Skip to main content
. 2018 May 14;46(Web Server issue):W344–W349. doi: 10.1093/nar/gky358

Table 1. The description of the models and the corresponding parameters implemented in CalFitter.

Model Description Model parametersa Data sets
1 step
N −> D A fully irreversible transition T f, Ea, ΔH, ΔCp All
N = D A fully reversible transition with equilibrium T m, ΔH, ΔCp Calorimetry & spectroscopy
N = D (Van’t Hoff's) A fully reversible transition with equilibrium and van’t Hoff's enthalpy T m, ΔH, ΔHvh, ΔCp Calorimetry & spectroscopy
N < = > D A general transition with forward and reverse components T fwd, Efwd, Trev, Erev, ΔCp All
2 steps
N −> I −> D A fully irreversible transition Step 1: Tf, Ea, ΔH, ΔCp
Step 2: TfEa, ΔH, ΔCp All
N = I −> D A transition with a reversible step in equilibrium and an irreversible step Step 1: Tm, ΔH, ΔCp
Step 2: TfEa, ΔH, ΔCp
Calorimetry & spectroscopy
N < = > I −> D A general Lumry-Eyring model Step 1: TfwdEfwdTrevErev, ΔCp
Step 2: TfEa, ΔH, ΔCp
All
N = I = D A fully reversible transition Step 1: Tm, ΔH, ΔCp
Step 2: Tm, ΔH, ΔCp
Calorimetry & spectroscopy
3 steps
N −> I1 −> I2 −> D A fully irreversible transition Step 1: TfEa, ΔH, ΔCp All
Step 2: TfEa, ΔH, ΔCp
Step 3: TfEa, ΔH, ΔCp
N = I1 −> I2 −> D A transition with the reversible first step in equilibrium Step 1: Tm, ΔH, ΔCp Calorimetry & spectroscopy
and the irreversible second and third steps Step 2: Tf, Ea, ΔH, ΔCp
Step 3: TfEa, ΔH, ΔCp
N < = > I1 −> I2 −> D A general Lumry-Eyring model with two intermediates Step 1: Tfwd, Efwd, Trev, Erev, ΔCp All
Step 2: Tf, Ea, ΔH, ΔCp
Step 3: TfEa, ΔH, ΔCp
N = I1 = I2 −> D A transition with two reversible steps in equilibrium Step 1: Tm, ΔH, ΔCp Calorimetry & spectroscopy
and an irreversible step Step 2: Tm, ΔH, ΔCp
Step 3: TfEa, ΔH, ΔCp
4 steps
N −> I1 −> D A two-branch irreversible unfolding pathway Step 1: Tf, Ea, ΔH, ΔCp All
N −> I2 −> D Step 2: Tf, Ea, ΔH, ΔCp
Step 3: Tf, Ea, ΔH, ΔCp
Step 4: Tf, Ea, ΔH, ΔCp

a T m – the melting temperature, Tf – the reference temperature of an irreversible step at which the corresponding rate is 1 (fwd. – forward rates; rev. – reverse rates), ΔH – the enthalpy change (at Tm if ΔCp is nonzero; vh – van’t Hoff's); ΔH– the activation enthalpy change (at Tf or Tm for irreversible and general steps, respectively, if ΔCp is nonzero); Ea – the activation energy; ΔCp – the heat capacity change. Since T-jumps are based on the relaxation kinetics, they cannot be simulated by the models with reversible steps assumed in equilibrium.