
Cao et al. Cancer Cell Int  (2018) 18:92  
https://doi.org/10.1186/s12935-018-0593-0

PRIMARY RESEARCH

rs61991156 in miR‑379 is associated 
with low capability of glycolysis of gastric 
cancer by enhanced regulation of PKM2
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Abstract 

Background:  Glycolysis is an important metabolic oncogenic change also play a pivot role in the Warburg effect. 
Glycolysis related gene PKM2 expressed differently individually. Presently, we sought to investigate the effect of single 
nucleotide polymorphism (SNP) at rs61991156 of miR-379 on gastric cancer (GC) proliferation and metabolism.

Methods:  The genotype of rs61991156 in miR-379 was investigated by using real-time PCR. The glycolysis-related 
metabolites were determined by using GC–TOF–MS. The biological effects of rs61991156 in miR-379 was explored by 
in vitro studies.

Results:  In this study, we found that rs61991156 in miR-379 was involved in the occurrence of GC by acting on the 
3′UTR region of PKM2. The clinical data analysis revealed that A > G in rs187960998 was significantly associated with 
better differentiation, small tumor size, and non-metastasis. In vitro study further revealed that A > G SNP of miR-379 
could decrease GC cell proliferation as well as the promoter activity and expression of PKM2. The glycolysis of the 
patients with miR-379 GG genotype was significantly lower than AG and AA genotype by metabolomics analysis. 
The patients with AA genotype have significantly lower PKM2 expression compared to the G carrier, while there is no 
significant expression difference in miR-379 expression. Patients with AA genotype have significantly shorter survival 
rate compared to the G carrier.

Conclusion:  rs61991156 in miR-379 was highly associated with a decreased risk, well differentiation and better post-
surgery survival in Chinese population by inhibiting the expression of PKM2.
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Background
The Warburg effect is observed in most cancer cells, 
reflected as predominantly producing energy at a high 
rate of glycolysis followed by lactic acid fermentation. 
However, most normal cells demonstrated a compara-
tively low rate of glycolysis followed by oxidation of pyru-
vate in mitochondria. Malignant, rapidly growing tumor 
cells typically have glycolytic rates up to 200 times higher 
than those of their normal tissues of origin; this occurs 
even if oxygen is plentiful [1–3]. In the other point of 

view, the glycolysis is positively correlated to the tumor 
growth and malignancy. Today, mutations in oncogenes 
and tumor suppressor genes are thought to be responsi-
ble for malignant transformation, and the Warburg effect 
is considered to be a result of these mutations rather than 
a cause [2].

Since the glycolysis provides most of the building 
blocks required for cell proliferation, cancer cells (and 
normal proliferating cells) have been proposed to need 
to activate glycolysis, despite the presence of oxygen, to 
proliferate [4]. A set of genes regulated the process of 
glycolysis, three of them are most important. They are 
hexokinase (HK), phosphofructokinase-1 (PFK1) and 
pyruvate kinase (PK), in which PKM2 is the last step 
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within glycolysis and was detected to expressing in most 
cancers [5].

Similar to other genes, PKM2 was regulated by miRNA. 
It has been reported that PKM2 can be targeted by the 
tumor-suppressive miRNA including miR-326 [6], miR-
122 [7, 8], miR-124 [9], miR-137 [9], etc., thus to decrease 
the Warburg effects. However, although the expression 
of these miRNAs was detectable within tumors, over-
expression of their targeting gene: PKM2 still appeared 
frequently. There are many explanations, in which SNP 
in miRNA, especially mature miRNA are one of the con-
vincing reasons.

MicroRNAs (miRNAs) are endogenous 22  nt non-
coding RNAs which play important regulatory roles in 
animals and plants by targeting 3′UTR of mRNAs for 
cleavage or translational repression [10, 11]. Some SNPs 
in pre-microRNAs, flanking regions or target sites have 
been demonstrated to affect certain physiological pro-
cesses or related to diseases [12]. In the present study, 
we found one possible valuable SNP in the mature miR-
379, in which could potentially affect the binding ability 
to PKM2. We postulated that this SNP might contribute 
to the various expression of PKM2 within invidious and 
further affects the metabolism and growth of the tumor.

