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Abstract
Epidemiological studies provide evidence that 
environmental exposures may affect health through 
complex mixtures. Formal investigation of the effect 
of exposure mixtures is usually achieved by modelling 
interactions, which relies on strong assumptions relating 
to the identity and the number of the exposures involved 
in such interactions, and on the order and parametric 
form of these interactions. These hypotheses become 
difficult to formulate and justify in an exposome 
context, where influential exposures are numerous and 
heterogeneous. To capture both the complexity of the 
exposome and its possibly pleiotropic effects, models 
handling multivariate predictors and responses, such as 
partial least squares (PLS) algorithms, can prove useful. 
As an illustrative example, we applied PLS models 
to data from a study investigating the inflammatory 
response (blood concentration of 13 immune markers) 
to the exposure to four disinfection by-products (one 
brominated and three chlorinated compounds), while 
swimming in a pool. To accommodate the multiple 
observations per participant (n=60; before and after 
the swim), we adopted a multilevel extension of PLS 
algorithms, including sparse PLS models shrinking 
loadings coefficients of unimportant predictors 
(exposures) and/or responses (protein levels). Despite 
the strong correlation among co-occurring exposures, 
our approach identified a subset of exposures (n=3/4) 
affecting the exhaled levels of 8 (out of 13) immune 
markers. PLS algorithms can easily scale to high-
dimensional exposures and responses, and prove 
useful for exposome research to identify sparse sets of 
exposures jointly affecting a set of (selected) biological 
markers. Our descriptive work may guide these 
extensions for higher dimensional data.

Introduction
Health effects of simultaneous exposure to 
numerous and possibly interacting chemicals is 
raising growing public health concerns,1–3 and 
such investigation calls for the definition of effi-
cient statistical approaches.4 The exploration of 
the biological responses to external exposures, 
as formalised in the exposome concept,5–9 relies 
on statistical methods accommodating the multi-
variate and complex interrelations of exposures. 
Most of the proposed supervised methods rely 
on dimensionality reduction or (Bayesian) vari-
able selection.10 11 These methods can handle the 

multidimensionality of exposome data as well as 
existing correlation structures. However, in prac-
tice, the use of these methods has been so far mainly 
restricted to the exploration of a single exposure 
and/or endpoint at a time. Supported by the estab-
lished and possibly differential combination of 
exposures to which populations are subjected,12 13 
developing statistical approaches to investigate the 
effect of mixtures has represented a further active 
research field and resulted in methods explicitly 
modelling interactions between exposures.14–16 
Their usability,  however, remains limited in an 
agnostic context, due to dimensionality and inter-
pretability issues.4 17 Furthermore, these approaches 
rely on strong assumptions mainly relating to the 
number, the order, and parametric form of the 
interactions between exposures. These assump-
tions become even more complex to formulate and 
to justify when, as generally the case in exposome 
studies, most of the effective exposures and their 
effects are not measurable and even sometimes 
unknown/unidentified.

To address the dimensionality burden of 
including interaction terms in the statistical models, 
a two-stage strategy first identifying prioritised 
exposures and second investigating their potential 
interactions has been proposed.17 18 However, this 
approach assumes that the most relevant exposures 
potentially active in a mixture could be detected 
based on their marginal effects or correlation. 
In order to better capture the complexity of the 
exposure mix, including potential (un-modelled) 
interactions, models accommodating multivariate 
exposures are needed. Furthermore, to account 
for complex and possible pleiotropic effects of 
these exposures, multivariate responses need to be 
accounted for. As a supervised dimensionality reduc-
tion technique, partial least squares (PLS) regres-
sion aims at constructing summary latent variables 
as linear combinations of the original predictors 
and response variables. These summary variables 
are constructed not only so that they capture as 
much information as possible in each block of data, 
but also identifies (i) the variability in the predic-
tors that is relevant to the outcomes, and (ii) the 
variability in the responses which is mostly linked 
to the predictors.19 20 Variable selection can also be 
achieved in PLS regression through L1 penalisation 
shrinking towards 0 the loadings coefficients of the 
least influential/influenced variables.21–23
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In order to accommodate repeated measurements, linear 
mixed models or multivariate normal models24 25 can be used 
in an univariate context, and for dimensionality reduction tech-
niques, multilevel approaches have been proposed.26

