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Abstract

Background—Vascular risk factors are associated with cognitive impairment, a condition with 

substantial public health burden. We hypothesized that hemostasis biomarkers related to vascular 

disease would be associated with risk of incident cognitive impairment.

Methods—We performed a nested case control study including 1,082 participants with 3.5 years 

of follow-up in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, a 

longitudinal cohort study of 30,239 black and white Americans ≥45 years old. Participants were 

free of stroke or cognitive impairment at baseline. Baseline D-dimer, fibrinogen, factor VIII, and 

protein C were measured in 495 cases who developed cognitive impairment during follow-up 

(based on abnormal scores on ≥2 of 3 cognitive tests) and 587 controls.

Results—Unadjusted ORs for incident cognitive impairment were 1.32 (95% CI 1.02, 1.70) for 

D-dimer >0.50 μg/mL, 1.83 (CI 1.24, 2.71) for fibrinogen >90th percentile, 1.63 (CI 1.11, 2.38) for 

factor VIII >90th percentile and 1.10 (CI 0.73, 1.65) for protein C < 10th percentile. There were no 
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differences in associations by race or region. Adjustment for demographic, vascular and health 

behavior risk factors attenuated these associations. However, having at least 2 elevated biomarkers 

was associated with incident cognitive impairment, with an adjusted OR 1.73 (CI 1.10, 2.69).

Conclusion—Elevated D-dimer, fibrinogen, and factor VIII were not associated with occurrence 

of cognitive impairment after multivariable adjustment; however, having at least 2 abnormal 

biomarkers was associated, suggesting the burden of these biomarkers is relevant.
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Dementia and cognitive dysfunction are prevalent, devastating and costly conditions[1] that 

are increasing as the population ages.[2] Although many risk factors for dementia have been 

identified in recent decades,[1] the underlying mechanisms for many of these associations 

are unknown. Biological processes that lead to dementia probably begin long before clinical 

signs of cognitive dysfunction are apparent. Identifying biomarkers of brain health may help 

detect disease at an earlier stage and identify targets that can be modified to slow or reverse 

disease progression.

Contributions of vascular disease and its risk factors to cognitive impairment and dementia 

are increasingly evident. [3] Since they are also vascular risk markers, biomarkers associated 

with hypercoagulable states might also relate to cognitive impairment. Hemostasis 

biomarkers that have been investigated in this regard include fibrinogen, D-dimer, factor VII, 

factor VIII, prothrombin fragment 1.2, von Willebrand factor (vWF), and plasminogen 

activator inhibitor-1 (PAI-1). There are few prospective studies of the relationship between 

these biomarkers and cognitive impairment or dementia, and they report inconsistent 

associations. The most extensively studied biomarker is fibrinogen. Six studies reported a 

direct association of higher fibrinogen with incident cognitive impairment Alzheimer 

Disease (AD), vascular dementia (VaD) or cognitive decline [4–9], and one study found no 

association with dementia [10]. One study reported an association of higher D-dimer with 

VaD but not AD [10], two reported an association with decline in cognitive test scores [6, 

11] and two more reported no association with cognitive decline or dementia [4, 5]. Factor 

VIII has only been studied in one report and was associated with VaD but not other dementia 

or cognitive impairment [4]. A meta-analysis of D-dimer, fibrinogen, factor VII, 

prothrombin fragment 1.2, vWF and PAI-1 in relation to cognitive decline and dementia [12] 

reported small but potentially important associations, especially between D-dimer and VaD. 

Little research has been directed at the anticoagulant proteins. Low protein C was associated 

with stroke risk in one study [13] but we are not aware of studies of protein C and cognitive 

function. Racial differences in hemostasis biomarker levels have been identified, with blacks 

having a more procoagulant profile than whites [14, 15]. Only one study of hemostasis 

markers and risk of cognitive decline included large number of African Americans[11].

There are regional differences in incident cognitive impairment in the United States [16]; 

regions with higher risk of cognitive impairment overlap with the “stroke belt,” 8 

southeastern United States (AL, NC, SC, GA, TN, MI, LA) with increased risk of stroke 
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incidence and mortality [17]. Whether abnormal levels of hemostasis biomarkers might 

mediate the geographic difference in incident cognitive impairment is unknown.

