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SUMMARY

In both academia and the pharmaceutical industry, large-scale assays for drug discovery are 

expensive and often impractical, particularly for the increasingly important physiologically 

relevant model systems that require primary cells, organoids, whole organisms, or expensive or 

rare reagents. We hypothesized that data from a single high-throughput imaging assay can be 

repurposed to predict the biological activity of compounds in other assays, even those targeting 

alternate pathways or biological processes. Indeed, quantitative information extracted from a 

three-channel microscopy-based screen for glucocorticoid receptor translocation was able to 

predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, 

repurposing increased hit rates by 60- to 250-fold over that of the initial project assays while 

increasing the chemical structure diversity of the hits. Our results suggest that data from high-

content screens are a rich source of information that can be used to predict and replace customized 

biological assays.
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INTRODUCTION

High-throughput imaging (HTI), also known as high-content screening (HCS), captures the 

morphology of the cell and its organelles by microscopy and has yielded diverse biological 

discoveries (Pepperkok and Ellenberg, 2006; Starkuviene and Pepperkok, 2007; Walter et 

al., 2010). HTI is often applied to screen chemical compounds based on morphological 

changes they induce (Held et al., 2010; Yarrow et al., 2003). Currently, most HTI screens are 

designed to evaluate one specific biological process and exploit only a handful of 

morphological features from the image, chosen to best measure that process (Singh et al., 

2014) (Figure 1).

However, any cellular system hosts many more biochemical processes and thousands of 

potential drug targets, all of which are exposed to the screened chemical compounds. Many 

of these targets and processes impact cell morphology and that morphology can to a large 

extent be extracted from the images (Carpenter et al., 2006). The resulting set of features, 

which include not just shape and spatial metrics but also the intensity and patterning of 

fluorescently labeled markers, can be used to describe chemical compounds and can be 

considered as an image-based compound fingerprint. Such fingerprints are powerful enough 

to accomplish a variety of important biological aims including optimizing the diversity of 

compound libraries, grouping compounds by pharmacological mechanism, and grouping 

genes based on functional similarity (Caicedo et al., 2016).

Motivation

We therefore hypothesized that image-based fingerprints of compounds derived from a given 

image-based cellular assay, might be leveraged to predict compound activity in seemingly 

unrelated assays. Effective predictors of biological activity already exist; virtual screening 

and Quantitative Structure–Activity Relationship (QSAR) analyses typically rely on features 

derived from the chemical structure of compounds to predict their activity in assays. 

Structure-based models are predictively performant (Cumming et al., 2013), but only for 

those parts of chemical space for which sufficient assay activity data is available. 

Unfortunately, compounds that are chemically very different from any known active 

compound are unlikely to be predicted as active. Because cell morphology can reflect 

compound-induced modulation of diverse targets and biochemical processes regardless of 

compound structure, we suspected that image-based models would avoid this limitation and 

may complement chemistry-based models in novel and poorly annotated chemical space.

Decades of high-content screening experience indicate an ability of image-based readouts to 

generalize over multiple unrelated targets. Yet, most academic and commercial imaging 

campaigns have followed a narrowly focused classical setup depicted in Figure 1, leaving a 

large volume of biological information untapped. Therefore, we aimed to repurpose pre-

existing imaging screens to generically predict compound activities in assays that may be 

unrelated to the original screening assay.
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RESULTS

Overview of Proposed Repurposing Approach

We propose a pipeline (Figure 2) to leverage the rich information in existing image screens 

for the prediction of activity in a variety of orthogonal assays directed at seemingly 

unrelated proteins and processes. First, we extract an extensive image-based fingerprint of 

morphological features for each compound in a single, already completed large-scale 

imaging screen (X in Figure 2), aiming for maximal and unbiased information capture 

(Section Extracting Image-based Fingerprints). Second, we introduce existing activity data 

for orthogonal assays of interest on these compounds (Y in Figure 2). Then, we train 

supervised machine learning models to predict Y from X and choose models with high 

predictive performance. Finally, we use these high-quality models to select compounds for 

in-vitro testing. Next we will describe each of these steps in detail.

Extracting Image-based Fingerprints

The goal of extracting image-based fingerprints is to capture all available information about 

the biological state of the cell from the image. In this work, we use previously developed 

software (CellProfiler) and methods (Gustafsdottir et al., 2013) to produce a feature vector 

for each cell, capturing general morphology, shape and biologically important parameters 

(e.g., micronucleus count). For the three-channel glucocorticoid receptor (GR) HTI assay 

used in the evaluation, this produced an 842-dimensional feature vector per cell. Then for 

each plate we normalize each feature using the mean and the standard deviation of the 

corresponding feature from the negative controls (cells without treatment). Finally, for each 

compound we compute a vector of feature medians across all cells in its image, producing a 

single image-based fingerprint.