As a description of the application of multilevel PLS regres-
sion approaches and their sparse variants to investigate the 
multivariate response to multivariate exposures in the pres-
ence of multiple measurements per participants, we analyse 
here the inflammatory response to the exposure to a set of 
four trihalomethanes (THMs): chloroform (CHCl3), bromod-
ichloromethane (BDCM), dibromochloromethane (DBCM), 
bromoform (CHBr3), measured in exhaled breath as a surro-
gate for the exposure to disinfection by-products (DBP). The 
panel of immune markers we assay include interleukins (IL), 
growth factors, (C-C and C-X-C motif) chemokines ligands, IL 
receptor antagonists and C reactive proteins (CRP), which may 
be involved in the reported immunotoxic effect of DBPs and 
similar compounds27 28 and/or in the anti-inflammatory effects 
of physical exercise.29

Methods
Data were collected within the ‘EXPOsOMICS’ project30 and 
include measurements of (i) four DBPs in exhaled breath from 
participants before and after a swimming session in a chlorinated 
pool (PISCINA II study) and (ii) at both time points, blood levels 
of (n=13) inflammation-related proteins.28

Study population
The PISCINA  II study is an experimental investigation of the 
acute biological response to exposures induced by swimming in 
a chlorinated pool. As detailed elsewhere,31 the study included 
volunteers, aged 18–40 years, non-smoking and non-professional 
swimmers, who swam for 40 min in a 25 m long indoor chlo-
rinated pool in Barcelona, Spain, between June and December 
2013. At the time of the experiment, participants were asked 
to complete a questionnaire providing information on sociode-
mographic, dietary habits, regular physical activity, medical and 
anthropometric factors.

DBPs including four THMs, CHCl3, BDCM, DBCM and 
CHBr3, were measured in exhaled breath at two time points: 
before swimmers entered the swimming pool and immedi-
ately after they exited the swimming pool, using the Bio-VOC 
Sampler (Markes International Ltd, UK). These chemicals were 
assessed by gas chromatography coupled to a mass spectrometer. 
Details on sampling collection and analysis have been published 
previously.31

For each of these 60 participants with full exposure and ques-
tionnaire data, two blood samples collected before and 2 hours 
after swimming were available. These were collected in a room 
detached from the swimming pool area and stored at −80°C.

Informed consent was provided by each participant before 
commencement of the experiment.

Protein assay
As detailed elsewhere,28 a panel of 23 immune markers from 
both serum samples was assessed using an R & D Systems 
(Abingdon, UK) Luminex screening assay according to the 
protocol described by the manufacturer. The panel includes 
interleukin (IL)-1β, IL-1rA, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, 
IL-17, tumour necrosis factor-alpha (TNF-α), epidermal growth 
factor (EGF), macrophage inflammatory protein 1 beta (MIP1 
β), chemokine (C-X-C motif) ligand 1 (CXCL1), myeloperox-
idase (MPO), C-X-C motif chemokine 10 (CXCL10), vascular 

endothelial growth factor (VEGF), C-C motif chemokine 22 
(CCL22), periostin, chemokine (C-C motif) ligand 2 (CCL2), 
basic fibroblast growth factor (FGF basic), granulocyte colo-
ny-stimulating factor (G-CSF) and C-C motif chemokine 
11 (CCL11). In addition, CRP was assessed using an R & D 
Systems Solid Phase Sandwich ELISA. Both samples from the 
same individual were analysed in the same analytical batch. 
Serum concentrations for IL-1β, IL-4, IL-5, IL-6, IL-10, IL- 13, 
TNF-α, MIP1 beta, CXCL1, and FGF basic were below the 
limits of quantification in more 60% of the samples and were 
therefore excluded from the analyses. Missing values in the 
remaining 13 immune markers were imputed using a maximum 
likelihood estimation procedure.32

Statistical model
Descriptive analyses of the data were done using paired 
Student’s t-test comparing the mean concentration of exposures 
(log-transformed) and proteins before and after the swimming 
experiment.