Materials and methods
Clinical sample information
The hospital-based case–control study consists of 871 
GC patients and 812 cancer-free controls. All the sub-
jects were recruited from the Center Hospital of Nan-
jing between January 2012 and January 2016. Patients 
with other hematological disorders, previous history of 
cancers, and chemotherapy were excluded. This study 
was approved by the Ethics Review Board of Hospital of 
Nanjing, and every patient had written informed consent. 
The clinical features of all the cases and controls were 
presented in Table 1.

Cell lines and cell culture
Gastric cancer cell lines including MKN-45 and AGS 
were purchased from American Type Culture Collec-
tion (ATCC). All cells were cultured in Dulbecco modi-
fied Eagle medium (DMEM) purchased from Gibco (CA, 
USA) supplemented with 10% fetal bovine serum (Invit-
rogen, Carlsbad, USA) and maintained in humidified 5% 
CO2 at 37 °C.

Construction of luciferase‑based reporter plasmids
The full length of PKM2 cDNA as well as its 3′UTR were 
synthesized and sub-cloned into pGL3 plasmids. For 
the gene promoter activity assays, 3′UTR of PKM2 was 
synthesized and sub-cloned into a pGL3 plasmid (Pro-
mega, WI, USA). The construction containing different 

genotype of miR-379 was also synthesized and cloned 
into pSilence 2.1-U6. All the DNA synthesis and clones 
were performed in Genscript Co. (Nanjing, China).

Dual‑luciferase reporter assay
The treated cells harvested 48 h after miRNA treatment, 
and the firefly luciferase expression was measured and 
normalized to Renilla activities. Dual-luciferase assays 
(Promega, Madison, WI) were performed according to 
the manufacturer’s protocol and detected with a Fluoros-
kan microplate reader (Thermo Labsystems, Helsinki, 
Finland). Transfection was repeated three times in tripli-
cate (Additional file 1).

Cell proliferation assays
Cell proliferation was determined by using CCK-8 (Dojin 
Laboratories, Kumamoto, Japan) according to the manu-
facturer’s instructions. Briefly, the control and infected 
cells were seeded at a density of 1 × 103  cells/well in 
96-well plates.  10  μL of CCK-8 was added to each well 
containing 100 µL of the culture medium, and the plate 
was incubated for 2 h at 37 °C. The viability of cells was 
evaluated by measuring the absorbance at 450 nm, using 
a microplate reader (Thermo Labsystems, CA).

Table 1  Clinical characteristic of  gastric cancer patients 
and cancer-free controls

Features Cases (n = 871) Controls 
(n = 812)

P

N % N %

Age (years) 0.805

 ≤ 50 376 43.17 345 42.49

 > 50 495 56.83 467 57.51

Gender 0.248

 Male 318 36.51 319 39.29

 Female 553 63.49 493 60.71

H. pylori infection < 0.0001

 Positive 664 76.23 189 23.28

 Negative 207 23.77 623 76.72

Differentiation

 G1 129 14.81

 G2 251 28.82

 G3 245 28.13

 G4 219 25.14

 Gx 27 3.10

Tumor size (cm)

 ≤ 5 587 67.39

 > 5 284 32.61

Metastasis

 Yes 412 47.30

 No 459 52.70
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Genotype
Genomic DNA was extracted from peripheral blood by 
using QIAamp DNA blood mini kits (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. 
Genotyping was performed with the TaqMan SNP Gen-
otyping Assay. The PCR reactions were carried out in a 
total volume of 5 μL containing TaqMan Universal Mas-
ter Mix, SNP Genotyping AssayMix, DNase-free water 
and genomic DNA. The PCR conditions were 2  min at 
50 °C, 10 min at 95 °C, followed by 40 cycles at 95 °C for 
15 s and 60 °C for 1 min. The 384-well ABI 7900HT real-
time PCR system was applied (ABI, CA, USA).

Immunohistochemistry (IHC)
Sections were stained according to the previous pub-
lication [7]. The section was incubated within primary 
mouse anti-human Ab for PKM2 (ab38237), the sections 
were stained with DAB according to manufacturer’s pro-
tocols and mounted and photographed using a digital-
ized microscope camera (Nikon, Tokyo, Japan).