We examined the association of D-dimer, fibrinogen, factor VIII, and protein C with incident 

cognitive impairment (ICI) in a large national cohort of black and white Americans. We 

investigated whether associations differed by race and whether differences in these 

biomarker levels mediated any of the higher risk of ICI in the stroke belt. We previously 

reported that higher factor VIII was associated with ICI in this study in the context of ABO 

blood group, finding a minimally-adjusted odds ratio of 1.24 (95% CI 1.10, 1.38) per SD 

higher factor VIII [18], and here extend that analysis with more detail and inclusion of other 

biomarkers.

Methods

Subjects

The REGARDS study has been described in detail elsewhere[19]. In brief, the study 

enrolled 30,239 Americans age 45 and older from 2003–2007. Participants are 58% white 

and 42% black, 45% male and 55% female, 56% from the stroke belt region and 44% from 

the other 40 contiguous United States. Participants were recruited by random selection from 

a commercially available nationwide list. Exclusion criteria were race other than black or 

white, Hispanic ethnicity, active treatment for cancer, medical conditions that would prevent 

long-term participation, cognitive impairment judged by the telephone interviewer, residence 

in or inclusion on a waiting list for a nursing home, or inability to communicate in English. 

Following verbal consent, medical history including cardiovascular risk factors was 

collected by computer-assisted telephone interview. Thereafter, subjects participated in an 

in-home examination which included height, weight and blood pressure measurements, a 

resting ECG, medication inventory, and fasting blood and urine samples. Methods were 

approved by the institutional review boards of all participating institutions, and all 

participants provided written informed consent.

REGARDS includes a two-level longitudinal telephone-based assessment of cognitive 

function: 1) the Six-Item Screener[20] (SIS), added to the baseline assessment in 2003 and 

then performed annually, and 2) a 3-test cognitive battery introduced in 2006 and 

administered at 2-year intervals. This battery includes the Animal Fluency Test (AF),[21] 

Word List Learning (WLL) and Word List Recall (WLR) from the Consortium to Establish a 

Registry for Alzheimer’s Disease (CERAD) battery.[22] The SIS is a brief screening tool 

with 3 immediate recall items and 3 temporal orientation items. A score ≤4 represents 

cognitive impairment.[16, 23] The AF is a measure of verbal fluency in which the 

participant names as many animals as possible in 60 seconds. WLL and WLR consist of a 

10-item, three-trial word list learning and recall task. The WLL score is the sum of 

immediate recall across the 3 trials, range 0–30. After the last learning trial the participant is 

asked non-cognitive interview questions for five minutes, and is then asked to provide a free 

recall of the word list resulting in the WLR score, range 0–10.

Covariates collected included age, race (black or white), sex, education (<high school, high 

school, some college, or college and above), yearly income (<$20,000, $20,000–34,999, 
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$35,000–74,999, ≥$75,000 or refused), region (stroke belt or non-stroke belt), cigarette 

smoking (never, past, or current), alcohol intake (none, moderate [≤14 drinks per week for 

men, ≤7 drinks/week for women] or heavy [>14 drinks/week for men, >7 drinks/week for 

women]), physical activity level (any weekly exercise vs. none), history of transient 

ischemic attack (TIA), coronary artery disease (CAD): defined as myocardial infarction by 

self-report or electrocardiogram (ECG) or history of coronary revascularization (stenting, 

coronary artery bypass surgery, or percutaneous transluminal coronary angioplasty)), atrial 

fibrillation (self-reported or by ECG), left ventricular hypertrophy (LVH) by ECG, body 

mass index (BMI) calculated from height and weight measurements, hypertension (systolic 

blood pressure>140 mmHg or diastolic blood pressure >90 mmHg on average of 2 

measurements, or self-reported use of hypertension medication), dyslipidemia (total 

cholesterol ≥ 240 mg/dL, LDL ≥ 160, HDL ≤ 40 or self-reported lipid-lowering drug use), 

and diabetes (fasting glucose ≥126 mg/dL, nonfasting glucose ≥200 mg/dL, or self-reported 

use of diabetes medications). CRP>90th percentile was included as a covariate to control for 

inflammation. Aspirin, warfarin and statin use were determined by medication inventory. 

