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Rivers and their tributaries sculpt the earth’s surface, and play an important role in substance circulation and energy flow. 
Bacteria are involved in most biogeochemical processes in the fluvial ecosystem; however, their pattern distribution in a river 
and its tributaries has not yet been investigated in detail. In the present study, high-throughput sequencing was employed to 
examine bacterial communities and their co-occurrence networks between Kaidu River and its nine tributaries in northwestern 
China. The results obtained demonstrated that both bacterial communities shared a similar dominant sub-community, mainly 
consisting of Actinobacteria, Bacteroidetes, and Proteobacteria, with Limnohabitans and Variovorax as the dominant genera. 
In spite of these commonalities, bacterial community structures still significantly differed between these two habitats, which 
may be related to the distance-related dispersal limitation. Their co-occurrence networks were generally both positively structured. 
The structural analysis showed that OTUs from the same phyla were more likely to co-occur. Although the keystone genera 
were taxonomically different between Kaidu River and its tributaries, they both shared common trophic properties in exploiting 
niches under oligotrophic conditions. We noted that their relative abundances were less than 1%, indicating the over-proportional 
roles of rare genera in the bacterial community. In addition, the inferred networks showed less nodes and edges, but higher 
modularity in Kaidu River than its tributaries, suggesting the higher fragmentation of the bacterial community in the mainstream.
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Rivers and their tributaries connect lentic and terrestrial 
ecosystems. Due to their pivotal roles in the biogeochemical 
cycle (19, 35), the study of lotic ecology has been attracting 
increasing interest (24, 42, 54). In attempts to model ecological 
mechanisms in lotic ecosystems, bacteria are essentially viewed 
as primary contributors (41, 47). Thus, the dynamics of a 
bacterial community along a river have received increasing 
attention. A previous study revealed continuous succession in 
bacterial community compositions along a river (58). In 
addition, community richness and evenness were shown to 
gradually increase from the headwaters to the lower reach 
(63). Therefore, the distribution of the bacterial community 
generally fits the expectation of the river continuum concept 
(RCC), which predicts continua in geomorphological changes 
and corresponding biotic adjustments along a river (75).

However, a river and its tributaries form not only a longi-
tudinal continuum, but also fluvial networks (7, 11), at which 
tributaries meet the mainstream. As a consequence, tributary 
inputs of water, sediment, and particulate organic matter may 
potentially change the physicochemical properties of the 
main channel. A tributary source of organisms is concurrently 
delivered and locally expressed in the river (24, 60, 81). The 
biota may significantly differ between these two habitats. 
Clay et al. (18) suggested that the density and diversity of 
macroinvertebrates in tributaries were lower than those in the 
mainstem. In contrast, the β-diversity of the macroinverte-
brate community was markedly higher in tributaries (36). 
However, few studies have focused on bacterial community 

compositions between the mainstem river and its tributaries 
(85). Thus, obtaining a better understanding of the dynamics 
of the bacterial community in fluvial networks is essential for 
developing the ecology of riverine ecosystems.

Due to rapid advances in metagenomic technologies, 
high-throughput DNA sequencing has yielded large amounts 
of data on bacterial communities (53). A number of analytical 
methods have also been concurrently proposed in order to 
enhance our understanding of bacterial communities (45). 
However, most of these analytical techniques only examine 
composition and diversity. In order to investigate bacterial 
communities in more detail, it is crucial to move beyond these 
basic inventory descriptions. Bacteria live within complex 
networks through a multitude of interactions (e.g. competition, 
mutualism, and antagonism) (25). However, most of these 
interactions cannot be directly observed. A co-occurrence 
network analysis was recently applied to provide important 
information beyond sample-level comparisons (5, 25, 32). A 
bacterial network analysis not only reveals how specific species 
co-occur together, but also identifies the keystone taxa based 
on their local abundance and habitat specificity. Thus, the 
construction of a co-occurrence network enables the study of 
bacterial communities in more detail.

In order to gain novel insights into the relationship between 
bacterial communities in the main channel and those in its 
tributaries, Kaidu River and its 9 main tributaries in Northwestern 
China were selected as a model. The study reach is an alpine 
cold-arid region with an elevation ranging between 2,734 m 
and 1,934 m, and the river is typically oligotrophic (40, 66) 
and sensitive to climate change (9). The channel density is 
approximately 0.28 kg km–2 with an average slope of approx-
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imately 12.21%. Its terrestrial landscape is a natural pasture 
with prohibitive anthropogenic activities, including grassland 
(60.6%), bare land (20.9%), wetland (8.9%), snow/ice (5.1%), 
water (3.8%), sand (0.5%), and forest (0.2%) (79). Local 
meteorological data indicated that the annual air temperature 
ranges between –26.8°C (January) and 20.4°C (June) (72). 
The key objectives of the present study were to i) compare 
bacterial communities in terms of composition and diversity 
between these two habitats; ii) characterize the architecture of 
both bacterial co-occurrence networks; iii) elucidate the 
underlying mechanisms for bacterial community patterns in 
lotic ecosystems.

Materials and Methods

Study area and sampling
Kaidu River (42°14′–43°21′N, 82°58′–86°05′E) is located on the 

south slope of the Tianshan Mountains in Xiajiang Province in 
northwestern China, and flows into Lake Bosten. Eight sampling 
sites (KD1 to KD8) from the river and one sampling site from each 
tributary (TR1 to TR9) were selected (Fig. 1). Kaidu River is gener-
ally fed by meltwater from snow and ice through nine tributaries. A 
sampling campaign was conducted on 13 and 14 June 2014. Surface 
water (50 cm) close the riverbank was collected with a 2-L water 
sampler. Subsamples of 300 mL water for a 16S rRNA gene analysis 
were then filtered using a 0.2-μm pore-size polycarbonate filter 
(Millipore) with a hand-driven vacuum pump. The filters were then 
frozen at –20°C until DNA extraction. The remaining subsample 
was preserved at 4°C and transported to the laboratory for an imme-
diate chemical analysis.

