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Abstract

Motivation: Protein solubility can be a decisive factor in both research and production efficiency,

and in silico sequence-based predictors that can accurately estimate solubility outcomes are highly

sought.

Results: In this study, we present a novel approach termed PRotein SolubIlity Predictor (PaRSnIP),

which uses a gradient boosting machine algorithm as well as an approximation of sequence and

structural features of the protein of interest. Based on an independent test set, PaRSnIP outper-

formed other state-of-the-art sequence-based methods by more than 9% in accuracy and 0.17 in

Matthew’s correlation coefficient, with an overall accuracy of 74% and Matthew’s correlation coeffi-

cient of 0.48. Additionally, PaRSnIP provides importance scores for all features used in training. We

observed higher fractions of exposed residues to associate positively with protein solubility and tri-

peptide stretches with multiple histidines to associate negatively with solubility. The improved pre-

diction accuracy of PaRSnIP should enable it to predict protein solubility with greater reliability and

to screen for sequence variants with enhanced manufacturability.

Availability and implementation: PaRSnIP software is available for download under GitHub

(https://github.com/RedaRawi/PaRSnIP).

Contact: gwo-yu.chuang@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein solubility is an important physiochemical property associated

with protein expression, and thus is a critical determinant of the manu-

facturability of therapeutic proteins. Many proteins, when expressed

with standard production procedure in Escherichia coli, have low solu-

bility, which reduces their manufacturability. Experimental enhance-

ment of protein solubility is usually achieved through the use of weak

promotors, low temperatures, modified growth media, or optimization

of other expression conditions (Idicula-Thomas and Balaji, 2005;

Magnan et al., 2009).

The main determinant of protein solubility is the amino acid

sequence of a protein, its primary structure. Previous studies showed

that protein solubility correlates with several amino acid sequence

properties, such as the content of charged and turn-forming residues,

the level of hydrophobic stretches, the content of different types of

residues, or the length of the protein sequence (Bertone et al., 2001;

Christendat et al., 2000; Davis et al., 1999; Wilkinson and

Harrison, 1991).

This has led to the development of protein solubility predictors

based on the amino acid sequence, which were aimed to replace

costly wet-lab experiments by preselecting the most promising pro-

tein sequences in silico. These predictors include PROSO II

(Smialowski et al., 2012), CCSOL (Agostini et al., 2012), SOLpro

(Magnan et al., 2009), PROSO (Smialowski et al., 2007),
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Recombinant Protein Solubility Prediction (RPSP) (Wilkinson and

Harrison, 1991), and the scoring card method (SCM) (Huang

et al., 2012). Four of these six methods use support-vector machine

(SVM) as their core classification model to differentiate between

soluble and insoluble proteins. PROSO II method uses a Parzen

window model with modified Cauchy kernel and a two-level logis-

tic classifier. CCSOL uses a SVM classifier and identifies coil/disor-

der, hydrophobicity, b-sheet, and a-helix propensities as most

discriminative features. SOLpro uses a two-stage SVM with

sequential minimal optimization to build the protein solubility pre-

dictor. PROSO tool uses SVM with Gaussian kernel and a Naive

Bayes classifier. RPSP performs discriminant analysis with stand-

ard Gaussian distribution to distinguish soluble proteins from

insoluble ones. Finally, the SCM method that uses a scoring card

by utilizing only dipeptide composition to estimate solubility

scores of sequences for predicting protein solubility. However, a

study that evaluates these algorithms on an independent test set

shows that none of these algorithms achieved an accuracy of

>65% (Chang et al., 2014), suggesting room for improvement on

the accuracy of the solubility predictor.

