Table 2. Comparison of PANNZER2, using the ARGOT scoring function, ARGOT2 and eggNOG-mapper. Tests were repeated by a) omitting annotations with IEA, ISS and ND evidence codes and b) using all GO annotations. Evaluation was repeated using 5000 query subsets of the test data to allow for comparison with ARGOT2. We show results with Fmax and with Smin. Note that higher values of Fmax and lower values of Smin show better performance. PANNZER2 outperforms both eggNOG-mapper and ARGOT2 methods consistently.
Comparisons with the whole dataset | Comparisons with subsets of the data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Truth Set = > | No IEA, ISS, ND | All evidence codes | No IEA, ISS, ND | All evidence codes | |||||||
Ontology | Metric | PANZ2 | eggNOG | PANZ2 | eggNOG | PANZ2 | eggNOG | ARGOT2 | PANZ2 | eggNOG | ARGOT2 |
BP | Fmax | 0.699 | 0.615 | 0.786 | 0.640 | 0.700 | 0.613 | 0.608 | 0.784 | 0.629 | 0.682 |
MF | Fmax | 0.708 | 0.640 | 0.867 | 0.591 | 0.708 | 0.641 | 0.649 | 0.858 | 0.591 | 0.777 |
CC | Fmax | 0.823 | 0.752 | 0.863 | 0.774 | 0.820 | 0.749 | 0.757 | 0.853 | 0.773 | 0.776 |
BP | Smin | 31.401 | 45.918 | 27.643 | 45.376 | 30.264 | 45.920 | 38.375 | 27.474 | 46.408 | 42.483 |
MF | Smin | 9.597 | 12.942 | 6.701 | 15.995 | 9.682 | 12.890 | 11.609 | 7.196 | 16.06 | 11.946 |
CC | Smin | 9.415 | 14.053 | 7.917 | 14.114 | 9.645 | 14.184 | 13.418 | 8.692 | 14.401 | 15.587 |