Physicochemical analysis
A series of physical parameters, including water temperature, pH, 

salinity, turbidity, and dissolved oxygen (DO), were assessed in situ 
by a multi-parameter water quality sonde (YSI 6600v2; USA). The 
concentrations of total phosphorus (TP) and total nitrogen (TN) 
were evaluated by a colorimetric analysis after digestion (28). The 
concentration of nitrate (NO3

–N) was analyzed using a Skalar San 
Analyzer (SAN PLUS, Netherlands). The concentration of total 
organic carbon (TOC) was assessed by TOC-5000 (Shimadzu) (78).

DNA extraction, PCR, and Illumina Miseq sequencing
Total DNA for filtered microorganisms was extracted according 

to Zhou et al. (87). Crude DNA extracts were then purified by the 
E.Z.N.A® cycle-Pure kit (Omega Bio-Tek). The V5–V6 regions of 
the 16S rRNA genes were amplified using the primers 789F 
(5′-TAGATACCCSSGTAGTCC-3′; forward primer) and 1068R 
(5′-CTGACGRCRGCCATGC-3′; reverse primer) (48). Based on the 
Silva database, the coverage of primers for bacterial communities 
was 98.0% for both the forward and reverse primers (https://www.
arb-silva.de/). Polymerase chain reaction (PCR) amplification was 
performed in a 50-μL reaction mixture containing 5 μL of 10×PCR 
buffer, 4 μL of MgCl2 (25 mmol L–1), 0.5 μL of each primer 
(10 μmol L–1 each), 30 ng quantified template DNA measuring by 
Pico green, and 0.4 μL of Taq polymerase (5 U μL–1; Fermentas). 
PCR cycling was conducted in a thermocycler (Applied Biosystems 
Veriti Thermal Cycler) by a touchdown program: denaturation at 
94°C for 5 min, 11 cycles of denaturation at 94°C for 1 min, annealing 
at 65°C for 1 min (temperature was decreased by 1°C every cycle 
until 55°C was reached), and extension at 72°C for 1 min. Nineteen 
additional cycles were performed at an annealing temperature of 
55°C, followed by a final extension at 72°C for 10 min.

Clean amplicon pools for each sample in equal concentrations 
were paired-end sequenced (2×250) on an Illumina Miseq platform 
at Personal Biotechnology. (Shanghai, China). Pair-end reads were 
assembled using FLASH with a minimum overlap of 100 and 8 
maximum mismatches allowed in the overlap region (http://www.
genomics.jhu.edu/software/FLASH/index.shtml). Briefly, sequencing 
reads were demultiplexed and filtered for quality and size using the 
QIIME pipeline (15), denoised with ACACIA (12), and chimeras 
were identified and removed with ChimeraSlayer (39). Merged 
sequences were processed to cluster operational taxonomic units 
(OTUs, 97% identity threshold) by the UCLUST algorithm (29) and 
classified using the ribosomal database project (RDP) database 
Release (RDP Release 11.5, http://rdp.cme.msu.edu/) (80). The 
longest sequence in each cluster was chosen to be the representative 
sequence, which was annotated according to the SILVA database 
(30). In order to ensure that rare bacteria were not the result of 
sequencing errors, we discarded all OTUs with an abundance 
<0.01% within a sample (67).

Network construction and characterization
OTUs affiliated with genera were applied to construct the 

Fig.  1.  Sampling sites in Kaidu River and its tributaries
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co-occurrence network. Only OTUs that appeared in more than 80% 
of all samples were considered (88). These previous filtering steps 
removed poorly represented OTUs and reduced network complexity. 
Two individual networks within Kaidu River and its tributaries were 
computed using the CoNet (v1.1.1.beta) plugin within Cytoscape 
(v3.5.1) as previously described (33, 34). In each network, co-occurrence 
and mutual exclusion interactions were identified by an ensemble of 
correlations (Spearman and Pearson coefficients) and distance metrics 
(Bray-Curtis and Kullback-Leibler dissimilarity measures). One hundred 
renormalized permutation and bootstrap scores were accessed for 
each interaction metric and each edge following the ReBoot proce-
dure developed by Faust et al. (32). The measure-specific P-values 
from multiple interaction metrics were merged using the Simes 
method (61) and a false-discovery rate correlation (10) was performed 
using the Benjamini-Hochberg multiple testing correction. Only 250 
top- and bottom-ranking edges from each association measured 
were kept in the network analysis. The network was examined and 
visualized using the ‘igraph’ package (21). In order to describe the 
network topology, a set of properties were calculated, including the 
numbers of nodes and edges, the clustering coefficient, modularity, 
and betweenness. The algorithm of fast greedy modularity optimization 
was applied to isolate modules (17, 25). In addition, possible ‘keystone’ 
OTUs were identified from the co-occurrence network, which were 
revealed by the high betweenness and closeness score (13).