We used a partial least squares (PLS) approach in regression 
mode, setting the (n=4) exposures as predictors and the (n=13) 
proteins as multivariate response variables. PLS algorithms 
determine components as linear combinations of predictors X 
(exposures) and responses Y (proteins) maximising their vari-
ance-covariance. Denoting T and U the resulting projections of 
X and Y, respectively, and P and Q the loadings matrices, the PLS 
regression decomposes X and Y as

	 ‍

{
X = TPT + E
Y = UQT + F ‍�

Where E and F are error terms assumed to be independent 
and identically distributed Gaussian variables. In this supervised 
context, latent variables of X capture the variability in exposures 
that is relevant to the inflammatory profile, and symmetrically, 
the components of Y capture the variability in the inflammatory 
profiles that is related to exposures.

The contribution of each of the original variables in defining 
the PLS components (loadings coefficients) enables to identify 
which (combination of) exposures drive the X-Y variance cova-
riance structure and can be used to identify the (sets of) expo-
sures mostly related to the (sets of) inflammatory proteins. The 
proportion of variance in X (or Y) explained by a given compo-
nent of X (or Y) measures how accurately that single compo-
nent summarises the information contained in the original X 
(or Y) matrix. The percentage of variance of Y explained by the 
components of X measures relevance of information summary 
provided by the PLS components of X to the outcome matrix.

Variable importance in projection (VIP) measures, for a given 
X component, the relative contribution of each of the original 
predictor to the explanation of the X-related variance in the 
outcome. VIP thereby measures the contribution of each orig-
inal predictors in the overall explanatory performance of a given 
X component, and helps identifying the main drivers of that 
component.33 Typically, a variable with a VIP >1 is considered 
explanatory for the variation in Y captured by that component.

To accommodate the repeated measure design, before and 
after swimming, where both exposure and protein levels are 
available, we adopted a multilevel approach, which decomposes 
the observed variability into within-individual and between-in-
dividual variability. The within-individual variability (ie, changes 
induced, within each participant, by the experiment) is included 
into a standard PLS model to identify linear combinations of 
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exposures that are best able to explain within individual changes 
in inflammatory markers levels.

We ran our multilevel PLS analyses setting the four exposures 
predictors, and the 13 proteins as outcome. Four variants of 
the PLS approach were considered: the natural PLS, and sparse 
PLS (sPLS) imposing sparsity in the loadings coefficients of (i) X 
(exposures) components (sPLSX), (ii) Y (exposures) components 
(sPLSY), (iii) both components of X and Y (sPLSXY). sPLSX models 
shrink the X loadings coefficients towards 0 for the least infor-
mative exposure and hence help identifying the most relevant 
exposures with respect to inflammatory profiles. Symmetrically, 
variable selection of Y (sPLSY) selects the proteins whose expres-
sion is mostly affected by exposures.

Calibration of the sPLS models was done using fivefold 
cross-validation which was independently repeated 1000 times. 
The cross-validation procedure is repeated for possible values of 
(i) the number of components to select and, (ii) the number of 
non-zero loadings coefficients (ie, the number of original vari-
ables contributing to the component). The number of compo-
nents to be considered was determined using the average Q2 
statistic calculated across all folds and repeats and was defined 
as the maximal the number of components such that adding an 
additional component would yield a substantive drop in the Q2 
value. Sparsity of the sPLS models was controlled by setting the 
number of variable included to the one minimising the cross-val-
idated prediction error.

Analyses were performed using R V.3.4.0 (21  April  2017). 
R-codes used for the analyses are available on request to the 
corresponding author.

Results
Exposure and protein data
Higher plasma proteins levels after swimming were only observed 
for Periostin and IL-1ra (table 1). Of the 13 assayed proteins, 
only 3 showed nominally significant difference (p<0.05) after 
the swimming experiment (CCL11, and CXCL10 lower and 
IL-1ra, higher).

For all four exposures, a strong contrast was observed before 
and after the swimming session (p values <4×10−16). Strong 
correlations among exposures were also observed, particularly 
in the postswimming samples (figure 1). Protein levels showed 
moderate correlation levels that were consistent before or after 
the swimming session (figure 1).