In this study, we developed PRotein SolubIlity Predictor

(PaRSnIP), a protein solubility prediction tool based on a white-box

non-linear predictive modeling technique that has been termed gra-

dient boosting machine (GBM) (Friedman, 2001). GBM has been

shown to be competitive with black-box non-linear modeling techni-

ques such as SVM (Cortes and Vapnik, 1995). In addition, it has

additional advantages, such as providing feature importance even in

the case of non-linear classifiers. PaRSnIP was developed using two

types of input features to distinguish between soluble and insoluble

protein sequences. First, we included features that could be directly

determined from the input amino acid sequence, such as frequencies

of mono-, di- or tripeptides, absolute charge, or frequencies of turn-

forming residues. Second, we used the SCRATCH suite (Magnan

and Baldi, 2014) to predict structural information, in particular sec-

ondary structure (SS) and relative solvent accessibility (RSA) infor-

mation, from the amino acid sequence. By using the independent

test set developed by Chang et al. (2014), we showed that PaRSnIP

outperformed state of the art methods by at least 9% in accuracy.

The use of GBM, unlike the use of black-box modeling techniques,

enabled us to identify the protein sequence properties that contrib-

uted most to distinguish between soluble and insoluble protein

sequences. Interestingly, frequencies of amino acid tripeptides and

the fraction of exposed residues (FERs) were the most important

features.

2 Materials and methods

2.1 Data
In total, 58 689 soluble and 70 954 insoluble sequences, compiled in

(Smialowski et al., 2012) were used as the training set. The inde-

pendent test set of 1000 soluble and 1001 insoluble sequences com-

piled in Chang et al. (2014) was used as benchmark test set to

evaluate the performance of PaRSnIP in comparison to other

sequence-based solubility predictors.

We performed two main pre-processing steps to ensure sequence

diversity within the training set and between training and independent

test set. First, CD-HIT (Fu et al., 2012; Li and Godzik, 2006) was

used to reduce sequence redundancy within the training data set with

a maximum sequence identity of 90%. Second, we excluded all

training set sequences with a sequence identity of 30% or greater to

any sequence in the independent test set to establish a representative

performance validity by reducing the bias introduced by homologous

sequences. The final training dataset was composed of 28 972 soluble

and 40 448 insoluble sequences.

2.2 Features
One of the crucial steps in designing a well-performing classifier is

the choice of features. Two groups of features were used to train

PaRSnIP (Table 1). The first group was composed of features that

can be directly derived from protein sequence, including sequence

length, molecular weight, and absolute charge. In addition, we cal-

culated the average of hydropathicity (GRAVY) and aliphatic indi-

ces (AIs), as well as the fraction of turn-forming residues. Finally,

we extracted frequencies of mono- (single amino acid), di- (two con-

secutive amino acids) and tripeptides (three consecutive amino

acids) from the amino acid sequences. The second group of features

was structural information predicted from protein sequence using

SCRATCH. We predicted three- and eight-state SS information as

well as the FER with different RSA cutoffs. Additionally, we multi-

plied the FER by the hydrophobicity indices of the exposed residues.

The majority of features represented the amino acid frequencies, fol-

lowed by the structural features derived by SCRATCH. In total, we

included 8477 features for each amino acid sequence. In contrast to

all other sequence-based solubility predictors, we did not perform

feature selection to exclude features, but relied on the GBM to pri-

oritize the most important features.

2.3 Gradient boosting machine
In this work, we utilized a white-box non-linear ensemble technique

called GBM (Friedman, 2001; Schapire, 2003) for building a predic-

tive model using the h2o package (Version 3.10.0.8) in R software

(https://www.R-project.org/). The family of boosting methods is

based on a constructive strategy that the learning procedure will

consecutively fit new models to provide a more accurate estimate of

the response variable. The principle idea behind this algorithm is to

construct the new base-learners to be maximally correlated with the

negative gradient of the loss function, associated with the whole

ensemble. Any arbitrary loss function (L y; F xð Þð Þ) can be used here.

However, if the error function is the classic squared-error loss, the

learning procedure would result in consecutive error-fitting.

Algorithm 1 briefly summarizes the GBM technique.