We note that an attractive alternative procedure is to use convolutional neural networks 

(CNNs) to learn feature representation directly from the raw pixels of cell images. This 

strategy shows promise but is still exploratory for image-based profiling; together with the 

high computational cost and hardware requirements, we leave this direction to future 

research.

Machine Learning for Image-based Fingerprints

We next use machine learning to take image-based fingerprints (X in Figure 2) and the 

existing bioactivity measurements on the assays of interest (Y in Figure 2) to learn a model 

to predict bioactivity of new compounds given their image-based fingerprints.

The simplest approach would be to model each column of the activity data separately (single 

task learning). However, we can take advantage of the existence of multiple related 

prediction tasks by modeling them jointly (multitask learning). In the case of related tasks 

multitask learning is known to improve the overall performance significantly (Caruana, 

1997).

Both regression and classification methods could be used in the repurposing workflow we 

propose. Here we describe two which yielded good computational and predictive 
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performance. To document the compatibility of this generic concept with other machine 

learning methods, we also carried out additional experiments with random forest (Breiman, 

2001) and k-nearest neighbor classifier in our validation setup (Methods S3).

Bayesian Matrix Factorization

First, we explored Bayesian matrix factorization, a multitask method that does not require 

hyperparameterization (like regularization) and provides uncertainty estimates for 

predictions. Specifically, we used the Bayesian matrix factorization method Macau, which 

can account for side information (in this case image features) as side information. To 

factorize the N times M activity matrix Y, Macau represents each compound and each assay 

by D-dimensional latent vectors ui and vj, respectively. The prediction for the element Yij, 

corresponding to the activity of compound i on assay j, is given by the scalar product ui
Tvj. 

The features xi is an F-dimensional vector (F=842) corresponding to the image-based 

fingerprint (Section Extracting Image-based Fingerprints) and is added to the prior of the 

latent vectors of compounds ui. Macau maps all tasks to the same D-dimensional latent 

space, therefore enabling sharing of parts of the model.

This results in a probabilistic model of

Yij N(ui
Tv j, α−1)ui N(μu + βxi, Λu

−1)v j N(μv, Λv
−1)

where α is the precision of the observations, parameters μu and Λu model the mean and 

precision of the compound latent vectors, similarly μv and Λv model the latent vectors for 

assays. The parameter β is a D times F dimensional matrix that maps the image features to 

the compound latent space. To learn β we apply a Gaussian prior on it:

β N(0, Λu ⊗ λβIF)−1)

where ⊗ is the Kronecker product, λβ is a precision parameter and IF is the identity matrix 

of size F. Figure 3 depicts the plate diagram for the probabilistic model.

By deriving conditional distributions for all model variables, we obtain a Gibbs sampler that 

iterates over all model variables, as in (Simm et al., 2017). For each variable, it samples a 

value from the conditional distribution by fixing all the others. Finally, to compute the 

predictions for Yij we use each sample to compute the scalar products ui
Tvj and then average 

over the samples. We observed that the performance of the method does not degrade with 

choosing a high latent dimensionality D. In practice, this implies the choice of a large 

enough latent space; in our case D=150.

The Macau model described here is for the regression setting, i.e., Yij are real-valued. The 

model can be easily modified to handle the classification setting by replacing the normal 

prior on Yij with a probit one. We have made the implementations for both settings available 

open source.1
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Deep Neural Networks

The matrix factorization model described above is linear and may lack the flexibility to 

capture all important biological effects. Therefore, we additionally tested a multitask deep 

learning architecture. We implemented Deep Neural Networks (DNNs), concretely feed-

forward artificial neural networks, with many layers comprising a large number of neurons 

and rectified linear units (Mayr et al., 2016). DNNs (Figure 4) consists of interconnected 

neurons that are arranged hierarchically in layers. In the first layer of the network (the input 
layer), the neurons obtain an input vector that is the image-based fingerprint. The 

intermediate layers (the hidden layers) comprise the hidden neurons that have weighted 

connections to the neurons of the previous level layer, and can be considered as abstract 

features, built from features below. The last layer (the output layer) supplies the predictions 

of the model. Typical DNNs comprise several layers which consists of thousands of neurons.