PLS analyses
By construction, PLS models can calculate up to min(pX,pY) 
components, where pX and pY are the number of variables in 
the X and Y matrices, respectively. The loadings coefficients of 
the resulting 4 PLS components are reported in table 2, where 
(C1X,…,CkX) are the sets of k components for the predictor (expo-
sure) matrix, and C1Y ,…,CkY , the set of components relating to 
the response (proteins) matrix.

PLS models
Owing to the strong correlation among exposures, a single 
component (C1X) for the exposure matrix is sufficient to explain 
about 95% of the variation in X. Each exposure contributed 
consistently to C1X: the four loadings coefficients were similar, 
though slightly lower (in absolute value) for bromoform. C1X 
explained around 11% of the variance in Y, suggesting that most 
of the variation in exposure is able to capture a limited fraction 
of the variation in protein levels. The remaining 3 components 

of X explained between 4.33% and 0.04% of the variance in X, 
and these explained 1.33% to 1.87% of the variance in Y.

VIP plots (figure  2A) show that BDC, DCB and to a lesser 
extent chloroform more importantly contributed to the explan-
atory performance of C1X (VIP  >1) than bromofrom (VIP 
around 0.9). The second component of X explained <5% of 
the variance in X which in-turn explained slightly >1% of the 
variance on Y (table 2), and this was driven by bromoform and 
chloroform (VIP  >1, figure  2A). The proportion of variance 
explained by each component of X was not homogeneous across 
proteins and was consistent with the loadings of the Y compo-
nents (table 2): C1X explained a larger proportion of the vari-
ance for CXCL10 (>40%, highest loadings coefficient of C1Y: 
0.57), CCL22 (>20%, second largest loadings coefficient: 0.42), 
IL-1ra (around 20%, third highest loadings coefficient in abso-
lute value: −0.38) and IL-8 (around 13%, loadings coefficient: 
0.33). All other components explained <10% of each of the 
original protein levels.

Variable selection on either X or Y
In order to select the most influential exposures, and the most 
affected exposures we ran sparse PLS models, with penalisation 
of the loadings coefficients applied to exposures, and protein 
respectively. When performing variable selection on exposures, 
the calibrated sparse PLS model included a single component 
C1X′, in which bromoform was not selected (table  2). C1X′ 
explained 94% of the variance in X and 10.4% of the variance 
in Y. VIP plot (figure 2B) showed that mainly BDC and DCB 
contribute to the explanatory performances of C1X′ and that this 

Table 1  Summary statistics of PISCINA II study—mean (SD) levels of 
exposures and proteins before and after swimming

Before swimming After swimming

P valuesn=56 n=56

Exposures in exhaled breath (μg/m3)

 � CHCl3 0.43 (0.30) 11.53 (4.83) 7.0E−20

 � BDCM 0.06 (0.05) 2.49 (1.23) 7.0E−20

 � DBCM 0.02 (0.03) 0.54 (0.33) 1.3E−19

 � CHBr3 0.03 (0.02) 0.11 (0.08) 3.6E−16

Outcome (proteins concentration in pg/mL)