Table 1. PaRSnIP features

Sequence features Structural features

Sequence length (1) Three-state SS (3)

Molecular weight (1) Eight-state SS (8)

Fraction turn-forming residues (1) FERs (0–95% cutoffs) (20)

Average hydropathicity (1)

AI (1) FERs x hydrophobicity of

exposed residues

Absolute charge (1) (0–95% cutoffs) (20)

Frequency Monopeptide (20)

Frequency Dipeptide (400)

Frequency Tripeptide (8000)

Note: The number of features for each component is shown within

parentheses.
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By performing a boosting procedure, we obtained better model

performance as this decreased the bias of the model, without

increasing variance. We used the L2-TreeBoost approach as pro-

posed in (Friedman, 2001) to build the GBM model. Here the loss

function is negative binomial log-likelihood:

L y;F xð Þð Þ ¼ log 1þ exp �2yF xð Þð Þð Þ; y 2 f�1;1g;

where F xð Þ ¼ 1
2 log Pr y¼1jxð Þ

Pr y¼�1jxð Þ

h i
. Here Pr y ¼ 1jxð Þ represents the prob-

ability of y ¼ 1 given sample x. Similarly, Pr y ¼ 0jxð Þ represents the

probability of y ¼ �1 given sample x. Then, the pseudo-residual

becomes:

rt
i ¼ �

@L yi; F xið Þð Þ
@F xið Þ

� �
F xð Þ¼Ft�1 xð Þ

¼ 2yi

1þ exp 2yiFt�1 xið Þð Þð Þ

The line search then becomes:

ct ¼ argcmin
XN

i¼1
log 1þ exp �2yi Ft�1 xið Þ þ cht xið Þð Þð Þð Þ

Using regression trees as base learners, we used the idea of separate

updates in each terminal node (Rjt) as proposed in (Friedman,

2001):

cjt ¼ argcmin
X

xi2Rjt
log 1þ exp �2yi Ft�1 xið Þ þ cð Þð Þð Þ:

However, there is no closed-form solution to the above mentioned

equation for optimal line search parameter. Therefore, we approxi-

mated it by a single Newton-Raphson (Lindstrom and Bates, 1988)

step that leads to:

cjt ¼
X

xi2Rjt

rt
iP

xi2Rjt
jrt

i j 2� jrt
i j

� � ; (1)

where rt
i represents the residuals at iteration t. The L2-TreeBoost

approach for two-class likelihood boosting machine is summarized

in Algorithm 2.

In Algorithm 2, the function 1 ��R jtf g
� �

is an indicator function

representing whether sample x belongs to terminal region Rjt during

the tth iteration. The parameter g is a regularization parameter

which is used to prevent over-fitting and estimated via cross-

validation. During each iteration t, the least-squares criterion used

to evaluate potential splits of a current terminal region R into two

sub-regions (Rl, Rr) was represented as:

i2 Rl;Rrð Þ ¼ I /ð Þ ¼ wlwr

wl þwr
yl � yrð Þ2; (2)

where yl and yr are the left and right child node responses respec-

tively, and wl, wr are proportional to number of elements in region

Rl and Rr as shown in (Friedman, 2001). This least-squares criterion

(Equation 2) is then considered as the measure of importance (I /ð Þ)
of the variable/feature (/) which maximizes this criterion. Because

each feature can cause a split into 2 terminal regions, in the case of

J-terminal node tree, we generated importance for J-1 features.

Here, the same feature can be used multiple times to generate multi-

ple splits in the J-terminal node tree. In such a case, we summed the

importance of such features to get the total contribution (I /ð Þ) of

each feature (/) during iteration t. By using this procedure, we

obtained the variable importance scores from the GBM.

2.4 Evaluation metrics
We evaluated the performance of PaRSnIP with several state-of-the-

art protein solubility prediction tools using the evaluation metrics

prediction accuracy and the correlation coefficient between the pre-

dicted and experimentally determined solubility, in particular the

Matthews Correlation Coefficient (MCC) during the training phase.