We used rectified linear units (ReLUs) as activation functions in the hidden layers. The 

output layer has sigmoid activation functions. To avoid overfitting, we employed multiple 

regularization techniques, concretely dropout (Srivastava et al., 2014) and early stopping. 

Both the dropout rate and the early-stopping parameter, i.e. the number of epochs after 

which learning is stopped, were determined on a validation data set.

Deep learning naturally enables multitask learning (Caruana, 1997). In our setting each 

assay is a task. Commonalities across the assays translate to shared representation in the 

hidden layers and can yield performance improvements (Mayr et al., 2016). We modeled 

each assay by a separate output unit.

We used cross-entropy as a loss function for our DNNs:

∑
i, j

mij(Yijlog Y∼ij + (1 − Yij)log (1 − Y∼ij)),

where Ỹij is the prediction for compound i and assay j and the actual label is Yij, which 

indicates whether the compound was active (Yij = 1) or inactive (Yij = 0) in the given assay. 

The binary variable mij indicates whether a measurement is present (mij = 1) or missing (mij 

= 1). The implementation details, optimization of architecture and hyperparameters are 

given in Supplemental Information.

Selection of High Quality Models

Next, we select only assays yielding a highly reliable model. To this end we employ cross-

validation, i.e., we split the compounds into k folds (here, k = 3). In cross-validation, the 

activity data for each fold is predicted using a model built on the data from the other folds. 

The resulting predictions enable the computation of an AUC-ROC score, or some other 

performance metric of choice. We used the average of the k folds as the evaluation metric for 

each model, and focused on models with an AUC-ROC > 0.9. If a machine learning method 

1The C++/Python package is available at https://github.com/jaak-s/macau
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required an optimization of hyperparameters (e.g. choices of model architecture, kernel, 

dropout), we applied nested cross-validation (Mayr et al., 2016).

The simplest splitting scenario would be the random assignment of compounds to folds. 

However, in the case of chemistry-based modeling of pharmaceutical data sets, where 

compounds tend to be concentrated around attractive chemical backbones, this approach 

results in overoptimistic performance estimates (as close structural analogs get spread over 

test and validation, and performance metrics are boosted but do not hold up when applied to 

new chemistry). One popular mitigation approach is the use of temporal or roll-back 

splitting, where a timestamp is used to separate test and validation folds. In a multitask 

setting, however, temporal splitting is impractical because the order of measurement of the 

same compounds in different assays is not guaranteed to be aligned. Instead, we clustered 

the compounds based on chemical similarity and randomly assigned the clusters into folds 

(see Figure S1). Here, a Tanimoto similarity cutoff on ECFP6 features was used to ensure 

close analogs end up in the same test or validation fold. A high choice of cutoff may fall 

short of addressing the overoptimistic performance estimation, while a low cutoff may 

restrict the learning potential (as machine learning relies on recognizing similarities). In our 

experience, a similarity cutoff of 0.7 offers an optimal tradeoff.

Image-based fingerprints are insulated from the underlying chemistry. Thus, performance 

estimates for the resulting models are not expected to be skewed by the above mentioned 

pharmaceutical chemistry bias. However, for consistency reasons we still followed the 

clustered cross-validation approach.

Compound Selection for In-vitro Testing

Finally, we select compounds highly ranked by good quality models. There are two main 

selection strategies. The first is to select all the highest ranked compounds for in-vitro 
testing. Although simple the strategy may select sets that are too homogeneous or too 

chemically similar to the original training set. The second strategy is to apply diversity 

maximization (for example sphere exclusion clustering) on the highly ranked compounds, 

and only test a diverse set. This strategy can result in novel hits, but only if the model can 

generalize across scaffolds. As indicated before, we hypothesized that this is the case for 

models that use image-based fingerprints.

Experimental Evaluation

In the following we evaluate our HTI assay repurposing approach in a large-scale industrial 

context. To begin, we chose a high-throughput imaging screen of 524,371 proprietary 

compounds originally used for the detection of glucocorticoid receptor (GCR) nuclear 

translocation. In this assay, each compound was applied at a concentration of 10µM to H4 

brain neuroglioma cells, incubated for one hour, then exposed to 1µM hydrocortisone for 

one hour to stimulate translocation of the GCR. Cells were then fixed and imaged in 3-

channel fluorescence, with Hoechst to label the nucleus, CellMask Deep Red to delineate 

cell boundaries, and indirect immunofluorescence to detect GCR. From these images, our 

pipeline extracted 842-dimensional vectors for each compound representing the feature 

matrix X (Section Extracting Image-based Fingerprints).
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The bioactivity matrix Y documents the available experimental activities of 524,371 imaged 

compounds in about 1,200 biochemical or cellular assays that can all be interpreted as an 

activity on a protein target. This also means that a single compound can be measured on 

multiple targets. The activity is expressed as the pXC50 of the given compound in the given 

assay. The pXC50 is defined as −log10 of the molarity concentration of the compound 

yielding a half-maximal effect in the experimentally measured dose-response curve. 

