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Abstract

Motivation: As cancer genomics initiatives move toward comprehensive identification of genetic

alterations in cancer, attention is now turning to understanding how interactions among these

genes lead to the acquisition of tumor hallmarks. Emerging pharmacological and clinical data

suggest a highly promising role of cancer-specific protein–protein interactions (PPIs) as druggable

cancer targets. However, large-scale experimental identification of cancer-related PPIs remains

challenging, and currently available resources to explore oncogenic PPI networks are limited.

Results: Recently, we have developed a PPI high-throughput screening platform to detect PPIs

between cancer-associated proteins in the context of cancer cells. Here, we present the OncoPPi

Portal, an interactive web resource that allows investigators to access, manipulate and interpret a

high-quality cancer-focused network of PPIs experimentally detected in cancer cell lines. To facili-

tate prioritization of PPIs for further biological studies, this resource combines network connectivity

analysis, mutual exclusivity analysis of genomic alterations, cellular co-localization of interacting

proteins and domain–domain interactions. Estimates of PPI essentiality allow users to evaluate the

functional impact of PPI disruption on cancer cell proliferation. Furthermore, connecting the

OncoPPi network with the approved drugs and compounds in clinical trials enables discovery of

new tumor dependencies to inform strategies to interrogate undruggable targets like tumor sup-

pressors. The OncoPPi Portal serves as a resource for the cancer research community to facilitate

discovery of cancer targets and therapeutic development.

Availability and implementation: The OncoPPi Portal is available at http://oncoppi.emory.edu.

Contact: andrey.ivanov@emory.edu or hfu@emory.edu
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1 Introduction

Protein–protein interactions (PPIs) play pivotal roles in biological

processes in cells. Recent advances in technology and proteomics

have enabled large-scale, high-throughput screening (HTS) studies

of PPIs (Huttlin et al., 2015; Rolland et al., 2014; Vo et al., 2016).

These studies, performed mostly in normal human HEK293T cells

or yeast, have led to the discovery of thousands of PPIs involved in

hundreds of metabolic and signaling pathways (Kanehisa et al.,

2017; Ritz et al., 2016). A rapidly growing number of PPIs detected

with various methods under different physiological conditions are

now available in large PPI databases, providing a general landscape

of human interactome (Chatr-Aryamontri et al., 2015; Huttlin et

al., 2017; Orchard et al., 2014; Szklarczyk et al., 2015; Warde-

Farley et al., 2010). However, in cancer cells, gene mutations, dele-

tions or amplifications disturb the normal balance between death

and survival signals. The genomic alterations promote the acquisi-

tion of cancer hallmarks (Hanahan and Weinberg, 2011; Vogelstein

et al., 2013) through a re-wired network of oncogenic PPIs (Ivanov

et al., 2013). Emerging pharmacological and clinical data suggest a

highly promising role for cancer-specific PPIs as druggable cancer

targets (Ivanov et al., 2013; Nero et al., 2014; Scott et al., 2016).

Thus, identification of such cancer-associated PPIs could lead to

new biological models for oncogenic signaling and provide new ave-

nues for cancer therapeutic development. A number of powerful

approaches have been developed to predict oncogenic PPIs based on

mRNA expression data analysis (Potts et al., 2013; Wang et al.,

2009), analysis of mutual exclusivity of genomic alterations (Babur

et al., 2015; Ciriello et al., 2012), or through the analysis of genomic

dependencies in loss-of-function screens (Cowley et al., 2014;

Rosenbluh et al., 2012). However, experimental detection of cancer-

associated PPIs in a cancer cell environment remains a challenge,

and resources focused on physical oncogenic PPIs are limited

(Alanis-Lobato et al., 2017; Meng et al., 2015; Van Coillie et al.,

2016).

To facilitate discovery of PPIs involved in regulation of tumori-

genesis we have recently developed a PPI HTS platform to detect the

PPIs between cancer-associated proteins in the context of cancer

cells (Li et al., 2017). Characterization of �3500 PPIs tested for a

set of lung-cancer related proteins resulted in a network of high-

confidence direct PPIs, termed OncoPPi (version 1) (Li et al., 2017).

Overlap of OncoPPi with PPIs described in public databases

revealed that more than 85% of the OncoPPi interactions are novel.

Validation of newly discovered PPIs with conventional affinity pull-

down assays indicated that at least 80% of OncoPPi PPIs can be

confirmed as true-positive interactions (Li et al., 2017). Moreover,

the network is enriched with PPIs that share known interacting

structural domains, cellular co-localization, and show mutual exclu-

sivity of genomic alterations that further support the HTS data.