Incident stroke was ascertained via telephone follow-up every six months using the 

Questionnaire for Verifying Stroke-free Status [24] and verified by medical record review 

and adjudication by a panel of stroke experts. Stroke occurring after enrollment but prior to 

the most recent cognitive assessment was included as a covariate.

Nested Case Control Study

As previously described [18], we adapted a REGARDS case-cohort study sample drawn in 

2011, which included an 1104-person cohort sample, to develop a nested case-control study 

of ICI. Among 17,630 participants without prevalent stroke, without baseline cognitive 

impairment based on the SIS, and who had sufficient follow up cognitive domain testing at 

the time of case selection in 2011, we identified an ICI case group of 495 participants as 

described in detail elsewhere[25]. Cases scored >1.5 SD below age, race, sex, and education 

adjusted predicted scores on at least 2 of the 3 cognitive domain tests at the most recently 

administered 3-test cognitive battery (median follow up 3.5 years). From the 1104-person 

cohort random sample, to develop a control group, we applied the same exclusion criteria as 

for case selection, excluding 83 participants with prevalent stroke, 108 with cognitive 

impairment on the first SIS, 306 with insufficient cognitive testing to determine whether 

they developed ICI, and 20 who developed ICI, leaving 587 controls for this nested case-

control study.

Laboratory Analysis

Blood samples were collected at the baseline in-home visit. A draw tube containing 4.5 

mmol/L EDTA, 0.15 KIU/L aprotinin, and 20 mol/L d-Phe-Pro-Arg-chloromethylketone 

(SCAT-1; Haematologic Technologies), designed to prevent in vitro clotting activation[26, 

27], was included. This plasma was used for the current study. Samples were centrifuged 

near participant homes and shipped overnight to the University of Vermont core laboratory 

where they were re-centrifuged at 30,000 g-min, then stored at −80C. Case and control 

samples were analyzed together in random order so technicians were blinded to their status. 

D-dimer was measured using an automated immuno-turbidimetric assay (Liatest D-dimer, 

STA-R, Diagnostica Stago, interassay coefficient of variation (CV) 5–17%). Fibrinogen 
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antigen was measured using the BN-II nephelometer (Siemens, CV 3–8%). Factor VIII 

antigen and Protein C antigen were measured by ELISA (FVIII, Enzyme Research 

Laboratories, CV 4–7%, Protein C: Diagnostica Stago, CV 4–7%). Results above or below 

the detectable limit of the assay were recoded as at the detectable limit for statistical 

analysis. Validity of all assays performed on SCAT-1 plasma samples similarly processed 

and shipped overnight was confirmed previously [28]. There were 5.8% of the cases and 

5.2% of the controls missing biomarker results mainly due to lack of sample availability. 

ApoE genotype was determined by TaqMan analysis of the 2 SNPs, rs429358 and rs4712 

[29]. Haplotypes were reconstructed using the PHASE program [30], with ambiguous 

haplotypes coded as their most likely outcome if the probability was >85%. Cholesterol, 

glucose and CRP were previously measured in the entire REGARDS cohort [19, 31].

Statistical Analysis

Analyses were conducted in STATA 11.0 (College Station, TX). Because of the stratified 

nature of the control group, analyses were probability weighted and 95% confidence 

intervals were calculated using a Taylor series with finite population correction. Weights 

were based on the total number of participants who were eligible to become cases 

(N=17,630) and the probability of being selected for the cohort random sample for each 

stratum given ICI case eligibility.

Baseline characteristics were compared between cases and controls using weighted Pearson 

chi square tests (corrected for survey design with the second-order correction of Rao and 

Scott[32] and converted into an F statistic). Among controls, median biomarker levels were 

compared between blacks vs. whites and in stroke belt residents vs. non-residents using 

Wilcoxon rank-sum tests. Weighted logistic regression models were used to calculate odds 

ratios (OR) and 95% confidence intervals (CI) of ICI for each biomarker, as an estimate of 

relative risk. Biomarkers were analyzed continuously, in quartiles, and as abnormal or 

normal, defining abnormal levels as those above the 90th percentile for factor VIII and 

fibrinogen, below the 10th percentile for protein C, and above the clinically used cutpoint of 