Typically, a given compound is measured in a handful of assays, such that Y is sparsely 

populated, i.e. has many missing values. In total, more than 10 million pXC50 values were 

available for the roughly 1,200 prediction tasks, corresponding to a fill rate of Y of about 

1.6%.

We evaluated all protein assays at four different thresholds of pXC50 (here activity is defined 

as a pXC50 value exceeding the threshold), namely 5.5, 6.5, 7.5 and 8.5. We only used 

assay-threshold pairs with at least 25 actives and 25 inactives. For 535 assays, at least one 

pXC50 threshold resulted in a data subset meeting this criterion. In the step of selecting high 

quality models (Section Selection of High Quality Models) we used AUC-ROC higher than 

0.9 as the cutoff. We additionally report results for a cutoff of 0.7.

Results of In-silico Experiments

Of the 535 assays, the described pipeline yielded 31 assays with high quality models using 

Macau (run for 2000 iterations, discarding the first 400 as burn-in) and 43 using DNN (f or 

details, including hyperparameter tuning, see Table S1). An AUC-ROC threshold of 0.7 

yielded 6–7 times as many assays (Table 1).

Both methods can successfully repurpose the original GR HTI assay for predicting activity 

towards more than 30 unrelated protein targets (AUC-ROC > 0.9), and provide models of 

sufficient quality to enrich compound sets for (or deplete them of) activity towards a further 

200 targets (AUC-ROC > 0.7). Therefore, the image-based fingerprinting of HTI assays 

prove a rich and hitherto untapped source of information on biological activity, which can be 

picked up by several machine learning methods. This means that if computational resources 

are restricted one can use non deep learning methods like Macau or random forest with 

closely comparable performance (see Table S3 for mean AUC-ROC values for Macau and 

random forest).

Results for In-vitro Validation

As the Macau results were readily available during the early phase of the research, we 

proceeded with the in-vitro validation using these models. Among these 31 assays with high-

quality predictions from Macau, two were connected to ongoing discovery projects: one 

oncology project and one central nervous system (CNS) project. For these two projects, we 

selected compounds for testing.

Results for Oncology Project

For the oncology project, the target was a kinase with no known direct relation to the 

glucocorticoid receptor. Using our Macau model, we ranked about 60,000 compounds tested 

in the GR assay but for which no activity measurement was available in the oncology screen. 
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We selected 342 highest ranking compounds for experimental follow-up (Section Compound 

Selection for In-vitro Testing). We found that 124 of them were submicromolar (XC50 < 

1µM) hits (36.3% hit rate), which corresponds to a 50-fold enrichment over the initial high-

throughput screen (0.725% hit rate).

To evaluate the chemical diversity of the hits, we computed the Tanimoto similarity (based 

on extended-connectivity fingerprints (ECFP), (Rogers and Hahn, 2010)) of each hit to the 

nearest hit identified by the initial high-throughput screen (red distribution in Figure 5). 70% 

of the hits are below the 0.7 similarity line, and a significant proportion is even below 0.5. 

Per definition, a similarity search based on the initial hits would rarely yield analogs below 

the 0.7 line, and extremely rarely below the 0.5 line. We also found 108 novel Murcko 

scaffolds among the new hits (Table 2). Together these two facts imply that our repurposing 

pipeline can result in a hit set with high chemical diversity. For reference, the figure also 

shows the distribution for randomly selected compounds (blue distribution in Figure 5).

Additionally, we compared the top ranked compounds to those retrieved by chemical 

fingerprint based approaches. Specifically, we used the exact same activity data with 

chemical structure based features (ECFP) to train a Macau model and then ranked the 

untested 60,000 compounds. From the above mentioned top 342 compounds ranked by the 

image features 113 (33%) compounds were retrieved by ECFP model in its top 342. From 

the 124 actives 44 (35%) compounds were found in the top 342 of ECFP model. Moreover, 

to identify all 124 active compounds using the ECFP ranking one would need to test more 

than 21% of the 60,000 candidate compounds, i.e., at least 13,000 compounds. This shows 

that the image-fingerprints clearly provided additional source of information that is not 

encoded in the chemical fingerprints.