 � CCL11 131.30 (30.86) 121.72 (29.36) 0.038

 � CCL2 214.92 (86.21) 204.52 (89.67) 0.420

 � CCL22 473.54 (195.94) 442.82 (193.87) 0.330

 � CRP 1616 (3,084.76) 1559.74 (3,081.06) 0.771

 � CXCL10 22.75 (11.44) 19.79 (10.27) 0.049

 � EGF 33.76 (26.20) 33.19 (34.37) 0.213

 � G-CSF 12.71 (6.44) 12.53 (6.66) 0.864

 � IL-17 4.79 (2.10) 4.74 (1.86) 0.877

 � IL-1ra 351.05 (193.27) 424.81 (252.39) 0.030

 � IL-8 4.44 (2.77) 3.77 (2.04) 0.265

 � MPO 12 885.16 (8,998.80) 12 829.78 (6,520.99) 0.248

 � Periostin 127,536.87 (39,857.79) 129,579.87 (41,388.81) 0.830

 � VEGF 54.76 (44.71) 52.48 (42.03) 0.841

* Differences in the mean levels before and after the swimming experiment are assessed 
using a paired Student t -test (log-transformed exposures values were considered). 
BDCM, bromodichloromethane; CCL11, C-C motif chemokine 11, CCL2 motif, chemokine 
(C-C motif) ligand 2; CCL22, C-C motif chemokine 22; CHBr3, bromoform; CRP, C 
reactive protein;, CHCl3, chloroform; CXCL10, C-X-C motif chemokine 10, DBCM, 
dibromochloromethane; EGF, epidermal growth factor, G-CSF, granulocyte colony-
stimulating factor, IL, interleukin; MPO, myeloperoxidase; VEGF, vascular endothelial 
growth factor.
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component explains a similar proportion of variance of Y than 
C1X.

The calibrated sPLS models on proteins also included a single 
component, and in that component four proteins were excluded. 
These corresponded to those with the least explained variance 
by exposures in the non-penalised models and models penalised 
on X (see figure 2A and B, respectively): CCL2, EGF, IL-17 and 
G-CSF. The first component of X, C1X″, was very similar to that 
of the non-penalised models (table  2), and explained 94.9% 
of the variance in X, and >14% of the variance of the shrunk 
set of proteins. As expected, the VIP plot for sPLS models on 
Y, C1X″ (figure 2C), were similar to that of the PLS model C1X 
(figure 2A), and the proportion of variance explained for each of 
the selected proteins were not affected.

Variable selection on both X and Y
In the final model, variable selection is performed on both X 
and Y, one component is retained for exposures and proteins: 
C1X‴, and C1Y‴. As in the sparse model on X, C1X‴ does not 
include bromoform. C1Y ‴  includes eight proteins (vs nine for 
C1Y″) and the five proteins with null loadings were CCL2, EGF, 
IL-17, G-CSF (as in the sparse on Y model) as well as MPO. C1X‴ 
explains 94% of the variance of X and 16.10% of the variance 
of the shrunk set of proteins.

In that model, as before, BDCM and DBMC mainly contribute 
to the explanatory performances of C1X‴, and C1X‴ explains the 

variance of eight proteins, mainly: CXCL10 (>40%), CCL22 
(>20%), IL1-ra (~20%), IL-8 and CCL11 (~15%) (figure 2D).

Altogether, these sPLS models show that the exclusion of 
bromoform in the exposure matrix and of CCL2, EGF, IL-17, 
G-CSF, and in a lesser extend MPO, in the protein matrix, does 
not affect the performances of the model, which suggests that 
these excluded variables do not contribute to the exposure-pro-
tein relationship, and therefore not to the inflammatory response 
to DBP.

Projection of the dataset using the first PLS components of 
both exposures and proteins (figure  3) clearly shows that all 
post-swimming observations exhibit negative PLS scores along 
the exposure axis. Due to the negative loadings of C1X‴ (table 2) 
this is indicative of increased exposure levels after the swim-
ming experiment. Similarly, all except one of the post-swim-
ming observations are allocated negative PLS scores along the 
first protein PLS component. This is suggestive of post-swim-
ming decreased levels of IL-8, VEGF, CCL22, CCL11, CRP, and 
CXCL10 (all have positive loadings coefficients, see table 2), and 
increased levels of IL-1ra and, to a lesser extent, of Periostin 
(negative loadings coefficients, table 2).

In figure 4, we compare the per-protein coefficient of deter-
mination (R2, figure 4A) and the Akaike information criterion 
(AIC, figure 4B), calculated over the entire study population, for 
the four PLS models we investigated and for a series of linear 
mixed models we ran, setting the individual ID set as random 
intercept to regress all four exposures against each of the protein 