To enable streamlined and integrated analysis of PPI datasets,

here we present the OncoPPi Portal, a web-based resource that inte-

grates the network of experimentally detected cancer-associated

PPIs with cancer genomics, pharmacological and protein structural

data. OncoPPi Portal is a unique, multifunctional web resource that

facilitates analysis of PPI datasets to uncover new oncogenic pro-

grams and support cancer research.

2 Materials and methods

2.1 OncoPPi gene library
A set of 83 lung cancer-associated genes was curated based on the

analysis of genomic alterations in lung cancer patients and literature

searches (Li et al., 2017). It includes the major oncogenes (e.g.

EGFR, KRAS, BRAF, MYC, PIK3CA, ERBB2) and tumor suppres-

sors (e.g. TP53, STK11, CDKN2A, SMARCA4 or RB1). In addition

to major tumor drivers, the protein library is populated with key

regulators of oncogenic pathways, such as 14-3-3, MAPK14 (p38)

or Beclin1. Structurally, the various classes of proteins (such as

transmembrane receptors, kinases, GTPases, transcription factors or

adaptor proteins) with different cellular localization are included in

the library.

2.2 Protein–protein interaction dataset
The network of lung cancer-associated PPIs was generated based on

the recent Time-Resolved Förster Energy Transfer (TR-FRET)

screening performed in lung cancer H1299 cells using the cell lysates

derived from systematic, pairwise transfection of GST- and Venus-

fusion expression vectors containing the genes included in the

OncoPPi gene library. The combination of GST- and Venus-tagged

proteins allows to generate a strong TR-FRET signal of PPI that can

be detected in the multi-well plate format as described by Li et al.

(2017). Each PPI was tested in triplicate, with both fusion tags along

with the corresponding empty vector negative controls. The whole

PPI screening was repeated in three independent experiments

(Li et al., 2017). The positive and negative experimental data for a

total of 3486 PPI pairs is available through the OncoPPi Portal.

2.3 Statistical parameters
2.3.1 Fold-over control

Positive interactions were identified as described previously (Li

et al., 2017). For each experiment the average TR-FRET signals

for the PPI (SPPIG1V2, SPPIG2V1), GST empty vector control

(SVecG1, G2) and Venus empty vector control (SVecV1, V2) were

calculated over the triplicates for each of two tested fusions (GST,

Venus). Then, for each fusion the fold-over control (FOC) values

were calculated for each fusion with the following equation:

FOC ¼Max
SPPIG1V2ð Þ

MaxðSVecG1; SVecV2Þ
;

SPPIG2V1ð Þ
MaxðSVecG2; SVecV1Þ

� �

The maximum of the FOC values obtained for the two fusions

(GST, Venus) was considered as the final FOC value for a given PPI

in a given experiment. Then, the final FOC values were calculated

by averaging individual FOC values for triplicate experiments.

These values were considered as the final FOC value for a given PPI.

2.3.2 Statistical significance

A statistical significance of positive PPIs was estimated in terms of

P-values calculated with the permutation test. The raw TR-FRET

PPI signals detected for both fusions in triplicate in three independ-

ent experiments (a total of 18 data points), and the corresponding

signals of empty vector controls (36 data points total) were used to

build the PPI and Control groups, respectively. For each PPI the per-

mutation test was performed according to the following procedure.

First, for a given PPI pair, all PPI signals and control signals

obtained in all experiments were ranked. The sum of the ranks of

the PPI signals was calculated and was used as the test statistic for

the permutation test. The permutation tests were repeated 10 000

times. The P-value was calculated with the following equation:

P ¼ (Nsþ1)/10 001, where Ns is the number of cases where total

ranks of shuffled labels exceed or are equal to that of true label.

The P-values adjusted for the multiple comparisons (q-values)

were calculated with the Benjamini-Hochberg procedure. A set of

PPIs with FOC�1.5 and q-values<0.01, as well as PPIs that had
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been previously detected in other experiments (Chatr-Aryamontri

et al., 2015; Orchard et al., 2014; Szklarczyk et al., 2015; Warde-

Farley et al., 2010) that had FOC>1.2 and P-values<0.05 formed

the OncoPPi network (version 1) of high-confident cancer-associ-

ated PPIs (Li et al., 2017).

2.4 Integration of domain–domain interactions
The protein library was annotated with structural domain informa-

tion extracted from the Pfam database (Finn et al., 2016).

Specifically, for each protein all domain names (e.g. the Kinase

domain) and corresponding Pfam IDs (e.g. PF00069) associated

with the protein UniProt IDs were collected. Then, for each domain

the domain–domain interactions (DDI) observed in crystallized pro-

tein complexes were extracted from the 3DID database based on the

Pfam IDs (Mosca et al., 2014). Thus, for each domain of each pro-

tein a list of the interacting domains was generated. For example,

based on the 3DID data, the Kinase domain was co-crystallized with

73 other structural domains. Then, for each domain of each protein

the identified DDIs were superimposed with the DDIs identified for

the protein binding partners. The protein–protein pairs with the

common interacting domain pairs formed a subset of PPIs supported

by structural data of domain–domain interactions.