We also took into consideration the class-imbalance in the training

set and quantify the performance for each class in the independent

test set using the following evaluation metrics:

• Sensitivity (Soluble): the ratio between the number of correctly

classified instances from soluble class and the total number of

instances in the soluble class.
• Sensitivity (Insoluble): the ratio between the number of correctly

classified instances from insoluble class and the total number of

instances in the insoluble class.
• Selectivity (Soluble): the ratio between the number of correctly

classified instances from soluble class and the total number of

instances predicted to be in the soluble class.
• Selectivity (Insoluble): the ratio between the number of correctly

classified instances from insoluble class and the total number of

instances predicted to be in the insoluble class.
• Gain (Soluble): the ratio of Selectivity (Soluble) to the proportion

of soluble instances in the full dataset.
• Gain (Insoluble): the ratio of Selectivity (Insoluble) to the pro-

portion of insoluble instances in the full dataset.

3 Results

3.1 Training of PaRSnIP
The training of PaRSnIP included several steps (Fig. 1, top panel).

To reduce data redundancy, all training sequences were first

clustered with a 90% sequence similarity threshold using CD-HIT.

The remaining sequences with a sequence identity of 30% or greater

to any sequence in the independent test set were excluded to reduce

prediction bias. This resulted in a fairly balanced final training set of

28 972 soluble and 40 448 insoluble sequences. For feature extraction

(Fig. 1, middle panel), we extracted from each soluble and insoluble

sequence two types of features: (i) those that can be directly derived

Algorithm 1: Gradient boosting machine

Algorithm 2: L2-TreeBoost method for GBM
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from the protein sequence, and (ii) structural features determined by

the SCRATCH suite (Magnan and Baldi, 2014) using amino acid

sequences as input. To train the GBM classifier (Fig. 1, lower panel),

given the fact that a GBM classifier is based on several parameters

such as the maximum number of trees or number of iterations (T),

maximum depth (J) of a tree, sample rate (r), and the regularization

parameter g, we performed a hyperparameter optimization by

varying these parameters creating a grid of T � J � r� g ¼ 288 com-

binations, in particular T 2 f500; 1000;1500g; J 2 f1; 3; 6; 9g;
r 2 f0:1; 0:3; 0:5g, and g 2 f0:001; 0:005; 0:01; 0:05; 0:1; 0:2; 0:3;

0:5g. We then performed ten-fold cross-validation for each of the

combinations. Finally, we selected the GBM classifier that had the

maximal ten-fold cross-validation area-under-the-curve, in particular

having the parameters T ¼ 500, J ¼ 6, r ¼ 0.3 and g ¼ 0:05. The

final classifier had a maximum training accuracy of 0.87 and a maxi-

mum MCC of 0.74. A comprehensive training performance compari-

son of the final GBM classifier to other sequence-based solubility

predictors can be found in Supplementary Table S1.

3.2 Variable importance
An advantage of tree-based machine learning methods, in contrast

to black-box modeling techniques such as SVM, is that we can

obtain variable importance scores for all input features. In Table 2

we listed all features of the final GBM classifier with a relative

importance greater than 5%. Four features, in particular FERs with

thresholds of 65, 70 and 75%, and frequency of tripeptide IHH,

accounted for 33.67% of the relative importance.

The feature with the highest relative importance of 9.94% was

FER with a RSA cutoff of 65%. Interestingly, the association

between solubility propensity and higher frequencies of FER_65

within a protein was highly significant (P < 0.0001) (Fig. 2a). The

features with the third and fourth highest relative importance

FER_70 and FER_75 were also highly significantly associated with

solubility propensity (P < 0.0001) (Fig. 2c and d). The second most

important feature Tripeptide_IHH, frequencies of the amino acid

stretch of isoleucine-histidine-histidine, had a relative importance of

9.68%. In contrast to FER_65, FER_70 and FER_75, higher fre-

quencies of tripeptide IHH were significantly associated with insolu-

bility (P < 0.0001) (Fig. 2b). The full list of all features and their

corresponding association P-values can be found in Supplementary

Table S2.