Figure 1  Spearman correlation coefficients for exposures (top) and Pearson correlation coefficients for protein levels (bottom) before (first column) 
and after (second column) the swim. The third column represent the correlation coefficients between differences in exposures and proteins levels. 
BDCM, bromodichloromethane; CCL11, C-C motif chemokine 11, CCL2 motif, chemokine (C-C motif) ligand 2; CCL22, C-C motif chemokine 22; CHBr3, 
bromoform; CRP, C reactive protein; CHCl3, chloroform; CXCL10, C-X-C motif chemokine 10; DBCM, dibromochloromethane; EGF, epidermal growth 
factor, G-CSF, granulocyte colony-stimulating factor; IL, interleukin; MPO, myeloperoxidase; VEGF, vascular endothelial growth factor.
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levels separately. From this plots, it appears that jointly model-
ling the effect of exposures on all proteins (as done in PLS 
models) improves the quality of the model fit and yields overall 
higher R2 values and lower AIC for any of the PLS models 
compared with those from linear mixed models. Additionally, 
very small differences in both R2 and AIC were observed across 
the four versions of the PLS approaches we used, suggesting that 
variable exclusion did not affect model performances and that 
the penalised models efficiently discarded irrelevant exposures, 
and/or unrelated exposures. For some proteins, in particular 
CXCL10, IL8, VEGF, CCL22 and CCL11, all PLS models yield 
better performances than linear mixed models. These proteins 
are the ones with the largest proportion of variance explained by 
exposures in the PLS models. Conversely, for some proteins (eg, 
MPO, CCL2 and EGF), PLS and linear mixed models similarly 
misperform, and these proteins correspond to proteins whose 
changes in concentration cannot be explained by exposures: 
these proteins were not selected in sPLS models.

Discussion
A common problem in environmental epidemiology is to iden-
tify the complex set of exposures affecting biological processes 
and ultimately contributing to health. Most environmental 

exposures operate in the form of complex mixtures, including 
air, food and water.

Unlike recent alternative explicitly modelling the vari-
ance among exposures,34 35 we used PLS models  to identify 
subsets of exposures and proteins mostly covarying. In the 
present study, we chose not to explicitly model the exposure 
mix including its possible interaction in relation to molecular 
profiles, but considered instead that the set of measured expo-
sures was a better proxy for the exposure mix than each expo-
sure taken separately.

We propose to use an established extension of the PLS model 
to identify, within the entire set of measured exposures, those 
that are relevant to the entire set of biomarkers and, using penal-
isation, to quantify to which extent these exposures contribute 
to the overall explanatory performance of the model.

While PLS models can natively accommodate high-dimensional 
data,36–38 we chose to use data of limited dimensionality in our 
illustration to improve visualisation and interpretation of the main 
output of the methods. Our data featured two measurements per 
individual and we handled this design by adopting an established-
multilevel approach decomposing the total variance into 'between' 
and 'within' individual variations. The former captures differences 
across individuals while the latter measures variation induced by 

Table 2  Results from the multilevel (s)PLS analyses regressing the four exposures (predictors) against the 13 assayed proteins (response). Results 
are presented for the PLS analyses, for sparse PLS models performing variable selection on exposures (sPLS on X), on proteins (sPLS on Y) and on 
both exposures and proteins sPLS on X and Y. We report in the table the loadings coefficients for the (s)PLS components of exposures (top table) and 
proteins (bottom table). For the (sPLS) components of exposures, we report the per-component proportion of variance (in both X and Y) explained, 
and for components of the proteins we only report the proportion of the variance in Y. For all sparse PLS models, results are only presented for the 
first PLS component, which is the only one to be retained according to the Q2 criterion (see methods)

PLS sPLS on X sPLS on Y sPLS on X and Y

Exposures (X matrix) C 1X C 2X C 3X C 4X C 1X′ C 1X″ C 1X‴ 
 � CHCl3 − 0.50 − 0.60 − 0.60 − 0.17 − 0.48 − 0.50 -0.48 

 � BDCM −0.52 −0.21 0.45 0.70 −0.67 −0.52 −0.66

 � DBCM −0.51 0.11 0.51 −0.68 −0.57 −0.51 −0.58

 � CHBr3 −0.46 0.76 −0.42 0.15 0.00 −0.46 0.00

Explained Variance in X 94.8% 4.5% 0.6% 0.04% 94.0% 94.8% 94.0%

Explained Variance in Y 10.1% 1.3% 1.9% 1.3% 10.4% 14.2% 16.1%

Protein levels (Y matrix) C1Y C2Y C3Y C4Y C1Y' C1Y'’ C1Y'’’