Plasma samples preparation and analysis by GC–TOF–MS
Metabolites extracted from plasma samples were ana-
lyzed using an Agilent 7890N gas chromatograph cou-
pled with a Pegasus HT TOF mass spectrometer (Leco 
Corporation). Briefly, a 1  μL aliquot of the derivatized 
solution was injected with the splitless mode. Rxi-5  ms 
capillary column (30  m × 250  μm I.D., 0.25-μm film 
thickness; Restek Corporation, Bellefonte, PA, USA) was 
used for metabolites separation, with helium as the car-
rier gas at a constant flow rate of 1.0 mL/min. The tem-
perature settings for injection, transfer interface, and ion 
source were 260, 260, and 210 °C, respectively. The sepa-
ration was achieved with the following GC temperature 
program: 80 °C for 2 min, 10 °C/min to 220 °C, 5 °C/min 
to 240 °C, and 25 °C/min to 290 °C, and kept at 290 °C for 
8 min. The data was collected with full scan mode (m/z 
40–600), and an acquisition rate of 20 spectra/s. Electron 
impact ionization (70 eV) was used.

Metabolomics data analysis
The data from GC–TOFMS was processed with Chro-
maTOF software (v4.22, Leco Co., CA, USA). Compound 
annotation was performed by comparing the mass frag-
ments with NIST 08 Standard mass spectral databases 
with a similarity of more than 70% and finally verified by 
available reference standards. The annotated compounds 
from GC–TOFMS were imported to SIMCA-P software 
12.0.1 (Umetrics, Umeå, Sweden) for multivariate statisti-
cal analysis. Supervised orthogonal partial least squares-
discriminant analysis (OPLS-DA) was used to compare 
between groups. Differential metabolites were selected 

based on the criteria of variable importance in the pro-
jection (VIP) > 1 in OPLS-DA model and P value < 0.05 
from Student’s t test.

Statistical analysis
All experiments were performed in triplicate and 
repeated at least three times. Data were expressed as 
mean ± SD. The association between rs61991156 geno-
types and the risk of GC was evaluated by calculating 
the odds ratios (ORs) and their 95% confidence intervals 
(CIs) using univariate and multivariate logistic regression 
analysis. Differences between two independent groups 
were tested with Student’s t test. All statistical analyses 
were carried out using SPSS version 18.0 and presented 
with Graph-pad prism software. Kaplan–Meier survival 
curves were plotted, and the log-rank test was done. The 
significance of various variables for survival was analyzed 
by the Cox proportional hazards model in a multivariate 
analysis. The results were considered to be statistically 
significant at P < 0.05.

Results
Clinical significance of rs61991156 in human gastric cancer
Total 871 GC cases and 812 healthy controls were 
involved in our study, and their clinical characteristics 
were listed in Table 1. There is no significant difference in 
“age” and “Gender” between the case and control, signifi-
cantly more H. pylori-infected cases were involved com-
pared to the controls. The GC patients were divided into 
four groups according to the pathological differentiation 
degree staged from G1 to G4.

As listed in Table  2, Chi square statistical analysis 
results showed that the genotypes of rs61991156 were 
in Hardy–Weinberg equilibrium distribution pattern 
in the healthy control group (P = 0.52). Further, logistic 
regression analysis results revealed that the AG genotype 
and GG genotype presented a significantly decreased 
risk compared with AA genotype (AA vs. AG: odd ratio 
(OR) = 2.64; 95% CI 1.02–1.34; AA vs. GG: OR = 0.60, 
95% CI 1.12–1.31; AA vs. G carrier: OR = 3.04, 95% CI 
1.19–1.29). In addition, we performed Fisher exact the 
G carrier also indicated a decreased risk (P < 0.0001). All 
ORs were adjusted for sex, age, drinking history or family 
cancer history.

