be greater in the earlier
diagnosis cohort (1950–1964), since this cohort was older,
with greater mortality than the later diagnosis cohort (1965–
1980). When stratified analyses were performed by cohort, we
observed similar associations between HbA1c trajectory and
CVD incidence in both cohorts, providing assurance that compet-
ing risks of death from non-CVD causes were not meaningfully

influencing the results. Another limitation was the change in
methodology for measuring non-HDL cholesterol at the 18-
year time point. A sensitivity analysis excluding the 18-year
non-HDL cholesterol data from the updated mean value pro-
duced estimates similar to those from the models including all
data.

A limitation of joint modeling is that the censoring process is
assumed to be independent of the random effects. If this
assumption is violated, then parameter estimates may be biased
(30). It is difficult to directly assess this assumption, as random
effects are latent quantities and observed data do not provide
adequate information for modeling the censoring mechanism.
However, simulation studies have found that estimates resulting
from joint models tend to be robust to misspecification of the
distribution of random effects (31).

In conclusion, using joint modeling, we demonstrated that
the longitudinal trajectory of HbA1c levels was associated with
25-year CVD incidence in this cohort of persons with long-
standing childhood-onset T1D and that associations were simi-
lar across the specific manifestations of CVD. These results
contrast with those of previous analyses that used only baseline
or meanHbA1c as a predictor, which did not reveal a consistent
relationship between glycemic control and CVD (8, 45). Thus,
these findings underscore the importance of utilizing methods
that incorporate within-subject variation when analyzing data
from longitudinal cohort studies.

ACKNOWLEDGMENTS

Author affiliations: Department of Epidemiology,
Graduate School of Public Health, University of Pittsburgh,
Pittsburgh, Pennsylvania (Rachel G. Miller, Tina Costacou,
Akira Sekikawa, Trevor J. Orchard); and Department of
Biostatistics, Graduate School of Public Health, University
of Pittsburgh, Pittsburgh, Pennsylvania (Stewart J.
Anderson).

This study was supported by the National Institute of
Diabetes and Digestive and Kidney Diseases (grant R01-
DK-034818) and the Rossi Memorial Fund (Pittsburgh,
Pennsylvania). S.J.A. was supported by the National
Institute of Mental Health (grant P30-MH-090333).

T.J.O. provides consulting for the Research Triangle
Institute (Research Triangle Park, North Carolina).

REFERENCES

1. Krolewski AS, Kosinski EJ, Warram JH, et al. Magnitude and
determinants of coronary artery disease in juvenile-onset,
insulin-dependent diabetes mellitus. Am J Cardiol. 1987;59(8):
750–755.

2. Lloyd CE, Kuller LH, Ellis D, et al. Coronary artery disease in
IDDM. Gender differences in risk factors, but not risk.
Arterioscler Thromb Vasc Biol. 1996;16(6):720–726.

3. Koivisto VA, Stevens LK, Mattock M, et al. Cardiovascular
disease and its risk factors in IDDM in Europe. EURODIAB
IDDMComplications Study Group.Diabetes Care. 1996;
19(7):689–697.

Am J Epidemiol. 2018;187(7):1520–1529

Joint Modeling of HbA1c and CVD in Type 1 Diabetes 1527



4. Forrest KY, Becker DJ, Kuller LH, et al. Are predictors of
coronary heart disease and lower-extremity arterial disease in
type 1 diabetes the same? A prospective study. Atherosclerosis.
2000;148(1):159–169.

5. Weis U, Turner B, Gibney J, et al. Long-term predictors of
coronary artery disease and mortality in type 1 diabetes.QJM.
2001;94(11):623–630.

6. Orchard TJ, Olson JC, Erbey JR, et al. Insulin resistance-
related factors, but not glycemia, predict coronary artery
disease in type 1 diabetes: 10-year follow-up data from the
Pittsburgh Epidemiology of Diabetes Complications Study.
Diabetes Care. 2003;26(5):1374–1379.

7. Soedamah-Muthu SS, Chaturvedi N, Toeller M, et al. Risk
factors for coronary heart disease in type 1 diabetic patients in
Europe: the EURODIAB Prospective Complications Study.
Diabetes Care. 2004;27(2):530–537.

8. Prince CT, Becker DJ, Costacou T, et al. Changes in glycaemic
control and risk of coronary artery disease in type 1 diabetes
mellitus: findings from the Pittsburgh Epidemiology of
Diabetes Complications Study (EDC).Diabetologia. 2007;
50(11):2280–2288.