2.5 Mutual exclusivity analysis
Analysis of mutual exclusivity (ME) of genomic alterations was per-

formed in MatLab package (MathWorks, Inc., Natick, MA, USA)

using the Cancer Genomics Data Server tool box (Cerami et al.,

2012; Gao et al., 2013). The complete tumor samples from lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)

TCGA Provisional datasets (downloaded 1/2016) were used to ana-

lyze the mutual exclusivity of genomic alterations in lung cancer

patient samples (Cancer Genome Atlas Research, 2014;

Hammerman et al., 2012). Mutations, DNA amplifications and

deletions were taken into account. Mutual exclusivity was evaluated

in terms of log odds ratio (OD) values calculated as described previ-

ously (Gao et al., 2013). The alterations of two genes were consid-

ered as mutually exclusive if Log(OD)<0.

2.6 Predicted cellular co-localization
Recently, the large-scale image based analysis of cellular localization

of more than 12 000 human proteins has been reported (Thul et al.,

2017). These data were combined with the cellular localization pre-

viously reported in the Gene Ontology (GO) database (Ashburner

et al., 2000) for the 83 proteins tested in our PPI screening. Then,

cellular localization data were overlapped with the set of all PPIs

tested in the screening. Two proteins were considered as potentially

co-localized if they shared the same cellular compartment.

2.7 MEDICI PPI essentiality data
The PPI essentiality values for over 7900 PPIs in 206 single cell lines

were calculated using the Mining Essentiality Data to Identify

Critical Interactions (MEDICI) algorithm as described by Harati

et al. (2017). If multiple cell lines are selected, the averaged essen-

tiality values are calculated for the given set of cell lines.

2.8 Protein–drug connectivity
The OncoPPi network was integrated with the approved drugs. The

drug names and corresponding target proteins were extracted from

the Drug Bank version 5.0.9 (Wishart et al., 2006). The set of

Pharmacologically Active approved drugs with the mechanism of

action directly related to the specified target has been used. A total

of 42 protein–drug associations have been determined.

2.9 External resources
To simplify and accelerate the data mining and exploration of detailed

information associated with the OncoPPi proteins, each protein

included in the network is directly linked with several external data-

bases, including the general protein annotation servers: Human

Genome Organization (HUGO) Gene Nomenclature Committee

(HGCN), Ensembl, UniProt, Gene; literature database PubMed;

cancer-focused resources: Cancer Target Discovery and Development

(CTD2) Dasboard, TumorPortal, cBioPortal; pharmacological data-

bases: Cancer Therapeutic Response Portal (CTRP), PubChem,

DrugBank, Genomics of Drug Sensitivity in Cancer (GDSC) server;

general PPI databases String, GeneMania and IntAct.

2.10 Network visualization
The PPI networks are visualized using the Cytoscape.js library

(Franz et al., 2016).

2.11 Implementation
The PPI Portal application resides on a Linux server that provides

Apache 2 for web services, MySQL for relational database manage-

ment, and the PHP for server-side scripting services. The portal applica-

tion itself utilizes those backend services along with a variety of other

web technologies that include PHP, JavaScript, jQuery, Cytoscape.js

and qTip2. Since the significant changes in cancer genomics data, such

as the ME, protein cellular localization and DDI data are relatively

infrequent, the automated ‘on-fly’ mining of corresponding datasets is

not efficient, and will unnecessarily decrease the speed and accessibility

of the OncoPPi Portal. Therefore, the corresponding datasets are cura-

ted manually, and updated quarterly. The protein–drug connectivity

data is updated simultaneously with new DrugBank releases.

Fig. 1. OncoPPi Portal overview. The OncoPPi Portal provides a web-based

interface to explore, visualize and export the network of experimentally deter-

mined cancer-associated PPIs. To facilitate prioritization of PPIs for further

biological studies, the PPI network is integrated with genomics, pharmacolog-

ical and structural data. A direct connection of PPIs and individual proteins

with external resources enable detailed protein annotations and efficient data

mining. Together, the OncoPPi Portal provides a framework to generate new

hypotheses and biological models for cancer target discovery
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3 Results

3.1 OncoPPi portal overview
The OncoPPi Portal, available at http://oncoppi.emory.edu, pro-

vides a user-friendly interface to explore a network of cancer-

associated PPIs to facilitate discovery of new targets for cancer

therapy (Fig. 1). The core of the Portal is the network of PPIs

experimentally detected in cancer cells (Li et al., 2017). The PPI

network is integrated with the results of mutual exclusivity of

genomic alterations, cellular co-localization of interacting proteins

and domain–domain interactions analyses. Direct connection of

the network with external cancer-focused resources and general

protein databases simplifies and accelerates data mining of PPI and

protein annotations. The OncoPPI Portal also integrates predicted

functional impact of PPI disruption on cancer cell viability by

incorporating a graphical interface for our recently developed

Mining Essentiality Data to Identify Critical Interactions

(MEDICI) algorithm (Harati et al., 2017). Furthermore, to enable

discovery of new cancer dependencies for target discovery, the

OncoPPi protein–drug connectivity network has been constructed

for a set of approved drugs (Wishart et al., 2006).