 � CCL2 0.12 0.195 −0.09 −0.02 0.13 0.00 0.00

 � IL-8 0.31 0.062 0.19 0.12 0.32 0.30 0.29

 � EGF −0.10 0.216 −0.38 −0.11 −0.09 0.00 0.00

 � MPO −0.14 0.310 0.18 0.05 −0.13 −0.02 0.00

 � VEGF 0.21 −0.266 −0.11 −0.36 0.20 0.13 0.11

 � IL-17 0.03 0.169 0.20 0.22 0.03 0.00 0.00

 � CCL22 0.42 −0.131 −0.32 −0.09 0.41 0.44 0.43

 � G-CSF 0.05 −0.079 −0.41 −0.43 0.05 0.00 0.00

 � CCL11 0.29 0.221 −0.27 −0.16 0.30 0.26 0.26

 � CRP 0.19 0.367 −0.11 −0.53 0.20 0.09 0.11

 � CXCL10 0.57 0.121 −0.05 0.46 0.57 0.68 0.67

 � Periostin −0.18 −0.318 −0.31 −0.08 −0.18 −0.08 −0.08

 � IL-1ra −0.38 −0.627 0.52 −0.28 −0.40 −0.39 −0.41

Explained Variance in Y 19.7% 6.9% 19.5% 23.3% 19.8% 17.7% 17.4%

Results are presented for the PLS analyses, for sparse PLS models performing variable selection on exposures (sPLS on X), on proteins (sPLS on Y) and on both exposures and proteins sPLS on 
X and Y. We report in the table the loadings coefficients for the (s)PLS components of exposures (top table) and proteins (bottom table). For the (sPLS) components of exposures, we report 
the per-component proportion of variance (in both X and Y) explained, and for components of the proteins we only report the proportion of the variance in Y. For all sparse PLS models, results 
are only presented for the first PLS component, which is the only one to be retained according to the Q 2 criterion (see methods). 
BDCM, bromodichloromethane; CCL11, C-C motif chemokine 11, CCL2 motif, chemokine (C-C motif) ligand 2; CCL22, C-C motif chemokine 22; CHBr3, bromoform; CRP, C reactive protein; 
CHCl3, chloroform; CXCL10, C-X-C motif chemokine 10; DBCM, dibromochloromethane; EGF, epidermal growth factor, G-CSF, granulocyte colony-stimulating factor; IL, interleukin; MPO, 
myeloperoxidase; PLS, partial least squares; sPLS, sparse partial least squares; VEGF, vascular endothelial growth factor.
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the experiment (here, swimming) and is therefore adjusted on 
potential sources of heterogeneity across participants.

We observed modest changes in the proportion of variance 
explained across the PLS models investigated, and overall a small 

proportion of the variance of the proteins explained by the expo-
sures. Our analyses identified a subset of eight proteins that were 
more affected by swimming-induced exposures and suggested 
a weaker association with bromoform in comparison to other 
di-bromo derivatives and chloroform. Our results show that vari-
able selection applied to PLS models in presence of correlated 
predictors efficiently was able to discard (1/4) exposures not 
contributing (other than through their correlation with the other 
exposures) to the explanation of the variance of the protein levels, 
and (5/13) proteins whose variation was not related to the expo-
sures, and hence improves results interpretability. Further improve-
ments in results interpretability could be achieved by adopting 
orthogonal PLS approaches19 39 where the orthogonal (ie, non-pre-
dictive) information from the exposures is removed and does not 
contribute to the construction of the components.

Results from the sparse PLS models selecting both exposures 
and proteins suggest a swimming-induced immunotoxicity 
through decreased level of IL-8, VEGF, CCL22, CCL11, CRP 
and CXCL10, and increased levels of IL-1ra, which antago-
nises the proinflammatory IL-1. These results are consistent 
with previous studies showing an anti-inflammatory response in 
relation to exposures to DBP and/or physical activity.27–29 Our 
results also suggest that these inflammatory changes are concur-
rent to the acute exposure to DBP.