9. Orchard TJ, Costacou T.When are type 1 diabetic patients at risk
for cardiovascular disease?Curr Diab Rep. 2010;10(1):48–54.

10. Nathan DM,McGee P, Steffes MW, et al. Relationship of
glycated albumin to blood glucose and HbA1c values and to
retinopathy, nephropathy, and cardiovascular outcomes in the
DCCT/EDIC Study.Diabetes. 2014;63(1):282–290.

11. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes
treatment and cardiovascular disease in patients with type 1
diabetes.N Engl J Med. 2005;353(25):2643–2653.

12. Diabetes Control and Complications Trial/Epidemiology of
Diabetes Interventions and Complications (DCCT/EDIC)
Research Group. Risk factors for cardiovascular disease in type
1 diabetes.Diabetes. 2016;65(5):1370–1379.

13. Klein BE, Klein R, McBride PE, et al. Cardiovascular disease,
mortality, and retinal microvascular characteristics in type 1
diabetes: Wisconsin Epidemiologic Study of Diabetic
Retinopathy. Arch Intern Med. 2004;164(17):1917–1924.

14. Secrest AM, Prince CT, Costacou T, et al. Predictors of and
survival after incident stroke in type 1 diabetes.Diab Vasc Dis
Res. 2012;10(1):3–10.

15. Deckert T, Yokoyama H,Mathiesen E, et al. Cohort study of
predictive value of urinary albumin excretion for
atherosclerotic vascular disease in patients with insulin
dependent diabetes. BMJ. 1996;312(7035):871–874.

16. Wadén J, Forsblom C, Thorn LM, et al. A1C variability
predicts incident cardiovascular events, microalbuminuria, and
overt diabetic nephropathy in patients with type 1 diabetes.
Diabetes. 2009;58(11):2649–2655.

17. Orchard TJ, Costacou T, Kretowski A, et al. Type 1 diabetes and
coronary artery disease.Diabetes Care 2006;29(11):2528–2538.

18. Olson JC, Erbey JR, Forrest KY, et al. Glycemia (or, in
women, estimated glucose disposal rate) predict lower
extremity arterial disease events in type 1 diabetes.
Metabolism. 2002;51(2):248–254.

19. Sahakyan K, Klein BE, Lee KE, et al. The 25-year cumulative
incidence of lower extremity amputations in people with type 1
diabetes.Diabetes Care. 2011;34(3):649–651.

20. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion
without rupture into a lipid core. A frequent cause of coronary
thrombosis in sudden coronary death. Circulation. 1996;93(7):
1354–1363.

21. Silva JA, Escobar A, Collins TJ, et al. Unstable angina: a
comparison of angioscopic findings between diabetic and
nondiabetic patients. Circulation. 1995;92(7):1731–1736.

22. Davies MJ. The composition of coronary-artery plaques.
N Engl J Med. 1997;336(18):1312–1314.

23. Lim HJ, Mondal P, Skinner S. Joint modeling of longitudinal
and event time data: application to HIV study. J Med Stat
Inform. 2013;1:1.

24. Edwards LJ. Modern statistical techniques for the analysis of
longitudinal data in biomedical research. Pediatr Pulmonol.
2000;30(4):330–344.

25. Eggleston EP, Laub JH, Sampson RJ. Methodological
sensitivities to latent class analysis of long-term criminal
trajectories. J Quant Criminol. 2004;20(1):1–26.

26. Tsiatis AA, Davidian M. Joint modeling of longitudinal and
time-to-event data: an overview. Stat Sin. 2004;14:809–834.

27. Twisk JW, de VenteW. The analysis of randomised controlled
trial data with more than one follow-up measurement. A
comparison between different approaches. Eur J Epidemiol.
2008;23(10):655–660.

28. Locascio JJ, Atri A. An overview of longitudinal data analysis
methods for neurological research.Dement Geriatr Cogn Dis
Extra. 2011;1(1):330–357.

29. Gibbons RD, Hedeker D, DuToit S. Advances in analysis of
longitudinal data. Annu Rev Clin Psychol. 2010;6:79–107.

30. WulfsohnMS, Tsiatis AA. A joint model for survival and
longitudinal data measured with error. Biometrics. 1997;53(1):
330–339.

31. Rizopoulos D. Joint Models for Longitudinal and Time-to-
Event Data, With Applications in R. Boca Raton, FL: Chapman
and Hall/CRC Press; 2012.