3.2 The OncoPPi network of cancer-associated PPIs
The OncoPPi Portal enables visualization and browsing of annotated

PPI networks. In its first iteration, the OncoPPI Portal contains the

recently published OncoPPI v1 experimental dataset resulting from a

TR-FRET-based PPI screening performed in the lung cancer cells (Fig.

2A) (Li et al., 2017). Currently, a total of 3486 PPIs tested in the high-

throughput PPI screening are available through the Portal along with

the corresponding FOC values, permutation test P-values and the q-

values (see Materials and methods section). The Statistical Properties

panel allows the user to adjust these parameters to increase or

decrease the thresholds for defining positive PPIs. To simplify naviga-

tion through the PPI network, all proteins included in the network are

listed in the PPI Hub panel. PPIs for specific proteins can be visualized

by selecting of the corresponding protein name from the list. The pre-

defined OncoPPi network of 397 high-confidence PPIs (Fig. 2A) is

also included in the PPI Hub panel. In addition, the Search panel

allows the user to query the network for single or multiple proteins.

A selection of multiple proteins results in a subnetwork of PPIs identi-

fied for this particular set of proteins that meet the specified statistical

parameters and filters.

Fig. 2. Visualization and analysis of the OncoPPi network. (A) The OncoPPi Portal allows the user to explore the network of PPIs experimentally determined in can-

cer cells. The PPIs supported by mutual exclusivity of genomic alterations are highlighted with blue lines. The frequency of gene mutations, amplification or dele-

tions in lung cancer patients are indicated inside the corresponding circles with green, red and blue sectors, respectively. (B) The Protein Information panel

provides a detailed information about the selected protein. It includes the standard gene name, complete protein name, the number of protein binding partners

detected with the given statistical thresholds, and a complete list of the binding proteins. In addition, the cellular localization, structural domains linked with the

Pfam server, and percent of genomic alterations in lung adenocarcinoma patients are provided. To facilitate further data mining and protein annotations,

the Protein information panel links every protein with the major general PPI and cancer-specific external resources. (C) Distribution of the hub protein degree in

the OncoPPi network (Color version of this figure is available at Bioinformatics online.)
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3.3 Annotation and prioritization of cancer-associated

PPIs
3.3.1 Analysis of mutual exclusivity of genomic alterations

Analysis of large genomic datasets, such as TCGA (Tomczak et al.,

2015), revealed that genes involved in the same biological pathways

often demonstrate mutual exclusivity (ME) of genomic alterations in

cancer patient samples (Babur et al., 2015; Ciriello et al., 2012).

Therefore, ME analysis has become a standard approach to identify

functionally connected genes, and to link those genes with oncogenic

signaling pathways. We calculated the ME of genomic alterations

observed in lung adenocarcinoma and lung squamous cell carcinoma

patients for all 3486 PPIs tested in the original HT PPI screening

(Li et al., 2017). A total of 2516 PPIs with ME were identified, and

257 PPIs out of the 397 (65%) in the OncoPPi network were pre-

dicted to be functionally connected based on the ME analysis. PPIs

that demonstrate ME of genomic alterations are highlighted with

the blue lines. Also by checking the corresponding option in the

Settings panel a user can hide the PPIs not supported by the ME

analysis.

3.3.2 Cellular co-localization of interacting proteins

In order to form a complex, interacting proteins are expected

to share a common compartment in the cell. Although cellular local-

ization data are limited by currently available experimental studies

performed under specific physiological conditions, the determined

protein cellular localization can provide additional support for the

observed PPIs, and may serve as an important factor for PPI prioriti-

zation for further studies. Therefore, each protein in the OncoPPi

library was annotated with its cellular localization compartments

(Fig. 2B) based on the analysis of GO annotations (Ashburner et al.,

2000; Carbon et al., 2017) and recently reported large-scale image-

based profiling of cellular localization of more than 12 000 human

proteins (Thul et al., 2017). We have found that 353 out of 397 PPIs

(89%) included in the OncoPPi network are supported by potential

cellular localization. The PPIs between the proteins with predicted

cellular co-localization can be visualized in the network using the

‘Co-localized proteins’ option in the Settings panel.