Statistical analysis
Before the statistical analysis, all sequences were subsampled 

with the lowest number of sequences among all sites. All analyses 
and visualizations were performed by the vegan, geosphere and 
ggplot2 packages in the R environment (version 3.2.2, http://
www.r-project.org). The Shannon and Pielou indexes were calculated 
by the diversity function. The Bray-Curtis distance matrix was 
computed by the vegdist function after the Hellinger transformation 
(45). Non-metric multidimensional scaling (NMDS) was conducted 
using the metaMDS function based on the Bray-Curtis distance. The 
dendrogram constructed by the UPGMA algorithm was conducted 
using the hclust function. The significance of differences between 
bacterial communities was tested by PERMANOVA using the 
adonis function. The α-diversity and environmental properties of 
Kaidu River and its tributaries were compared by Student’s t-test 

through the t.test function. The geosphere distance matrix among 
sampling sites was computed by the distm function. The relationship 
between bacterial community dissimilarities and their spherical 
distances was tested by the Mantel test though the mantel function. 
The betweenness and closeness values of each node were computed 
using the betweenness and closeness functions, respectively (4, 5, 77).

Results

Physicochemical characterization of Kaidu River and its 
tributaries

No significant differences were observed in major environ-
mental parameters between Kaidu River and its tributaries 
(the Student’s t-test, P>0.05, Fig. 2). Temperatures in Kaidu 
River and tributaries were 12.41±2.84°C and 12.71±2.84°C, 
respectively. The concentrations of dissolved oxygen ranged 
between 7.59 mg L–1 and 8.29 mg L–1 and between 6.61 mg 
L–1 and 9.07 mg L–1, respectively. Additionally, no significant 
differences were observed in chemical properties, including 
TOC, TN, TP, and NO3

–N (the Student’s t-test, P>0.05, Fig. 
2). These low concentrations indicated the poor nutrient status 
of these two habitats. All water samples had a pH greater than 
8 with the highest value of 9.1, suggesting alkaline conditions 
in the study area.

Diversity of bacterial communities in Kaidu River and its 
tributaries

An average of 42,987 reads was obtained from each sam-
pling site. After trimming, screening, and removing chimeras, 
23,809 high quality sequences were obtained on average and 
were then assigned to 904 and 910 OTUs for Kaidu River and 
its tributaries, respectively. A total of 873 OTUs were shared 
by both communities. Good’s coverage was 87.98–96.85%, 
suggesting that the sequencing effort was sufficient to capture 
the diversity of bacterial communities (26, 68), and was sup-

Fig.  2.  Major physicochemical properties in Kaidu River and its tributaries
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ported by rarefaction curves, which approached an asymptote 
(Fig. S1).

The diversity of bacterial communities in Kaidu river and 
its tributaries was summarized (Fig. 3). In the case of α-diversity, 
Richness, Shannon, and Pielou indexes were used as proxies 
(Fig. 3a). These values were slightly higher in the tributaries 
than in Kaidu River (the Student’s t-test, P>0.05). Additionally, 
NMDS was employed to investigate the β-diversity patterns 
of bacterial communities (Fig. 3b). Kaidu River was plotted 
on the left, whereas its tributaries were on the right, suggesting 
that the bacterial communities in the two habitats were well 
separated. This result was also supported by the clustering 
analysis (Fig. S2). The PERMANOVA test also provided a 
similar result showing that the bacterial community structure 
was significantly different between Kaidu River and its tribu-
taries (P<0.05). Notably, the tributaries were more dispersed 
than Kaidu River, indicating greater variations in bacterial 
communities in the tributaries.

Profiles of bacterial communities in Kaidu River and its 
tributaries

After annotating with the SILVA database, the most abundant 
bacterial phyla in Kaidu River were Proteobacteria (51.85%, 
average relative abundance), Bacteroidetes (12.27%), and 
Actinobacteria (11.23%), with Betaproteobacteria (26.99%), 
Alphaproteobacteria (21.58%), Actinobacteria (10.26%), 
and Sphingobacteriia (5.63%) as the dominant classes. Similarly, 
bacterial communities in the tributaries shared the same 
prominent phylotypes: Proteobacteria (36.15%), Bacteroidetes 
(12.21%), and Actinobacteria (6.31%). Betaproteobacteria 
(23.48%), Alphaproteobacteria (9.80%), Sphingobacteriia 
(6.34%), and Actinobacteria (5.19%) also dominated as the 
prominent class. At a finer level, the most abundant genera in 
Kaidu River and its tributaries were the same: Limnohabitans 
(Kaidu River: 10.80%; Tributaries: 9.00%) and Variovorax 
(Kaidu River: 6.34%; Tributaries: 6.82%) (Fig. 4).

Architecture of co-occurrence networks in Kaidu River and 
its tributaries

In the co-occurrence network in Kaidu River, 171 nodes 

were connected by 186 edges, among which 139 associations 
were positive. The inference of the bacterial network divided 
correlating OTUs into 39 modules with a modularity of 0.81 
(values >0.4 suggest that the network has a modular structure). 
The clustering coefficient was 0.28 (how nodes were embedded 
in their neighborhood). Additionally, 34.29% of co-present 
OTUs were from the same phyla. The tributaries had a denser 
co-occurrence network than Kaidu River. The overall network 
consisted of 160 nodes and 213 edges, among which 191 
associations were positive. The network analysis suggested 
that 25.00% of co-present OTUs were from the same phyla. 
The high clustering coefficient (0.34) also suggested that the 
bacterial network was closely connected. The bacterial net-
work was divided into 27 modules with a modularity of 0.74.

Within these two networks, the nodes belonged to 20 and 
21 phyla for Kaidu River and its tributaries, with 16 phyla 
being the same. At a finer level, most of these nodes were affiliated 
with 26 classes, mainly consisting of Betaproteobacteria and 
Alphaproteobacteria. Furthermore, we identified the most 
influential OTUs within the network as keystone OTUs (Fig. 
5). The top three keystone genera of the Kaidu River network 
were Rubrobacterales, Polynucleobacter, and Uncultured 
Cyclobacteriaceae. In the case of the tributaries network, the 
keystone genera were identified as Chloroflexus, Uncultured 
Nitrospirales, and Pedobacter. Apart from Polynucleobacter 
(1.86%), the relative abundance of other keystone genera was 
less than 1%.