32. Diggle PJ, Sousa I, Chetwynd AG. Joint modelling of repeated
measurements and time-to-event outcomes: the fourth
Armitage Lecture. Stat Med. 2008;27(16):2981–2998.

33. Wagener DK, Sacks JM, LaPorte RE, et al. The Pittsburgh study
of insulin-dependent diabetes mellitus. Risk for diabetes among
relatives of IDDM.Diabetes. 1982;31(2):136–144.

34. Pambianco G, Costacou T, Ellis D, et al. The 30-year natural
history of type 1 diabetes complications: the Pittsburgh
Epidemiology of Diabetes Complications Study experience.
Diabetes. 2006;55(5):1463–1469.

35. Diabetes Epidemiology Research International Mortality Study
Group. International evaluation of cause-specific mortality and
IDDM.Diabetes Care. 1991;14(1):55–60.

36. Rose G, Blackburn H. Cardiovascular Survey Methods.
Geneva, Switzerland: World Health Organization; 1968.
(WHO Technical Manual no. 56).

37. Bucolo G, David H. Quantitative determination of serum
triglycerides by the use of enzymes.Clin Chem. 1973;19(5):
476–482.

38. Allain CC, Poon LS, Chan CS, et al. Enzymatic determination
of total serum cholesterol.Clin Chem. 1974;20(4):470–475.

39. Warnick GR, Albers JJ. Heparin–Mn2+ quantitation of high-
density-lipoprotein cholesterol: an ultrafiltration procedure for
lipemic samples. Clin Chem. 1978;24(6):900–904.

40. Laboratory Methods Committee. Lipid Research Clinics
Program: Manual of Laboratory Operations. Vol. 1. Lipid and
Lipoprotein Analysis. Washington, DC: US Government
Printing Office; 1974. (DHEW publication no. 75-628).

41. Hypertension Detection and Follow-up Program Cooperative
Group. The Hypertension Detection and Follow-up Program.
Prev Med. 1976;5(2):207–215.

42. Ellis D, Coonrod BA, Dorman JS, et al. Choice of urine sample
predictive of microalbuminuria in patients with insulin-dependent
diabetes mellitus.Am JKidney Dis. 1989;13(4):321–328.

43. Levey AS, Stevens LA, Schmid CH, et al. A new equation to
estimate glomerular filtration rate. Ann Intern Med. 2009;
150(9):604–612.

Am J Epidemiol. 2018;187(7):1520–1529

1528 Miller et al.



44. Philipson P, Sousa I, Diggle P, et al. joineR—Joint Modeling
of Repeated Measurements and Time-to-Event Data. 2012.
https://cran.r-project.org/web/packages/joineR/index.html.
Accessed August 10, 2016.

45. Orchard TJ, Olsen JC, Erbey JR, et al. Insulin resistance-
related factors, but not glycemia, predict coronary artery
disease in type 1 diabetes: 10-year follow-up data from the
Pittsburgh Epidemiology of Diabetes Complications Study.
Diabetes Care. 2003;26(5):1374–1379.

46. Diabetes Control and Complications Trial Research Group,
Nathan DM, Genuth S, et al. The effect of intensive treatment
of diabetes on the development and progression of long-term

complications in insulin-dependent diabetes mellitus. N Engl J
Med. 1993;329(14):977–986.

47. Carroll MD, Kit BK, Lacher DA, et al. Trends in lipids and
lipoproteins in US adults, 1988–2010. JAMA. 2012;308(15):
1545–1554.

48. Tsiatis AA, Degruttola V, Wulfsohn MS. Modeling the
relationship of survival to longitudinal data measured
with error. Applications to survival and CD4 counts
in patients with AIDS. J Am Stat Assoc. 1995;90(429):
27–37.

49. Freidlin B, Korn EL. Testing treatment effects in the presence
of competing risks. Stat Med. 2005;24(11):1703–1712.

Am J Epidemiol. 2018;187(7):1520–1529

Joint Modeling of HbA1c and CVD in Type 1 Diabetes 1529

https://cran.r-project.org/web/packages/joineR/index.html

	Hemoglobin A1c Level and Cardiovascular Disease Incidence in Persons With Type 1 Diabetes: An Application of Joint Modeling...
	METHODS
	Study population
	Ascertainment of cardiovascular outcomes
	Assessment of CVD risk factors
	Statistical analyses

	RESULTS
	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