3.3.3 Analysis of domain–domain interactions

Often, specificity and binding affinity of PPIs is defined by the pres-

ence of specific structural domains and binding motifs in the protein

structures (Chakrabarti and Janin, 2002; Mosca et al., 2014; Sillitoe

et al.). Such structural domains, derived from the co-crystallized

protein–protein or protein–peptide complexes are manually curated,

well-annotated, and available through public databases. We inte-

grated Pfam (Finn et al., 2016) and 3DID (Mosca et al., 2014) data

into the OncoPPI Portal. The analysis of domain–domain interac-

tions (DDIs) has revealed that 180 out of 397 OncoPPi interacting

proteins (45%) also share the known interacting domains. The PPIs

with known DDIs can be highlighted by checking the DDI option in

the Settings panel. Overlap of domain–domain interactions (DDIs)

with the PPI network provides additional structural support for

novel PPIs. For example, the newly discovered STK11/RASSF1 PPI

is supported by known interaction between STK11 Protein kinase

domain and RASSF1 Mst1_SARAH domain. Furthermore, analysis

of DDIs may guide identification of the PPI interface surface and a

target site for small molecule PPI inhibitors.

3.3.4 Integration of external resources

A key step in prioritization of proteins and PPIs for detailed biologi-

cal studies is the gathering and analyses of different types of

information, including biochemical, biophysical, genomic and

clinical data. However, different types of data are accessible through

different, often poorly connected, sources and databases, and in

many cases the data availability is limited. Together, it makes a

comprehensive data analysis time consuming and difficult. To facili-

tate data mining for prioritization of cancer-associated PPIs and

individual proteins for further experiments, every protein in the

OncoPPi library is annotated and connected with a number of exter-

nal resources. This detailed information is available in the ‘Protein

information’ window that appears when a user right-clicks on a pro-

tein in the network (Fig. 2B). In addition to the complete protein

name and standard gene symbol, all binding partners detected for

the given protein in the currently selected network are listed in the

Information panel. The PPIs reported for a given protein in external

PPI databases can be directly accessed through links to the protein

pages in String, Intact and Genemania datasets (Fig. 2B) (Orchard

et al., 2014; Szklarczyk et al., 2015; Warde-Farley et al., 2010).

Often, genes frequently altered in cancer patients play a critical role

in regulation of oncogenic signaling and tumorigenesis (Chang et

al., 2016; Lawrence et al., 2014). The OncoPPi network was estab-

lished for a set of lung cancer-associated genes (Li et al., 2017).

Therefore, for every gene in the library, a percentage of lung adeno-

carcinoma patient samples with gene DNA amplifications, deletions

or mutations is provided in the Information panel, and the frequency

of these alterations is visualized with red, blue and green sectors

inside the protein node circle in the network. Additionally, the

major cellular localization sites and known structural domains for

each protein are shown and linked with the Pfam webserver.

To provide direct access to general genomic and proteomic anno-

tations, every protein is linked to the HGNC, ENSEMBL, GENE

and UniProt databases (NCBI R.C. 2017; The UniProt Consortium

2017; Aken et al., 2016; Gray et al., 2015). Furthermore, the

recently published literature related to a selected protein can be

accessed through a direct link to PubMed (NCBI R.C. 2017) (Fig.

2B).

The role of a protein as a biological target, its druggability, and

available small molecule modulators of its activity can be gathered

through the PubChem database (Kim et al., 2016). Moreover, every

protein is associated with several major cancer-focused resources. In

particular, the CTD2 Network (Schreiber et al., 2010) provides a

broad spectrum of the most recent experimental cancer biology data

generated by the network of leading groups in cancer biology, clinical

oncology, genomic and bioinformatics fields. In addition, detailed

information on genomic alterations in different tumor types and their

impact on cancer patient survival can be accessed and explored though

direct links to cBioPortal (Cerami et al., 2012; Gao et al., 2013)

and TumorPortal (Lawrence et al., 2014). Together, the Protein

Information panel serves as a dashboard for the cancer-focused data

mining and annotations for the oncogenic signaling networks.

3.3.5 The network hub proteins

Statistical analyses of large-scale PPI networks combined with gene

knockdown experiments have revealed that cells are more sensitive

to the deletion of proteins that are involved in many PPIs (hub pro-

teins), and deletion of hub proteins is likely to be more lethal than

deletion of non-hub proteins (He and Zhang, 2006; Jeong et al.

2001). Therefore, identification of hub proteins in the cancer-

associated PPI network may lead to discovery of novel major regula-

tors of oncogenic signaling, as potential drug targets. With this goal,

we integrated the analysis of protein connectivity implemented as an

interactive bar graph shown under the PPI network (Fig. 2C).
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Specifically, the X-axis of the graph shows the proteins included

in the given network, and the Y-axis shows the number of protein

binding partners (node degree) identified with the selected

statistical parameters. The protein order along the X-axis and data

shown on the graph changes dynamically when the network and

statistical thresholds are changed (e.g. FOC or P-values) (Fig. 2C).