Next, we analyzed the overall variable importance contribution

of all features according to their feature types (see Fig. 3). We

assigned feature classes by first merging the features sequence

length, molecular weight, fraction of turn-forming residues, average

hydropathicity, AI and absolute charge to one class, which we

termed Simple class. Further, we combined mono-, di- and tripeptide

features into three classes, respectively. The remaining classes were

composed of SS, FER and FER including hydrophobicity features,

respectively. Interestingly, tripeptide and FER features accounted

for >75% of the variable importance (Fig. 3a). However, the inclu-

sion of 8000 tripeptide features led to a tremendous increase in com-

putational cost during GBM model training. Inclusion of 20 FER

features had a low computational expense and improved the gain in

variable importance, which can be inferred from the relative varia-

ble importance bar plots (Fig. 3b), where the sum of the importance

contribution is divided by the number of members in the feature

class.

3.3 PaRSnIP performance
The prediction performance of PaRSnIP was assessed using an inde-

pendent test set reported by Chang et al. (2014). We compared

PaRSnIP with solubility predictors PROSO II, CCSOL, SOLpro,

PROSO, RPSP and SCM. PaRSnIP yielded a prediction accuracy of

74.11% and a MCC of 0.48, outperforming the state-of-the-art

method PROSO II by >9% in accuracy and 0.17 in MCC (see Table

3). PaRSnIP achieved balanced values (between 0.73 and 0.75) in

sensitivity and selectivity metrics for both soluble and insoluble

Fig. 1. PaRSnIP development flowchart

Table 2. PaRSnIP’s most important features with relative impor-

tance >5%

Feature Relative importance (%)

1 FER_65 9.94

2 Tripeptide_IHH 9.68

3 FER_70 7.50

4 FER_75 6.56

Note: The full list of features with the corresponding relative variable

importances can be found in Supplementary Table S2.
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instances, whereas other predictors were either class biased, or had

significantly lower values. In fact, PaRSnIP outperformed all predic-

tors in all evaluation metrics except for the sensitivity (insoluble)

metric, where PROSO II achieved a higher value of 0.82 in contrast

to 0.75 for PaRSnIP. However, PROSO II uses a classification prob-

ability threshold of 0.6, instead of the usual 0.5, which makes the

classifier to predict more instances as insoluble. Thus, to test if

PaRSnIP was still the better classifier, we recalculated the perform-

ance metrics using the same probability threshold of 0.6. We

obtained 73.06, 0.48, 0.59, 0.87, 0.82, 0.68, 1.64 and 1.36 for the

metrics accuracy, MCC, sensitivity (soluble), sensitivity (insoluble),

selectivity (soluble), selectivity (insoluble), gain (soluble) and gain

(insoluble), respectively, and outperformed PROSO II in all evalua-

tion metrics (Supplementary Table S3). Finally, we assessed the per-

formance of PaRSnIP using different probability values as threshold

(see Table 4). The best performance was achieved when using a

probability threshold of 0.5, which was reasonably expected, since

the training as well as test sets are balanced.

4 Discussion

The development of in silico sequence-based protein solubility pre-

diction tools with high accuracy continues to be to be highly sought.

In this study, we introduced PaRSnIP, a solubility predictor that

Fig. 2. Frequency distribution of top features with relative importance higher than 5% for soluble and insoluble training protein sequences shown as box plots.

(� � �� : P-value < 0.0001). (a) FER_65, (b) Tripeptide_IHH, (c) FER_70 and (d) FER_75

Fig. 3. Bar plots illustrating the variable importance contribution of each class of features. (a) Sum of variable importances according to their feature class.