Stratified analysis of the correlation between miR‑379 SNP 
and GC
Next, we conducted the stratified analysis to investi-
gate the correlation between the SNP rs61991156 of 
miR-379 with the different clinical characteristics of GC 
which listed in Table 3. We found significant associations 
between rs61991156 genotypes with H. pylori infection, 
the tumor size, differentiation degree, and metastasis.
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The role of rs61991156 in regulatory effects of miR‑379 
on PKM2 expression and cell proliferation in vitro
Since the SNP rs61991156 was predicted to be located 
in the binding site of miR-379 on 3′UTR of PKM2 
(Fig. 1a), also, previous studies revealed that PKM2 had 
proliferation promotion effects [13], we proposed that 
SNP of rs61991156 might affect the GC cell prolifera-
tion through the regulation of PKM2. We thus first con-
structed GC cell lines capable of overexpression of PKM2 

regulated by its 3′UTR. Next, we detected the cell prolif-
eration of all cell lines with the transfection of miR-379 
with different genotypes. It turned out that the cell prolif-
eration affected by PKM2 can be attenuated by miR-379, 
and the suppression effects were different within three 
genotypes. Suppression effect was weakest in AA geno-
type and was strongest in GG group, which reflected in 
PKM2 and cyclinD1 expression detected by western-blot 
(Fig. 1b–d, Additional file 1: Table S1). Next, we cotrans-
fected the PGL-3 plasmid containing the 3′UTR of PKM2 
as well as different genotypes of miR-379 into the GC cell 
lines. We found the PKM2 promoter activity can be regu-
lated by its 3′UTR and miR-379, among which GG geno-
type decreased the promoter activity most significantly 
while AA genotype was the weakest. And mutation of 
miR-379 potential binding site of PKM2 3′UTR result in 
no apparent promoter activity decreases with the of miR-
379 treatment with different genotypes (Fig.  1e, Addi-
tional file 1: Table S2).

The role of rs61991156 in regulatory glycolysis and other 
related metabolomics in GC patients
Orthogonal partial least squares-discriminant analy-
sis (OPLS-DA) was performed to see whether there 
are metabolic differences among AA, AG and GG 
groups (Fig. 2a, Additional file 1: Table S3). As a result, 
OPLS-DA scores plot established with the identified 
endogenous plasma data (R2X = 0.561, R2Y = 0.978, 
Q2(cum) = 0.939) showed a clear class separation among 
the three groups (Fig.  2b). The metabolites involved in 
glycolysis were significantly altered among three groups 
with AA has the highest level and GG the lowest.

A/G SNP was associated with low expression of PKM2 
and longer postoperative survival in gastric cancer
We also confirmed the expression of PKM2 in clinical 
samples with different genotypes of rs61991156. PKM2 
expression was detected in human gastric cancer by 

Table 2  Genotype frequencies of the miR-379 at rs61991156 polymorphism among GC cases and controls

a   The ORs, 95% CIs and P value were calculated after adjusting for age, gender, parental H. Pylori infection history and family cancer history

Genotype Cases (n = 871) Controls (n = 821) OR (95% CI)a P valuea

N % N %

rs61991156

 AA 278 31.92 312 38.42 1 < 0.0001

 AG 420 48.22 178 21.92 2.64 (1.02–1.34)

 GG 173 19.86 322 39.66 0.60 (1.12–1.31)

 G carrier 593 68.08 219 26.97 3.04 (1.19–1.29) < 0.0001

Table 3  Stratified analysis of  SNP rs61991156 
with clinicopathological parameters of GC

* Two-sided Chi square test for either genotype distributions or allele 
frequencies between cases and controls