Furthermore, all the binding partners of a hub protein and their

interconnections can be shown by clicking on the corresponding bar

on the graph. The graphical representation of protein connectivity

allows immediate visualization and ranking of the major hub pro-

teins, and identification of their binding partners for further

analysis.

Adjustments of statistical parameters combined with different

filters allows determination of sets of promising PPIs. For example,

the application of all three filters (ME, DDI and co-localization)

to the OncoPPi dataset results in a subnetwork of 91 PPIs. The anal-

ysis of this subnetwork reveals many well-known oncogenic PPIs,

including KRAS/BRAF, TP53/MDM2, ARNT/HIF1A or MET/

HGF. On the other hand, a set of novel PPIs supported by structural

and genomic data can be extracted from this subnetwork. For exam-

ple, we found that in addition to the well-characterized interaction

between mitogen-activated protein kinase 14 (MAPK14) and the

mitogen-activated protein kinase kinase 3 (MAP2K3), MAP2K3

also interacts with growth factors FGFR4 and EPHA2, while serine-

threonine kinase 11 (STK11) forms a complex with the cyclin-

dependent kinase 4 (CDK4). Indeed, these interactions have been

validated in secondary glutathione S-transferase (GST) pull-down

assays (Ivanov et al., 2017; Li et al., 2017).

3.3.6 PPI essentiality

Recently, we have reported the MEDICI algorithm designed to pre-

dict the role of individual PPIs in cancer cell death and survival

(Harati et al., 2017). The MEDICI approach couples gene knock-

down studies with network models of protein interaction pathways

to quantify and rank PPI essentiality in specific cancer cell lines. To

simplify the practical application and accessibility of the MEDICI

algorithm, we have developed a graphical user interface imple-

mented on the PPI Essentiality page of the Portal. The main part of

the PPI Essentiality page is the PPI superpathway network con-

structed by combining curated PPI pathways available through the

Molecular Signature Database (MSigDB, http://software.broadinsti

tute.org/gsea/msigdb) (Fig. 3A). Currently, the essentiality values

calculated in 206 cell lines from multiple tissue types for a total

7906 PPIs derived for a set of 1548 proteins are available for the

analysis. The essentiality values range from 0 (less essential) to 1

(most essential PPIs). Accordingly, the subsets of PPIs with a desired

level of essentiality can be visualized by adjusting the Essentiality

Threshold in the Statistical Properties panel. The essentiality values

can be calculated either for all 206 available cell lines or for a spe-

cific set of cell lines as well as for the individual cell lines. The cell

lines can be filtered based on the corresponding tumor type or

through the Search option. Similar to the OncoPPi Network page,

all proteins included in the dataset are listed in the PPI Hubs panel.

In addition, the proteins can be filtered based on their involvement

in defined 196 biological pathways identified by the Pathway

Interaction Database (Schaefer et al., 2009).