Discussion

Comparison of bacterial communities between Kaidu River 
and its tributaries

Our results revealed a strong overlap of dominant groups in 
bacterial communities between Kaidu River and its tributaries. 
Proteobacteria, Bacteroidetes, and Actinobacteria strongly 
prevailed in both communities, with Betaproteobacteria, 
Alphaproteobacteria, Actinobacteria, and Sphingobacteriia 
as the prominent classes. These phylogenetic taxa resembled 
the dominant groups in other lotic assemblages. Proteobacteria 

Fig.  3.  Comparisons of bacterial α-diversity (a) and β-diversity (b) between Kaidu River and its tributaries.
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Fig.  4.  Relative abundance of OTUs at phylum and genus levels in Kaidu River and its tributaries. Only the top seven phyla are shown at each 
sampling site, and the rest are defined as ‘Others’. At the genus level, only the top six dominants are exhibited. Unknown taxa with significant pro-
portions are grouped as ‘Unclassified’, and the rest are defined as ‘Others’.

Fig.  5.  Co-occurrence networks of bacterial communities in Kaidu River. The top 5 modules are presented by different colors. The size of each 
node corresponds to their relative abundance. Black edges are representative of a positive relationship and red edges of a negative relationship.
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(particularly Betaproteobacteria), Bacteroidetes, and 
Actinobacteria generally dominate the riverine bacterial 
communities of North America, Europe, and Asia (20, 49, 69, 
89). These findings imply a persistent and ubiquitous domi-
nant sub-community in riverine ecosystems. At the genus 
level, Limnohabitans and Variovorax were identified as the 
prominent phylotypes. Their prominence may be due to the 
high rates of substrate uptake and high mortality rates of 
bacterivory in nasty habitats (1, 44, 62).

Although Kaidu River and its tributaries shared a similar 
dominant sub-community, they still showed significant dif-
ferences in their bacterial community structures. The present 
results demonstrated that aquatic physicochemical properties 
were generally similar in both habitats, suggesting a homoge-
neous environment in the study area. According to traditional 
paradigms (such as the niche theory and species sorting pro-
cess), similar bacterial communities were expected between 
Kaidu River and its tributaries (51, 74). However, our results 
appear to contradict this expectation. We proposed that the reason 
may be ascribed to the distance-related dispersal limitation. 
An increasing body of evidence has highlighted the role of 
spatial distance on the bacterial community (56, 82, 84). 
Within Kaidu River, the bacterial community dissimilarity 
correlated with the geographic distance (Mantel test: r=0.70, 
P<0.01, Fig. S2). As they flow downriver, bacterial species 
are passively transported by unidirectional flow, resulting in 
source-sink relationships between the communities (46). 
Consequently, a distance-decay pattern is expected along 
Kaidu River. In contrast, no correlation was observed between 
bacterial community dissimilarities and spatial distances in 
the tributaries (Mantel test: r=–0.27, P>0.05, Fig. S2). A possible 
reason for this is the lack of dispersal among distinct tributaries. 
This is also supported by the rule that distance-related dispersal 
disappears with an increase in distance on a small-scale (38). 
Therefore, we concluded that distance-related dispersal may 
result in differences in bacterial communities between Kaidu 
River and its tributaries.

Comparison of co-occurrence networks between Kaidu River 
and its tributaries

The co-occurrence networks in both habitats were mainly 
composed of positive correlations. This correlative pattern 
has been repeatedly documented in the bacterial co-occurrence 
networks of various habitats. The bacterial community 
attaching lichen and moss was found to be composed of more 
than 80% positive correlations (3). Similarly, most microbial 
species showed positive relationships in different trophic 
lakes (86). This positive association may be interpreted as 
cross-feeding, co-colonization, and co-aggregation (32). Thus, 
these findings suggest a self-structured and self-sustaining 
assortment of bacterial communities (6, 8). Moreover, a pre-
vious study demonstrated that these positive correlations, in 
turn, correlated with phylogeny (83). Although we did not 
observe this relationship, our results still implied that large 
proportions of positive correlations consisted of OTUs from 
the same phyla (34.29% and 25.00% for Kaidu River and its 
tributaries, respectively). This is consistent with previous 
findings. For example, 33% of OTUs from the same phyla 
were more likely to co-occur in soil bacterial communities 
(6). This pattern may occur because phylogenetically close 

species have stronger mutualistic correlations (55), and these 
are due to their similar habitat preferences and niche adapta-
tions (27, 71, 73).

Highly connected nodes in the co-occurrence network are 
generally analogous to the keystone genus (37, 70). The most 
connected nodes of the Kaidu River network were represen-
tatives of Rubrobacterales, Polynucleobacter, and Uncultured 
Cyclobacteriaceae. Rubrobacterales appear to play pivotal 
functions in extreme environments (i.e. low nutrient levels 
and low productivity), such as biomineralization (22, 59). 
Polynucleobacter are potential primary producers in the oli-
gotrophic environment (52, 57). As the most keystone genus 
in the tributaries network, Chloroflexus have been reported as 
typical phototrophs that contain bacteriochlorophyll a (BChl 
a) (50). As the sub-keystone genus, Pedobacter have been 
suggested to play an important role in the decomposition of 
organic matter and nutrient dynamics (64, 65).