0.50 μg/mL for D-dimer. Percentile/quartile cutpoints were calculated based on the weighted 

distribution in the cohort random sample. We examined burden of elevated biomarkers by 

assessing the association of ≥2 versus <2 abnormal biomarkers with ICI. When examined 

continuously, all four hemostasis biomarker predictors violated the assumption of a linear 

relationship between log odds ICI and predictor. Log transformation or quadratic terms did 

not resolve this violation, so continuously expressed concentrations were not investigated 

further; instead we used quartiles. Models were first carried out unadjusted, then adjusted for 

demographics, health behaviors, vascular risk factors, presence of ≥1 ApoE4 allele, incident 

stroke, and baseline warfarin, aspirin and statin use. A biomarker*race interaction term was 

tested in each model, and if significant, we stratified by race. Biomarker*region and 

biomarker*biomarker interaction terms were also examined. Because of concerns of co-

linearity, models were run with and without CRP as a covariate. A sensitivity analysis was 

conducted excluding participants on warfarin at baseline.
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We planned a mediation analysis for any biomarker that was associated with both ICI and 

had adverse levels in the stroke belt, however none of the biomarkers or the number of 

abnormal biomarkers met this criteria and the analysis was not performed.

Participants missing data on predictors or covariates were excluded from adjusted models, 

leaving 403 complete cases (82% of total) and 521 complete controls (83% of total). Those 

missing data were similar to those included except they were more likely to have low income 

and diabetes (supplemental table). Given the number of available cases and controls, 

considering biomarker concentrations >90th percentile as the risk factor, we had 80% power 

to detect an OR for ICI of 1.51.

Results

Weighted baseline characteristics of cases and controls are listed in Table 1. Because of the 

demographically-adjusted regression-based selection of ICI cases, cases and controls were 

similar by age, race, sex, and education. Cases were more likely to report lower income, 

current smoking, and alcohol abstention, and had higher prevalences of diabetes, 

hypertension, LVH, CAD, elevated CRP and obesity. Abnormal D-dimer, fibrinogen, and 

factor VIII, but not protein C, were more prevalent in cases than controls. Other 

characteristics in Table 1 were similar by case status. The small number of participants 

taking warfarin at baseline (38, 3.5%) had lower median D-dimer (0.27 vs. 0.43 μg/mL, 

p=0.004) and protein C (66% vs. 121%, p<0.001), but similar fibrinogen and factor VIII 

compared to nonusers. In the time between enrollment and the most recent cognitive 

assessment, 21 participants survived a stroke. Eight were controls and 13 were cases (p = 

0.04 for difference).

Table 2 shows the OR of ICI for each hemostasis biomarker expressed in quartiles and as 

abnormal levels. Abnormal concentrations of D-dimer, fibrinogen, and factor VIII were all 

associated with ICI in unadjusted analysis. None of the hemostasis biomarkers were 

associated with ICI in fully adjusted analysis. Sensitivity analysis excluding CRP as 

covariate and excluding participants who reported warfarin use did not substantively change 

the results (data not shown).

In evaluation of differences in the association of hemostasis biomarkers with ICI risk by 

race, only the association of factor VIII >90th percentile with ICI appeared to differ by race 

(p interaction 0.06 in fully adjusted model; other p values for interaction >0.40 in unadjusted 

and adjusted models). While the adjusted OR of ICI for factor VIII >90th percentile vs lower 

was 1.76 (CI 0.88, 3.51) in whites and 1.05 (CI 0.43, 2.58) in blacks, this finding is likely 

spurious since for factor VIII in the top versus bottom quartile, the adjusted ORs were 2.31 

(95% CI 0.95, 5.57) in blacks and 0.83 (95% CI 0.43, 1.58) in whites (p interaction 0.92).

Two-predictor models with hemostasis biomarkers and one covariate at a time were used to 

identify which factors were confounders of the association of hemostasis markers with ICI. 

For fibrinogen and factor VIII, income, diabetes, and CRP>90th percentile each decreased 

the β coefficient for both biomarkers by at least 10%, as did coronary heart disease for factor 

VIII. Income, diabetes, alcohol and BMI each decreased the β coefficient for D-dimer at 
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least 10%. In addition to individual confounders, we assessed groups of demographic, health 

behavior, or vascular risk factors in separate models (Table 3).