3.3.7 Therapeutic connectivity

To identify PPIs detected for validated cancer drug target proteins

and to link PPIs with available therapeutic data, the OncoPPi net-

work is also annotated with the approved drugs (Fig. 4). A total of

42 protein–drug interactions have been identified for the 32

approved drugs and 14 proteins included in OncoPPi network. The

resulting OncoPPi protein–drug connectivity network is available

through the Therapeutic Connectivity page of the OncoPPi Portal

(Fig. 4A). To provide immediate access to the chemical, biological

and pharmacological data available for the compounds, each drug is

linked with five external databases, including the CTD2 Network

Dashboard (Schreiber et al., 2010), Cancer Therapeutic Response

Portal (Rees et al., 2015), Genomics of Drug Sensitivity in Cancer

project (Yang et al., 2013), PubChem (Kim et al., 2016) and the

Drug Bank (Wishart et al., 2006) (Fig. 4B). Examples of the target

proteins identified for the approved drugs include key oncogenic

proteins, such as BRAF, MET, FGFR4, ERBB2 or CDK4. Upon

binding to a target protein, small molecule compounds can regulate

PPIs through inhibition of enzymatic activity or induction of confor-

mational changes of target proteins, leading to alterations in onco-

genic signal transduction. We found more than 150 PPIs that could

be potentially regulated by 32 approved drugs identified for the

OncoPPi set of proteins. For example, it can be hypothesized that

inhibition of CDK4 kinase by palbociclib (Owsley et al., 2016) can

affect some of the 24 PPIs observed for CDK4 in the OncoPPi net-

work. Interestingly, the network analysis revealed that CDK4 binds

to several tumor suppressor proteins, including LATS2 and STK11,

which are widely mutated in lung adenocarcinoma (Fig. 4C). Based

on these observations, we have found that indeed CDK4 binds to

STK11 in lung cancer cells at endogenous levels and that the CDK4

inhibitor, palbociclib, disrupts the CDK4/STK11 PPI (Li et al.,

2017). Furthermore, we found that STK11 silenced cells showed

increased sensitivity to palbociclib compared to the parental H1792

lung cancer cells (Li et al., 2017). Together, analysis of the OncoPPi

network combined with the protein–drug connectivity data revealed

that STK11-loss may lead to enhanced-dependency of cancer cells

on CDK4. Based on these data, we can speculate that LATS2 muta-

tions may also lead to an enhanced sensitivity of cancer cells to

CDK4 inhibition, and the CDK4/LATS2 PPI can also be regulated

by palbociclib and other CDK4 inhibitors. Thus, exploration and

analysis of OncoPPi protein–drug connectivity provides a valuable

resource to discover new mechanisms of tumor dependencies.

3.4 Data export
There are two ways to export data from the OncoPPi Portal for fur-

ther analysis. The Save Image icon allows a user to save the network

image as a portable network graphics (png) file. The Export PPI

Data icon allows the user to export all data associated with selected

(shown) PPIs as a comma-separated file (csv). The data includes

statistical characteristics of the PPI, namely the FOC, P-value and

q-value, indication of mutual exclusivity of alterations of corre-

sponding genes in lung adenocarcinoma or lung squamous cell carci-

noma, predicted interacting domains, co-localized proteins and

essentiality values along with the corresponding cell lines for the PPI

Essentiality module.

3.5 Prioritizing PPI targets with the OncoPPi Portal
To illustrate a practical application of the OncoPPi Portal for priori-

tization of PPIs for biological studies we first analyzed the OncoPPi

network connectivity using the Network Hub protein bar graph for

the OncoPPi v1 network (Fig. 2C). As indicated on the graph, the

MYC oncogene (Meyer and Penn, 2008) is the largest hub of the

OncoPPi network with 37 binding partners, including MYC homo-

dimer. After clicking on the red MYC bar in the graph, the MYC

network hub appears in the graphical window. We next apply the
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‘PPIs with mutual exclusivity’ filter available in the Statistical

Properties panel to identify experimentally observed MYC binding

partners that also demonstrate mutual exclusivity in TCGA lung

adenomcarcinoma datasets. We found that genomic alterations of

18 genes are mutually exclusive with genomic alterations of MYC in

lung adenocarcinoma or lung squamous cell carcinoma: ARAF,

ARNT, AURKA, CCNE1, CDKN2A, CDKN2B, DACH1, FZR1,

GLIS2, HIF1A, KAT2A, LATS2, MAP2K3, MAP2K5, PDGFRA,

SMARCA4, WHSC1L1, WT1. These genes can be highlighted by on

the MYC node. When the ‘Co-localized proteins’ filter is added, all

of these proteins also appear to be co-localized with MYC based on

the GO annotations. A query of String, Intact and GeneMania PPI

databases revealed that CDKN2A, FZR1, KAT2A and SMARCA4

are known binding partners of MYC. In contrast, 14 other proteins

have not been previously reported as direct MYC binding partners.

These data are readily available in a table format through the Data

Export option, or through the direct links to corresponding data-

bases accessible from the MYC Information window. Then, the

MEDICI algorithm was utilized to evaluate an impact of novel

MYC PPIs on the viability of the lung cancer cells. The MYC PPIs

with essentiality values (E) were averaged across all lung tumor cell

lines, and the PPIs with E>0.5 were selected. The analysis suggested

that among novel MYC PPIs lung cancer cells are sensitive to a dis-

ruption of MYC interactions with ARNT, AURKA, CCNE1,

Fig. 3. Visualization and analysis of predicted PPI essentiality. (A) The network shows protein–protein pairs subjected for the MEDICI calculations to predict their essen-

tiality for lung cancer cells. A total of 7906 PPIs are available for the analysis. The proteins are connected by lines colored based on the essentiality vales: E¼ 0—grey,

0<E� 0.2—black, 0.2<E� 0.4 – blue, 0.4<E� 0.6 – green, 0.6<E� 0.8 – orange, 0.8<E� 1 – red. (B) A subnetwork of PPIs included in the OncoPPi network and pre-

dicted as critical for lung cancer cell viability. A number of well-known oncogenic PPIs, e.g. RAF1-AKT, MDM2-TP53 or PIK3CA-PIK3R1 dimerization are predicted as

essential for the cancer cells along with a set of novel PPIs, such as MYC-MAP2K3 or RASSF1-AKT1 (Color version of this figure is available at Bioinformatics online.)