In spite of taxonomical differences in these keystone genera 
within the two networks, they all share common trophic 
properties in exploiting ecological niches under oligotrophic 
conditions. Additionally, we noted that most of these key-
stones were less than 1%, suggesting the significance of rare 
genera in bacterial communities. Rare genera are being 
increasingly recognized as crucial components of communities 
in biochemical processes and community assembly (14, 43, 
76). However, given the challenges associated with investigating 
rare microbes and rapid advances in experimental approaches, 
further studies are needed on rare microbes.

The present results demonstrated that the Kaidu River net-
work was less complex and less coherent than its tributaries. 
The number of nodes (171) and edges (186) in the network 
from Kaidu River were less than in its tributaries (160 nodes 
and 213 edges). Additionally, the network in Kaidu River 
showed higher fragmentation (39 modules and 0.81 modularity) 
than its tributaries (27 modules and 0.74 modularity). Despite 
the small number of similar studies with which to compare, a 
recent study reported similar findings to the present results 
(81). We postulated mechanisms linked to metacommunity 
dynamics and biodiversity, as supported by theoretical and 
empirical evidence (2, 16, 31), to drive the differences in 
co-occurrence networks between Kaidu River and its tributaries. 
According to the concept of metacommunity (46), bacterial 
communities in the lotic ecosystem are partially driven by a 
common terrestrial origin of aquatic communities (60). Due 
to the constrained contributing area, the metacommunity size 
of tributaries was larger than Kaidu River. Besemer et al. (11) 
showed that these effects may increase biodiversity in tribu-
taries, as demonstrated by the present results (Fig. 3). In turn, 
higher biodiversity promotes interactions in bacterial com-
munities (23) and also increases their co-occurrence pattern 
(lower fragmentation) (81). Thus, Kaidu River showed higher 
fragmentation than its tributaries.

Conclusion

The present study provides insights into bacterial commu-
nities in Kaidu River and its tributaries. Our results demon-
strated that although Kaidu River and its tributaries shared a 
similar dominant sub-community, there were also significant 
differences in bacterial community structures between the 
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two habitats. Furthermore, we constructed their bacterial 
co-occurrence networks. The results obtained showed that 
most correlations in the networks were positive. Additionally, 
the structural analysis showed that OTUs from the phyla were 
more likely to co-occur. Within Kaidu River, the keystone 
genera were Rubrobacterales, followed by Polynucleobacter 
and Uncultured Cyclobacteriaceae. In the case of tributaries, 
the most keystone genera were identified as Chloroflexus, 
Uncultured Nitrospirales, and Pedobacter. Although these 
keystone genera were phylogenetically different between 
Kaidu River and its tributaries, they all showed similar functions 
under oligotrophic conditions. Notably, their rare proportions 
highlighted the importance of rare genera in bacterial com-
munities. In addition, the inferred networks showed less nodes 
and edges, but higher modularity in the Kaidu River network 
than in the tributaries network. Ultimately, the co-occurrence 
network analysis revealed higher fragmentation in the bacterial 
community of the mainstream than its tributaries.

Acknowledgements

This study was supported by the Natural Science Foundation of 
Jiangsu Province, China (No. BK20151059) and the National 
Natural Science Foundation of China (No. 41501101, 41471040, 
4157011941). We thank the staff at the Environmental Monitoring 
Station of the Environmental Protection Bureau of Bayingolin 
Mongolia Autonomous Prefecture for helping with sample collec-
tion and the water chemical analysis.

References

1.	 Abou-Shanab, R.A.I., P. van Berkum, and J.S. Angle. 2007. Heavy 
metal resistance and genotypic analysis of metal resistance genes in 
gram-positive and gram-negative of bacteria present in Ni-rich serpen-
tine soil and in the rhizosphere of Alyssum murale. Chemosphere 
68:360–367.

2.	 Altermatt, F. 2013. Diversity in riverine metacommunities: A network 
perspective. Aquat. Ecol. 47:365–377.

3.	 Aschenbrenner, I.A., T. Cernava, A. Erlacher, et al. 2017. Differential 
sharing and distinct co-occurrence networks among spatially close 
bacterial microbia of bark, mosses and lichens. Mol. Ecol. 26:2826–
2838.

4.	 Banerjee, S., M. Baah-Acheamfour, C.N. Carlyle, et al. 2015. 
Determinants of bacterial communities in Canadian agroforestry systems. 
Environ. Microbiol. 18:1805–1816.

5.	 Banerjee, S., C.A. Kirkby, D. Schmutter, et al. 2016. Network analysis 
reveals functional redundancy and keystone taxa amongst bacterial 
and fungal communities during organic matter decomposition in an 
arable soil. Soil Biol. Biochem. 97:188–198.

6.	 Barberán, A., S.T. Bates, E.O. Casamayor, et al. 2012. Using network 
analysis to explore co-occurrence patterns in soil microbial communities. 
ISME J. 6:343–351

7.	 Battin, T.J., L.A. Kaplan, S. Findlay, et al. 2008. Biophysical controls 
on organic carbon fluxes in fluvial networks. Nat. Geosci. 1:95–100.

8.	 Bell, T.H., F.O.P. Stefani, K. Abram, et al. 2016. A diverse soil 
microbiome degrades more crude oil than specialized bacterial assem-
blages obtained in culture. Appl. Environ. Microbiol. 82:5530–5541.

9.	 Beniston, M., H.F. Diaz, and R.S. Bradley. 1997. Climate change at 
high elevation sites: an overview. Clim. Change 36:233–251.

10.	 Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery 
rate: a prictical and powerful approach to multiple testing. J. R. Stat. 
Soc. Series B Stat. Methodol. 57:289–300.