Results for CNS Project

For the CNS project, the target was a non-kinase enzyme, again without obvious relation to 

the glucocorticoid receptor. Using our Macau model, activity was predicted for all 500,000 

image-annotated compounds and we selected all compounds with submicromolar prediction, 

resulting in 1,715 compounds. Next, we kept only compounds without unfavorable 

properties, like PAINS filter (Baell and Holloway, 2010) and low predicted central nervous 

system availability (Methods S1). For this project, to maximize compound diversity, we 

employed the selection strategy of grouping the remaining compounds into clusters based on 

structure, using sphere exclusion clustering with similarity cutoff 0.7 (Section Compound 

Selection for In-vitro Testing). We then selected a handful of representatives from each 

cluster resulting in 141 compounds. We experimentally tested them and found that 36 of 

them were submicromolar hits (25.5% hit rate), which corresponds to a 280-fold enrichment 

over the hit rate of the initial high-throughput screen (0.088% rate). These compounds were 

highly diverse (Tanimoto similarity < 0.3; Figure 5) while maintaining a relatively high hit 

rate. The 36 hits resulted in 34 novel Murcko scaffolds (Table 2).

DISCUSSION

In this work, we have demonstrated that HTI data enables the identification of diverse hits 

without the need to test the entire library in the target assay. By accessing rich 
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morphological features of the cell, imaging screens capture diverse cellular processes, 

resulting in a fingerprint of biological action. Our results indicate that images from HTI 

screening projects that are conducted in many institutions can be repurposed for dramatically 

reducing the scale of screens required for other projects, even those that seem unrelated to 

the primary purpose of the HTI screen.

We emphasize that our approach relies on a supervised machine learning method and hence 

activity measurements and imaging data must be acquired for a reasonably sized library of 

compounds to train the model. Subsequently, however, it seems possible to replace many 

particular assays with the potentially more cost-efficient imaging technology together with 

machine learning models. Specifically, one would execute one or a few image screens on the 

library instead of dozens of target-focused assays. This raises an interesting question of the 

breadth of drug targets that could be accessed by imaging screens if the screen were 

optimized for that purpose, or if a combination of screens was used that explored multiple 

cell lines or sources, culturing conditions, staining of organelles and/or incubation times.

We leave for future work the head-to-head comparison of chemistry-based and image-based 

fingerprints, but can speculate based on our results. In the case of a well-covered chemical 

space we would not expect image-based fingerprints to outperform a well-designed chemical 

fingerprint like ECFP. For example, if the compound in question has several close enough 

neighbors we expect chemical fingerprints to prove predictively performant. In contrast, we 

expect the performance of image-based fingerprints that do not depend on chemical 
closeness to be superior for scaffold hopping, i.e., identifying active compounds with novel 

backbones, given it does not depend on the chemical closeness. Evidence for this idea 

includes the high chemical diversity of active compounds and the ability to pick up actives 

that are not detect even by chemistry-based machine learning (Section Results for Oncology 

Project). Moreover, image-based fingerprinting is a feasible approach to predict the activity 

of not just small molecule compounds, but any agent, such as antibodies, RNA interference 

agents or other biologics.

We also anticipate that improvements in the computational pipeline may increase the power 

of the method. For example, convolutional neural networks could predict activity from raw 

images directly rather than from features extracted from each cell using classical image 

processing. This would allow the model to learn the best image features for the specific task 

at hand and may improve results. Another future direction is to maintain the native single-

cell resolution of image-based profiles instead of aggregating values. Finally, our current 

results are based on a single HTI screen and we envision that data fusion across a collection 

of multiple HTI screens could even be more powerful for assay activity prediction. We leave 

as a follow up work to investigate how adding new HTI assays improves the predictive 

performance.

Our results also encourage the creation of a sufficiently large public datasets of compounds 

annotated with chemical structures, activity measurements in validated assays and images. 

While a few efforts have publicly documented up to about 30,000 compounds with cellular 

images (Wawer et al., 2014), only a tenth of the compounds have been annotated with some 

assay activities, yielding a very sparse annotation matrix.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

High-throughput imaging is an affordable screening technology most often used to read 

out a handful of morphological features that document a single biological process of 

interest. Leveraging access to a large private set of activity and image-annotated 

compounds, we here establish proof-of-concept that images from one given cellular assay 

support activity prediction across a spectrum of seemingly unrelated biological assays. 