Features Genotype

AA AG GG AG vs. GG
P value*

AA vs. GG
P value*

Age (years) 0.2366 0.4974

 ≤ 50 121 174 81

 > 50 157 246 92

Gender 0.7033 0.0931

 Male 119 139 60

 Female 159 281 113

H. Pylori infection 0.0728 < 0.0001

 Positive 172 341 151

 Negative 106 79 22

Differentiation < 0.0001 < 0.0001

 G1 6 64 59

 G2 61 125 65

 G3 96 139 10

 G4 94 89 36

 Gx 21 3 3

Tumor size (cm) 0.587 < 0.0001

 ≤ 5 102 341 144

 > 5 176 79 29

Metastasis < 0.0001 < 0.0001

 Yes 164 202 46

 No 114 218 127
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IHC. Within total 871 GC patients, we selected 100 
cases for IHC staining of PKM2. The IHC staining con-
sistency in miR-379 AA group was significantly differ-
ent to AG and GG group (strong 56.2%, medium 31.2% 
and weak 12.6% for AA group; strong 41.2%, medium 
32.1% and weak 26.7% for AG group; and strong 21.4%, 
medium 32.4% and weak 46.2% for GG group P < 0.001) 
(Fig.  3a, b). We then used real-time PCR and fur-
ther confirmed the difference in PKM2 transcription 
between AA, AG and GG groups, there is no signifi-
cant difference in miR-379 expression between these 
groups (Fig.  3c). Among of total 871 GC patients, we 
have 217 patients with follow-up data of survival, and 

these persons can be further divided in AA (n = 87) 
and GA/GG (n = 130). The 5-year survival rate in the 
AA group was only 4.35%, which was significantly 
lower than in the GA/GG group with a survival rate of 
38.6% (HR = 2.019, P = 0.004) (Fig. 3d, Additional file 1: 
Table S4).

Discussion
The general point of views on miR-379 were contro-
versial. Some reports regarded it as a tumor suppressor 
which capable of down-regulating many oncogenes by 
targeting their 3′UTR region. For example, miR-379 was 
reported to be boosted by rifampicin and blocking the 
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expression of ABCC2 (multidrug resistance-associated 
protein 2) thus to sensitize the HCC cells to chemo-
therapy [14]. Others also indicated that miR-379 was 
overexpressed in malignancies, and might serve as an 
indicator for bad prognosis. miR-379 expression was 
elevated in bone-metastatic prostate cancer cell lines and 
tissues. The expression of miR-379 was also correlated 
with shortened progression-free survival of patients with 
prostate cancer [15]. In our study, the results revealed 
that miR-379 was a tumor suppressor in human GC. 
From the clinical investigation, miR-379 GG genotype 
was associated with small tumor size, well differentiation, 
and non-metastasis which is related relatively low expres-
sion of PKM2 in gastric cancer. In line with the expres-
sion level, the glycolysis level within GC patients with 
GG genotype was also the weakest. We speculated that 
these results might result from rs61991156 in the mature 
form of miR-379.

In the present study, we found the SNP rs61991156 
located within the mature form, generating three dif-
ferent genotypes of miR-379, among which A > G muta-
tion generate an 8-mer complementary sequence in the 
3′UTR of PKM2. The G allele might have significantly 
stronger the binding affinity to 3′UTR of PKM2 com-
pared to the A allele. We thought this was the reason why 
miR-379 GG can significantly decrease the expression 
of PKM2 and in turn to attenuate both the proliferation 

and glycolysis of GC cells. Similar results concerning 
miRNA SNP have been reported previously resulting in 
either “Gain” or “LOSS” regulation of the targeting genes. 
miR-SNPs in miR-125a and Kaposi’s sarcoma-associated 
herpes virus-encoded miR-K5 were reported to impair 
miRNA processing by the Drosha/DGCR8 complex [16, 
17]. SNP of miR-196a2 at rs11614913 in the mature miR-
196a2 was reported to be associated with a significantly 
decreased rate of survival in individuals with non-small 
cell lung cancer, and the same research team of this 
study also suggested an association of rs11614913 with 
enhanced processing of mature miR-196a [18]. miR-
146a-SNP (rs2910164) within the pre-miR-146a sequence 
reduced both the amount of pre- and mature miR-146a 
and apparently affected the Drosha/DGCR8 processing 
step [18, 19]. miR-196a2-SNP, miR-146a-SNP, miR-149-
SNP (rs2292832), and miR-499-SNP (rs3746444) are each 
associated with increased breast cancer risk [20].

Conclusion
So far, there is almost no report concerning the SNP of 
miR-379, we reported firstly that A > G SNP in 12nt of 
miR-379 might enhance the binding affinity to the 3′UTR 
of PKM2, thus to might be associated with low glycolysis 
level, well differentiation, as well as slower tumor growth. 
And the detection of rs61991156 might be associated 
with low occurrence and less aggressiveness of gastric 
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cancer in Chinese population due to the enhanced regu-
lations on PKM2.
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