11.	 Besemer, K., G. Singer, C. Quince, et al. 2013. Headwaters are critical 
reservoirs of microbial diversity for fluvial networks. Proc. R. Soc. B 
280:20131760.

12.	 Bragg, L., G. Stone, M. Imelfort, et al. 2012. Fast, accurate error-correction 
of amplicon pyrosequences using Acacia. Nat. Methods 9:425–426.

13.	 Brandes, U. 2001. A faster algorithm for betweenness centrality. J. 
Math. Sociol. 25:163–177.

14.	 Campbell, B.J., L.Y. Yu, J.F. Heidelberg, et al. 2011. Activity of 
abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. 
U.S.A. 108:12776–12781.

15.	 Caporaso, J., J. Kuczynski, J. Stombaugh, et al. 2010. QIIME allows 
analysis of high-throughput community sequencing data. Nat. 
Methods 7:335–336.

16.	 Carrara, F., F. Altermatt, I. Rodriguez-Iturbe, et al. 2012. Dendritic 
connectivity controls biodiversity patterns in experimental metacom-
munities. Proc. Natl. Acad. Sci. U.S.A. 109:5761–5766.

17.	 Clauset, A., M.E. Newman, and C. Moore. 2004. Finding community 
structure in very large networks. Phys. Rev. E. 70:066111.

18.	 Clay, P.A., J.D. Muehlbauer, and M.W. Doyle. 2015. Effect of tributary 
and braided confluences on aquatic macroinvertebrate communities 
and geomorphology in an alpine river watershed. Freshw. Sci. 
34:845–856.

19.	 Cole, J.J., Y.T. Prairie, N.F. Caraco, et al. 2007. Plumbing the global 
carbon cycle: integrating inland waters into the terrestrial carbon 
budget. Ecosystems 10:172–185.

20.	 Crump, B.C., E.V. Armbrust, and J.A. Baross. 1999. Phylogenetic 
analysis of particle-attached and free-living bacterial communities in 
the Columbia River, its estuary, and the adjacent coastal ocean. Appl. 
Environ. Microbiol. 65:3192–3204.

21.	 Csardi, G., and T. Nepusz. 2006. The Igraph Software Package for 
Complex Network Research. Inter. J. Complex. Syst. 1695:1–9.

22.	 Cuezva, S., A. Fernandez-Cortes, E. Porca, et al. 2012. The biogeo-
chemical role of Actinobacteria in Altamira Cave, Spain. FEMS 
Microbiol. Ecol. 81:281–290.

23.	 Czárán, T.L., R.F. Hoekstra, and L. Pagie. 2002. Chemical warfare 
between microbes promotes biodiversity. Proc. Natl. Acad. Sci. 
U.S.A. 99:786–790.

24.	 Dann, L.M., R.J. Smith, T.C. Jeffries, et al. 2017. Persistence, loss and 
appearance of bacteria upstream and downstream of a river system. 
Mar. Freshwater. Res. 68:851–862.

25.	 Deng, Y., Y.H. Jiang, Y.F. Yang, et al. 2012. Molecular ecological 
network analyses. BMC Bioinformatics 13:1–20.

26.	 Dille, J.W., C.M. Rogers, and M.A. Schneegurt. 2016. Isolation and 
characterization of bacteria from the feathers of wild Dark-eyed 
Juncos (Juco hyemalis). Auk 133:155–167.

27.	 Dini-Andreote, F., J.C. Stegen, J.D.v. Elsas, et al. 2015. Disentangling 
mechanisms that mediate the balance between stochastic and deter-
ministic processes in microbial succession. Proc. Natl. Acad. Sci. 
U.S.A. 112:e1326–e1332.

28.	 Ebina, J., T. Tsutsui, and T. Shirai. 1983. Simultaneous determination 
of total nitrogen and total phosphorus in water using peroxodisulfate 
oxidation. Water Res. 17:1721–1726.

29.	 Edgar, R.C., B.J. Haas, J.C. Clemente, et al. 2011. UCHIME improves 
sensitivity and speed of chimera detection. Bioinformatics 27:2194–
2200.

30.	 Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from 
microbial amplicon reads. Nat. Methods 10:996–998.

31.	 Fagan, W. 2002. Connectivity, fragmentation and extinction risk in 
dendritic meta-populations. Ecology 83:3243–3249.

32.	 Faust, K., and J. Raes. 2012. Microbial interactions: from networks to 
models. Nat. Rev. Microbiol. 10:538–550.

33.	 Faust, K., J.F. Sathirapongsasuti, J. Izard, et al. 2012. Microbial 
co-occurrence relationships in the human microbiome. PLoS Comput. 
Biol. 8:e1002606.

34.	 Faust, K., and J. Raes. 2016. CoNet app: inference of biological asso-
ciation networks using Cytoscape. F1000 Research 5:1519.

35.	 Finaly, B.J., S.C. Maberly, and J.I. Cooper. 1997. Microbial diversity 
and ecosystem function. Oikos 80:209–213.

36.	 Finn, D.S., N. Bonada, C. Múrria, et al. 2011. Small but mighty: 
headwaters are vital to stream network biodiversity at two levels of 
organization. J. North Am. Benthol. Soc. 30:963–980.

37.	 Freeman, L.C. 1977. A set of measures of centrality based on 
betweenness. Sociometry 40:35–41.

38.	 Griffiths, R.I., B.C. Thomson, P. James, et al. 2011. The bacterial 
biogeography of British soils. Environ. Microbiol. 13:1642–1654.