Considering D-dimer, fibrinogen and factor VIII (but not protein C since it wasn’t associated 

with ICI), participants with ≥2 abnormal biomarkers versus <2, had an OR of ICI in 

unadjusted analysis of 2.17 (1.39, 3.37) and this was 1.90 (1.04, 3.51) in fully adjusted 

analysis. Most of the participants with ≥2 abnormal biomarkers had elevated D-dimer 

(96%); 49% had elevated fibrinogen and 55% had elevated factor VIII. These biomarkers 

were modestly correlated with each other (Spearman correlations 0.31–0.33). The 

interactions between D-dimer and factor VIII and between D-dimer and fibrinogen were not 

statistically significant on the multiplicative scale (p 0.20 and 0.36 respectively).

Residence in the stroke belt was associated with higher odds of ICI in unadjusted (OR 1.63, 

CI 1.25, 2.11) and fully adjusted (OR 1.60, CI 1.17, 2.40) analyses. Median D-dimer, 

fibrinogen, protein C, Factor VIII, and number of elevated hemostasis biomarkers ≥2 did not 

differ by region; consequently differences in biomarker levels were not mediators of this 

regional difference in ICI (data not shown). Further, there were no differences in the 

association of biomarkers with risk of ICI by region (all p> 0.10).

Discussion

In this prospective study, elevated concentrations of D-dimer, fibrinogen and factor VIII, but 

not low protein C, were modestly associated with ICI in unadjusted models. Associations 

did not differ by race or region. Other demographic and vascular risk factors accounted for 

the higher odds of ICI with these biomarkers as associations were attenuated in fully 

adjusted models.

Despite the lack of association of individual biomarkers with ICI risk, abnormal levels of ≥2 

elevated biomarkers with ICI increased the risk nearly 2-fold in fully adjusted analyses. This 

essentially involved participants with elevated D-dimer plus at least one other elevated 

biomarker, suggesting that the burden of perturbed procoagulant balance relevant to risk of 

ICI cannot be detected with individual biomarkers. Our findings were similar to those of 

Gallacher and colleagues [4], who reported that concurrent elevation of fibrinogen, factor 

VIII, and PAI-1 were associated with a hazard ratio of 2.97 (CI, 1.38, 4.56) for incident 

VaD.

Residence in the stroke belt was associated with ICI in this analysis, similar to a previous 

report in REGARDS using a global cognitive test score[16]. The absence of higher levels of 

biomarkers in the stroke belt and no biomarker effect modification by region indicate that 

hemostasis biomarkers do not mediate the excess risk of ICI in the stroke belt. Despite 

limited literature suggesting lower protein C is associated with stroke [13], including in 

REGARDS [33], we did not see an association of lower protein C with ICI.

Fibrinogen is a marker of inflammation and a hypercoagulable state [34], and inflammation 

and hemostasis are tightly linked. Others reported that the association of fibrinogen and 

cognitive decline was stronger for VaD than for AD [4, 7, 10], suggesting mechanisms 

related to infarcts and neurostructural damage from atherosclerosis. However, in vitro and 
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mouse model evidence suggests β amyloid (Aβ), the hallmark protein of AD, interacts with 

fibrinogen to form abnormal fibrin structures [35, 36]. These abnormal fibrin/Aβ structures 

are deposited in the neurovasculature and are resistant to degradation [37], causing 

neurovascular inflammation and damage contributing to ICI in AD, and they can be 

inhibited pharmacologically in a mouse model [38]. Whether circulating levels of fibrinogen 

can reflect this biology is unclear.

The only prior study of factor VIII and ICI, to our knowledge, reported higher odds of VaD 

[4]. Several studies investigated the association of the related protein von Willebrand factor 

(vWF) with ICI, with primarily null findings [4, 6, 10]. Factor VIII and vWF are closely 

correlated as factor VIII binds vWF while circulating in blood and rapidly degrades when 

not bound. We did not measure vWF because field processing and shipping methods in 

REGARDS affected the validity of vWF assays[28]

We demonstrated multiple confounders of the association of hemostasis markers with ICI. 