Fig. 4. OncoPPi drug-connectivity network. (A) The drug-connectivity network constructed for the approved drugs and the corresponding target proteins included in

the OncoPPi network. Protein–drug connections are shown with red lines, blue lines indicate the PPIs. The drugs are highlighted as yellow triangles, and proteins

are shown as circles. Red circles indicate known oncogenes, and green circles highlight tumor suppressor proteins. (B) The Drug Information panel shows the chem-

ical structure of the drug compound along with the corresponding target proteins. The direct links to external resources facilitate the mining of clinical and biological

data available for the given compound. (C) Analysis of protein–drug connectivity allows the user to hypothesize a role of palbociclib in regulation of CDK4-STK11

and CDK4-LATS2 PPIs (shown with red lines). On the other hand, STK11 and LATS2 mutations in lung cancer may lead to increased sensitivity to CDK4 inhibitors.

Well known CDK4 PPIs with CCND2, CDKN2A, B and C are shown with blue lines (Color version of this figure is available at Bioinformatics online.)
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HIF1A, LATS2, MAP2K3, MAP2K5, PDGFRA and WT1. This

allows us to hypothesize a novel role for these PPIs in control of

MYC-driven tumorigenesis. Indeed, we were able to confirm all of

the prioritized interactions, except MYC/PDGFRA, with our

recently developed nanoPCA assay that was performed in live

H1299 lung cancer cells (Mo et al., 2017). Interestingly, among all

OncoPPi PPIs, the MAP2K3/MYC interaction is characterized by

one of the highest PPI Essentiality values of 0.916 calculated for the

H1299 lung cancer cells. In agreement with the predicted impor-

tance of MYC/MAP2K3 PPI, we have observed that MAP2K3 not

only binds to MYC endogenously but upregulates MYC protein

stability and transcriptional activity in cancer cells (Ivanov et al.,

2017). Thus, analysis of OncoPPi network connectivity, integration

of ME analysis and evaluation of PPI essentiality allowed a prioriti-

zation of PPIs as potential modulators of MYC-driven program for

further biological studies.

4 Discussion

During the past decades, a number of powerful databases and inter-

net resources have been developed to provide detailed characteriza-

tion and annotation of cancer-related genes based on their genomic

alterations in cancer patients and individual cell lines (Cerami et al.,

2012; Gao et al., 2013; Lawrence et al., 2014). In addition, intensive

bioinformatics analyses of mRNA expression and cell line sensitivity

for individual gene knock-outs have been utilized to predict gene

functional connectivity in cancer cells. However, identification and

prioritization of oncogenic PPIs for detailed functional studies

remains a challenge.

In this study, we have presented the OncoPPi Portal, a new

resource available to the public that bridges cancer genomics, clin-

ical and pharmacological data with a network of experimentally

determined direct interactions between cancer-associated proteins.

A user-friendly interface and flexible query options allows the explo-

ration, visualization and export of the physical PPIs annotated with

the analysis of mutual exclusivity of genomic alterations, cellular co-

localization and interacting structural domains. The implementation

of the graphical interface for the MEDICI algorithm allows the user

to evaluate the PPI essentiality for the cell lines of different tumor

types. The specific focus of the OncoPPi Portal on direct cancer-

related PPIs distinguishes this resource from general PPI databases.

On the other hand, the Portal links the PPIs and individual proteins

with major PPI servers, and leading cancer-focused resources,

including the CTD2 Dashboard (Schreiber et al., 2010), cBioPortal

(Cerami et al., 2012; Gao et al., 2013) and TumorPortal (Lawrence

et al., 2014). A practical application of the Portal is illustrated by

analysis of PPIs experimentally determined for the MYC oncogene.

A prioritization of MYC interactions based on the OncoPPi network

connectivity, novelty, ME, co-localization and PPI essentiality data

allowed us to select PPIs with a potential role in regulation of MYC-

driven tumorigenesis, including the MAP2K3/MYC interaction.

Recently, we have demonstrated that MAP2K3 binds MYC exoge-

nously and endogenously in cancer cells leading to enhanced MYC

stability and activity (Ivanov et al., 2017).

The basis of the current version of the OncoPPi Portal is the

OncoPPi v1 network of lung cancer-related PPIs (Li et al., 2017),

providing a foundation for expansion and growth. The OncoPPi is a

dynamic resource, expanding in several directions, including the

gene library, the number of tested cancer-associated PPIs, PPI

screening technologies and the tumor models for the PPI screening.

The next versions of the Portal will also include the options for users

to import external PPI sets for the analysis. We believe that the

OncoPPi Portal will serve as a valuable resource to explore, annotate

and prioritize cancer-associated PPIs for cancer biology and drug

discovery studies.
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