39.	 Haas, B.J., D. Gevers, A.M. Earl, et al. 2011. Chimeric 16S rRNA 
sequence formation and detection in Sanger and 454-pyrosequenced 
PCR amplicons. Genome Res. 21:494–504.

40.	 Hayden, C.J., and J.M. Beman. 2016. Microbial diversity and commu-
nity structure along a lake elevation gradient in Yosemite National 
Park, California, USA. Environ. Microbiol. 18:1782–1791.



Hu et al.134

41.	 Hirose, S., K. Matsuura, and S. Haruta. 2016. Phylogenetically diverse 
aerobic anoxygenic phototrophic bacteria isolated from epilithic bio-
films in Tama River, Japan. Microbes Environ. 31:299–306.

42.	 Jiang, X., J. Xiong, Z. Xie, et al. 2011. Longitudinal patterns of mac-
roinvertebrate functional feeding groups in a Chinese river system: A 
test for river continuum concept (RCC). Quat. Int. 244:289–295.

43.	 Jousset, A., C. Bienhold, A. Chatzinotas, et al. 2017. Where less may 
be more: how the rare biosphere pulls ecosystems strings. ISME J. 
11:853–862.

44.	 Kasalický, V., J. Jezbera, M.W. Hahn, et al. 2013. The diversity of the 
Limnohabitans genus, an important group of freshwater bacterio-
plankton, by characterization of 35 isolated strains. PLoS One 8:e58209.

45.	 Legendre, P., and E. Gallagher. 2001. Ecologically meaningful trans-
formations for ordination of species data. Oecologia 129:271–280.

46.	 Leibold, M.A., M. Holyoak, N. Mouquet, et al. 2004. The metacom-
munity concept: a framework for multi-scale community ecology. 
Ecol. Lett. 7:601–613.

47.	 Li, J., G.S. Wei, N.X. Wang, et al. 2014. Diversity and distribution of 
nirK-harboring denitrifying bacteria in the water column in the 
Yellow River estuary. Microbes Environ. 29:107–110.

48.	 Liu, X., H. Fan, X. Ding, et al. 2014. Analysis of the gut microbiota by 
high-through sequencing of the V5–V6 regions of the 16S rRNA gene 
in donkey. J. Am. Coll. Cardiol. 35:352–357.

49.	 Liu, Z., S. Huang, G. Sun, et al. 2012. Phylogenetic diversity, composition 
and distribution of bacterioplankton community in the Dongjiang 
River, China. FEMS Microbiol. Ecol. 80:30–44.

50.	 Liu, Z.F., C.G. Klatt, J.M. Wood, et al. 2011. Metatranscriptomic 
analyses of chlorophototrophs of a hot-spring microbial mat. ISME J. 
5:1279–1290.

51.	 Lozupone, C.A., and R. Knight. 2007. Global patterns in bacterial 
diversity. Proc. Natl. Acad. Sci. U.S.A. 104:11436–11440.

52.	 Magnabosco, C., K. Ryan, M.C.Y. Lau, et al. 2016. A metagenomic 
window into carbon metabolism at 3 km depth in Precambrian conti-
nental crust. ISME J. 10:730–741.

53.	 Metzker, M.L. 2010. Sequencing technologies-the next generation. 
Nat. Rev. Genet. 11:31–46.

54.	 Muneepeerakul, R., E. Bertuzzo, H.J. Lynch, et al. 2008. Neutral 
metacommunity models predict fish diversity patterns in Mississippi-
Missouri basin. Nature 453:220–222.

55.	 Nuismer, S.L., and L.J. Harmon. 2015. Predicting rates of interspecific 
interaction from phylogenetic trees. Ecol. Lett. 18:17–27.

56.	 Or, A., and U. Gophna. 2011. Detection of spatial and temporal influ-
ences on bacterial communities in an urban stream by automated 
ribosomal intergenic ribosomal spacer analysis. Microbes Environ. 
26:360–366.

57.	 Purkamo, L., M. Bomberg, K. Riikka, et al. 2016. Microbial 
co-occurrence patterns in deep Precambrian bedrock fracture fluids. 
Biogeosciences 13:3091–3108.

58.	 Read, D.S., H.S. Gweon, M.J. Bowes, et al. 2015. Catchment-scale 
biogeography of riverine bacteriaoplankton. ISME J. 9:516–526.

59.	 Riquelme, C., J.J.M. Hathaway, M.d.L.N.E. Dapkevicius, et al. 2015. 
Actinobacterial diversity in volcanic caves and associated geomicro-
biological interactions. Front. Microbiol. 6:1342.

60.	 Ruiz-González, C., J.P. Niño-García, and P.A.d. Giorgio. 2015. Terrestrial 
origin of bacterial communities in complex boreal freshwater networks. 
Ecol. Lett. 18:1198–1206.

61.	 Sarkar, S.K., and C.K. Chang. 1997. The Simes method for multiple 
hypothesis testing with positively dependent test statistics J. Am. Stat. 
Assoc. 92:1601–1608.

62.	 Satsuma, K. 2010. Mineralisation of the herbicide linuron by 
Variovorax sp. strain RA8 isolated from Japanese river sediment using 
an ecosystem model (microcosm). Pest Manage. Sci. 66:847–852.

63.	 Savio, D., L. Sinclair, U.Z. Ijaz, et al. 2015. Bacterial diversity along 
a 2600 km river continuum. Environ. Microbiol. 1–14.

64.	 Semenov, A.M. 1991. Physiological bases of oligotrophy of microor-
ganisms and the concept of microbial community. Microb. Ecol. 
22:239–247.