Hence, images can inform on biological activity far beyond the intended focus of the 

original screen. Once a chemical library is documented with image-based fingerprints, a 

medium scale screening in an expensive or tedious assay may suffice to train an image-

based model that can predict the outcome for the rest of the library and enable cost-

effective targeted experimental validation. Effective predictive approaches that rely on the 

chemical structure of compounds are well established in the context of the gradual 

virtualization of screening and drug discovery. Our study suggests image-based 

approaches can complement these structure-based ones, particularly in those cases where 

the latter suffer from chemical biases in training data. Moreover, they can extend 

predictive modeling options to agents with (bio)chemistry that elude standard structure-

based approaches, like antibodies, RNA interference agents and other biologics. 

Importantly, given that the field of structure-based prediction already exploits decades of 

optimization and research, the pace of predictive performance gain has slowed down. In 

contrast, advancements like convolutional neural networks have recently boosted the 

performance of generic image-based machine learning. The proof of concept described in 

this paper justifies further research in optimizing the specific application of image-based 

machine learning in drug discovery. Future lines of research may aim to maximize the 

generic informativity by screen design or by data fusion over pre-existing screens that 

cover a broader range of biological contexts, and to improve feature extraction and 

additional learning from microscopy images.
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Figure 1. A Typical HTI Screen Approach
Few or single features are extracted from cellular images; the remainder of information 

(gray) is ignored (Ansbro et al., 2013; Evensen et al., 2010).
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Figure 2. Strategy to Repurpose Imaging Screens to Efficiently Predict Biological Activity
Features extracted from images of cells are used by machine learning methods to model all 

available activity data from previously performed assays. Assays with good predictivity on 

the test data are then selected for testing a relatively small number of predicted-active 

compounds, chosen from a large set of compounds profiled in the imaging assay.
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Figure 3. Diagram for the Probabilistic Model for the Bayesian Matrix Factorization Approach 
Macau
The shaded circles denote observed variables and the transparent circles are inferred from 

the data.
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Figure 4. General Architecture of Deep Neural Networks
Variable x denotes the image-based fingerprint, y corresponds to biological activity. The 

tested hyperparameters of DNN are shown in Table S1.

Simm et al. Page 16

Cell Chem Biol. Author manuscript; available in PMC 2019 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Image-based Profiling Strategy Yields More Chemically Diverse Compounds than 
Would be Expected for Chemical Extension
In an oncology project (left) and a CNS project (right), we calculated the ECFP (radius 4) 

based Tanimoto similarity of each hit to the nearest hit identified by the initial high-

throughput screen (red). For reference, the blue distributions show the similarity of 

randomly selected compounds to the closest hit identified by the initial high-throughput 

screen. Note that in the CNS project, unlike the oncology project, the selection procedure 

involved an additional step to reduce representatives from the same chemical-structural 

class. The horizontal dotted lines depict the 0.5 and 0.7 similarity levels.
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Table 1

The number of protein assays above the AUC-ROC threshold for machine learning methods Macau and deep 

neural networks (DNN).

AUC-ROC threshold Macau DNN Common

0.9 31 (5.8%) 43 (8.0%) 26 (4.9%)

0.7 218 (40.7%) 245 (45.8%) 209 (39.1%)

The percentage is calculated relative to the total number of 535 assays. The Common column depicts the number of assays well predicted by both 
of the methods. Venn diagrams of the predicted targets are shown in Figure S2 and S3. The tested hyperparameters are described in Table S1 and 
S2. The mean AUC-ROC values for Macau, DNN, random forest and k-nearest neighbor are given in Table S3.
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Table 2

Number of Murcko Scaffolds in the Two Follow-ups.

Project name #Murcko of initial
screen

#Murcko of new hits
(novel / all)

#New hits

Oncology 2660 108 / 117 124

CNS 57 34 / 34 36

Cell Chem Biol. Author manuscript; available in PMC 2019 May 17.


	SUMMARY
	INTRODUCTION
	Motivation

	RESULTS
	Overview of Proposed Repurposing Approach
	Extracting Image-based Fingerprints
	Machine Learning for Image-based Fingerprints
	Bayesian Matrix Factorization
	Deep Neural Networks
	Selection of High Quality Models
	Compound Selection for In-vitro Testing
	Experimental Evaluation
	Results of In-silico Experiments
	Results for In-vitro Validation
	Results for Oncology Project
	Results for CNS Project

	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