However, we observe a very strong contrast in exposure levels 
before and after  swimming, which induces a strong correla-
tion between exposures and factors relating to the experiment. 
Consequently it is not possible to statistically disentangle the 
effect of exposures from that of physical activity (or of any 
other factor related to the swimming experiment),25 28 and in the 
absence of independent evidence relating the identified proteins 
to DBP, these conclusions should be carefully interpreted.

Figure 2  Variable importance in projection plots and proportion of variance explained by protein. Results are presented for PLS model (A), for 
sparse PLS performing variable selection on exposures (B), on proteins (C), and both on exposures and proteins (D). CCL11, C-C motif chemokine 
11, CCL2 motif, chemokine (C-C motif) ligand 2; CCL22, C-C motif chemokine 22; CRP, C reactive protein; CXCL10, C-X-C motif chemokine 10; EGF, 
epidermal growth factor, G-CSF, granulocyte colony-stimulating factor; IL, interleukin; MPO, myeloperoxidase; PLS, partial least squares; sVEGF, 
vascular endothelial growth factor. 

Figure 3  X-Y score plot representing the PLS scores for the first 
exposure PLS component (C1X‴x-axis) as a function of the scores of the 
first PLS component for proteins (C1Y‴ , y-axis). Scores are presented for 
all (n=60) participants before (blue), and after (orange) the swimming 
session. Results are presented for the sparse PLS models performing 
variable selection of both exposures and proteins. PLS, partial least 
squares.
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Finally, our results show that adopting a multivariate approach 
accommodating multivariate predictors and responses (ie, 
accounting for the variance-covariance across proteins) yields 
improvement in the model fit (R2 and AIC) over models looking 
at each response separately.

While our example focuses on the immune response to expo-
sure to DBP, this approach could directly be extended to other 
exposures (in particular air pollutants), and due to the compu-
tational scalability of PLS models, such extensions could accom-
modate other omics data of higher dimensionality.

As such, variants of the PLS approach as used here may 
complement correlation-based approaches such as the expo-
some globe40 to identify ‘exposome haplotypes’ as well as 
related phenotypes, which could subsequently be interrogated 

for (potentially complex) interactions. Once limited to a prom-
ising set of exposures, interactions of the mixture components 
could be explicitly modelled using PLS approaches by including 
interaction terms in the predictor matrix and define a group 
structure compiling main effects and interaction terms in the 
same group, and adopt a sparse group PLS approach.41 toThis 
would identify the relevant sets of exposures (ie, groups) and 
within each group, the most relevant variables (main and/or 
interaction terms).

Figure 4  Per-protein coefficient of determination (R2) (A) and Akaike information criterion (B) for the four PLS models investigated: non-penalised, 
with variable selection on X, on Y and on both X and Y. Results are also represented for a linear mixed model using the participant ID as random 
effect, and the set of four exposure are fixed effects, in relation to each protein separately. CCL11, C-C motif chemokine 11, CCL2 motif, chemokine 
(C-C motif) ligand 2; CCL22, C-C motif chemokine 22; CRP, C reactive protein; CXCL10, C-X-C motif chemokine 10; EGF, epidermal growth factor, 
G-CSF, granulocyte colony-stimulating factor; IL, interleukin; MPO, myeloperoxidase; PLS, partial least squares; VEGF, vascular endothelial growth 
factor. 

What is already known on this subject

►► The exploration of the role of exposures on human health 
relies on the modelling of the effect of exposure mixtures. 
Several approaches have been proposed to study exposure 
mixtures, and these rely on strong assumption regarding the 
identity of the involved exposures and on the form of their 
interactions. In an exposome context, relevant exposures are 
not all measured and sometimes unknown, hence making the 
formulation and justification of such hypotheses impossible.

What this study adds

►► In order to capture the complexity of the exposure effects 
and of their biological response, we propose to use PLS 
approaches combined with variable selection to identify 
influential subsets of exposures to identify a subset of 
molecular measurements preferentially affected by these 
exposures. Our illustrative application investigated the 
effect of exposure to disinfection by products (n=4) on 
inflammation, as measured by 13 proteins levels and can 
naturally be scaled up to high throughput data. It may 
therefore prove useful in exposome research to explore the 
complex and possibly pleiotropic effects of exposures on 
biological makers.
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