65.	 Senechkin, I.V., A.G.C.L. Speksnijder, A.M. Semenov, et al. 2010. 
Isolation and partial characterization of bacterial strains on low 
organic carbon medium from soils fertilized with different organic 
amendments. Microbes Environ. 60:829–839.

66.	 Sickman, J.O., J.M. Melack, and D.W. Clow. 2003. Evidence for 
nutrient enrichment of high-elevation lakes in the Sierra Nevada, 
California. Limnol. Oceanogr. 48:1885–1892.

67.	 Sogin, M.L., H.G. Morrison, J.A. Huber, et al. 2006. Microbial diver-
sity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl. 
Acad. Sci. U.S.A. 103:12115–12120.

68.	 Somboonna, N., A. Wilantho, C. Srisuttiyakorn, et al. 2016. Bacterial 
communities on facial skin of teenage and elderly Thai females. Arch. 
Microbiol. 199:1035–1042.

69.	 Staley, C., T. Unno, T.J. Gould, et al. 2013. Application of Illumina 
next-generation sequencing to characterize the bacterial community of 
the Upper Mississippi River. J. Appl. Microbiol. 115:1147–1158.

70.	 Steele, J.A., P.D. Countway, L. Xia, et al. 2011. Marine bacterial, 
archaeal and protistan association networks reveal ecological link-
ages. ISME J. 5:1414–1425.

71.	 Stegen, J.C., X. Lin, A.E. Konopka, et al. 2012. Stochastic and deter-
ministic assembly processes in subsurface microbial communities. 
ISME J. 6:1653–1664

72.	 Sun, J., Y.P. Li, G.H. Huang, et al. 2017. Analysis of interactive 
effects of DEM resolution and basin subdivision level on runoff simu-
lation in Kaidu River Basin, China. Hydrol. Res. 48:1100–1117.

73.	 Tringe, S.G., C.v. Mering, A. Kobayashi, et al. 2005. Comparative 
metagenomics of microbial communities. Science 308:554–557.

74.	 Vannette, R.L., and T. Fukami. 2014. Historical contingency in 
species interactions: towards niche-based predictions. Ecol. Lett. 
17:115–124.

75.	 Vannote, R.L., G.W. Minshall, and K.W. Cumminis. 1980. The river 
continuum concept. Can. J. Fish. Aquat. Sci. 37:130–137.

76.	 Vergin, K.L., B. Done, A.C. Carlson, et al. 2013. Spatiotemporal 
distributions of rare bacterioplankton populations indicate adaptive 
strategies in the oligotrophic ocean. Aquat. Microb. Ecol. 71:1–13.

77.	 Vick-Majors, T.J., J.C. Priscu, and L.A. Amaral-Zettler. 2014. 
Modular community structure suggests metabolic plasticity during the 
transition to polar night in ice-covered Antarctic lakes. ISME J. 
8:778–789.

78.	 Walsh, Y.W. 1989. Total dissolved nitrogen in seawater: a new 
high-temperature combustion method and a comparison with photo-
oxidation. Mar. Chem. 26:295–311.

79.	 Wang, C.X., Y.P. Li, J.L. Zhang, et al. 2015. Assessing parameter 
uncertainty in semi-distributed hydrological model based on type-2 
fuzzy analysis-a case study of Kaidu River basin. Hydrol. Res. 
46:969–983.

80.	 Wang, Q., G.M. Garrity, J.M. Tiedje, et al. 2007. Naive Bayesian 
classifier for rapid assignment of rRNA sequences into the new bacte-
rial taxonomy. Appl. Environ. Microbiol. 73:5261–5267.

81.	 Widder, S., K. Besemer, G.A. Singer, et al. 2014. Fluvial network 
organization imprints on microbial co-occurrence networks. Proc. 
Natl. Acad. Sci. U.S.A. 111:12799–12804.

82.	 Winter, C., B. Matthews, and C.A. Suttle. 2013. Effects of environ-
mental variation and spatial distance on Bacteria, Archaea and viruses 
in sub-polar and arctic waters. ISME J. 7:1507–1518.

83.	 Wu, L.W., Y.F. Yang, S. Chen, et al. 2016. Long-term successional 
dynamics of microbial association networks in anaerobic digestion 
processes. Water Res. 104:1–10.

84.	 Xiong, J.B., Y.Q. Liu, X.G. Lin, et al. 2012. Geographic distance and 
pH drive bacterial distribution in alkaline lake sediments across 
Tibetan Plateau. Environ. Microbiol. 14:2457–2466.

85.	 Yergeau, E., J.R. Lawrence, S. Sanschagrin, et al. 2012. Next-generation 
sequencing of microbial communities in the Athabasca river and its 
tributaries in relation to oil sands mining activities. Appl. Environ. 
Microbiol. 78:7626–7637.

86.	 Zhao, D.Y., F. Shen, J. Zeng, et al. 2016. Network analysis reveals 
seasonal variation of co-occurrence correlations between Cyanobacteria 
and other bacterioplankton. Sci. Total Environ. 573:817–825.

87.	 Zhou, J., M.A. Bruns, and J.M. Tiedje. 1996. DNA recovery from 
soils of diverse composition. Appl. Environ. Microbiol. 62:316–322.

88.	 Zhou, J.Z., Y. Deng, F. Luo, et al. 2011. Phylogenetic molecular eco-
logical network of soil microbial communities in response to elevated 
CO2. Microb. Biotechnol. 2:e00122-11.

89.	 Zwart, G., B.C. Crump, M.P.K.-v. Agterveld, et al. 2002. Typical 
freshwater bacteria: an analysis of available 16S rRNA gene sequences 
from plankton of lakes and rivers. Aquat. Microb. Ecol. 28:141–155.