(b) Sum of the contribution of feature classes divided by the number of features in a certain class

Table 3. Prediction performance of PaRSnIP compared with six protein solubility prediction tools

PaRSnIP PROSO II CCSOL SOLpro PROSO RPSP SCM

Accuracy (%) 74.11 64.35 54.20 59.95 57.85 51.45 59.67

MCC 0.48 0.31 0.08 0.20 0.16 0.03 0.21

Sensitivity (soluble) 0.73 0.46 0.51 0.51 0.54 0.44 0.42

Sensitivity (insoluble) 0.75 0.82 0.57 0.69 0.62 0.59 0.77

Selectivity (soluble) 0.75 0.72 0.54 0.62 0.58 0.52 0.65

Selectivity (insoluble) 0.74 0.60 0.54 0.58 0.57 0.51 0.57

Gain (soluble) 1.50 1.45 1.09 1.24 1.17 1.03 1.30

Gain (insoluble) 1.47 1.21 1.08 1.17 1.15 1.02 1.14

Note: Best performing method in bold. Performance values adopted from Chang et al. (2014).
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uses GBM algorithm and features that represent sequence as well as

structural properties of proteins. PaRSnIP outperformed, to the best

of our knowledge, all existing sequence-based solubility predictors

by >9% in accuracy and >0.17 in MCC.

The superiority of PaRSnIP over other predictors is due to three

factors. The first factor is the choice of the machine learning method

GBM. The non-linear boosting technique GBM is able to capture

non-linear relationships between the features and the dependent vec-

tor (solubility classification), which makes its performance compara-

ble to SVMs. Moreover, GBM reduces the bias of the model without

increasing the variance, leading to better generalization perform-

ance. In addition, GBM has the ability to provide variable impor-

tance, making the model interpretable, which is a drawback of

black-box non-linear SVMs. The second factor is the choice of fea-

tures. We included several features that provided information about

sequence and structural properties of the protein of interest.

Previous tools such as SOLpro included similar features, amongst

others mono-, di- and tripeptide stretches as well as FER at thresh-

old 25%. However, application of feature selection prior to the

training of their SVM classifier reduces the information used in

training the classifier and hence the final prediction strength. In con-

trast, we included all 8477 features during the model building stage

and did not perform feature selection a priori. In general, using this

high number of features includes a risk of overfitting the classifier.

GBM can reduce the risk of overfitting by generating a variable

importance score for each of the feature, and filter out non-essential

features that have very low variable importance scores as a pruning

step. Finally, we used the largest available protein solubility data set

to date, published by the PROSO II developers (Smialowski et al.,

2012). The combination of these three factors led to the superiority

of PaRSnIP. An additional advantage of applying GBM as classifier

modeling technique is that we obtained relative importance values

for all included features. The features with the highest relative

importance in PaRSnIP were frequencies of FER_65, FER_70,

FER_75 and tripeptide IHH. We noticed from the training set that

the FERs for the soluble set is significantly higher than the FERs for

the insoluble set (see Fig. 2), which is the reason that the FER is a

dominant feature of the classifier. We also noticed that the insoluble

proteins tend to have higher tripeptides containing multiple histi-

dines. Interestingly, positively charged surface residues and

polyhistidine-tags have been previously correlated with protein

insolubility, which explained in part the high importance of feature

tripeptide IHH (Chan et al., 2013; Woestenenk et al., 2004). The

variable importance values for all features (Supplementary Table S2)

provided further insights into what determines protein solubility

and encourage further tool development, which might include more

structural features, as well as longer peptide stretches, or other rele-

vant features.

In this work, we developed PaRSnIP, a novel sequence-based sol-

ubility predictor that used GBM technology and features depicting

sequence and structural properties of proteins. PaRSnIP not only

outperformed all existing sequence-based solubility predictors, but

is the first approach that provides feature importance for all fea-

tures. Hence, PaRSnIP could be applied in several applications, such

as to preselect initial targets that are soluble or to alter solubility of

target proteins.
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