Individually, income, diabetes, and CRP had large impacts. The D-dimer association was 

confounded by health behaviors and vascular risk factors. Factor VIII was most confounded 

by vascular risk factors. The association of fibrinogen and ICI remained apparent until 

demographic, health behavior, and vascular risk factors were all included in the model. 

Incremental decreases in most of the ORs with stepwise addition of covariates suggest that 

many of the covariates have a small but ultimately cumulative effect on the relationship 

between hemostasis biomarkers and ICI.

Differences between our findings and previous reports may be due to which covariates were 

accounted for. Many prospective studies reporting associations of fibrinogen with dementia 

or ICI did not adjust for socioeconomic factors [5, 7–9]. Stott and colleagues, who observed 

differences in rate of decline on several cognitive tests by D-dimer and fibrinogen level [6] 

adjusted for education, but not income, which was a strong correlate of ICI in our study, 

even when other socioeconomic variables including education were accounted for. Gallacher 

and colleagues [4] adjusted for social class and reported that fibrinogen, factor VIII, and 

PAI-1 were associated with incident VaD but not with non-VaD. Their study included only 

men within the Caerphilly locality in South Wales, England, which may also explain 

differences from our results.

Differences between our findings and other published literature may also be due to 

differences in definitions of the outcome or predictors. We could not determine the etiology 

of ICI in our study or classify it into clinical diagnoses. As some of the previous research 

identified associations of hemostasis biomarkers with VaD only [4, 7, 10], it is possible that 

this subgroup is too small within our ICI cases to identify individual biomarker associations. 

We studied biomarker levels as continuous, categorical, and dichotomous predictors. Only 

biomarkers above an established clinically significant cutpoint (>0.50 μg/mL for D-dimer) 

or at levels ≥90th percentile of the distribution showed an association with ICI. Other 

previously published studies analyzed continuous [5, 7–9, 11] tertiles, [6] quintiles, [7, 10] 

or z-score [4] predictors. Previous prospective studies investigating D-dimer had mixed 

results, some reporting an association with VaD [6, 10] and ICI [11] and others finding no 

association. [4, 5] Additionally, most participants with 2 abnormal biomarkers had elevated 
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D-dimer and either high fibrinogen or high factor VIII. A biomarker score of positive D-

dimer plus high levels of other hemostasis biomarkers was associated with ICI in a 

multivariable model, suggesting scores may be more useful in detecting associations than 

single biomarkers.

Limitations of this study include loss of statistical power in adjusted analyses due to missing 

covariates. Although complete cases did not differ substantially from incomplete cases, 

~17% of the cases and controls were omitted from some of the fully adjusted analyses. We 

suspect that this limitation would only bias our findings to the null by reducing statistical 

power. We had 80% power to detect an OR for ICI of 1.51 in those with biomarker levels 

>90th percentile in adjusted analysis. The OR point estimates for fibrinogen and factor VIII 

in these models were 1.40 and 1.19, respectively. If these are the true effect sizes, a larger 

sample size is needed to confirm this finding. Results are generalizable to blacks and whites 

in the US, so might not apply to other groups. Finally, the findings regarding risk related to 

presence of ≥2 biomarkers should be interpreted cautiously given the lack of associations of 

individual biomarkers with ICI in the adjusted models, and since residual confounding due 

to unmeasured factors might partly explain this association.

Strengths of this study are inclusion of blacks and whites from a national cohort study and 

well-characterized vascular risk factors. The nested case-control design and baseline blood 

samples allowed prospective assessment of the association of biomarkers with incident ICI, 

reducing the likelihood of reverse causality to explain positive findings. Also, cases and 

controls were free from stroke and cognitive impairment on a screening tool at baseline. As 

stroke may be in the causal pathway between elevated hemostasis markers and ICI, we 

included participants who survived incident stroke and evaluated its effect in adjusted 

analyses.

In conclusion, individual hemostasis biomarkers were univariately associated with ICI, but 

these associations were not independent of other factors in adjusted models. Having at least 

2 elevated biomarkers was associated with ICI after multivariable adjustment, suggesting 

individual markers have small but additive associations. Income, diabetes, and inflammation 

were important confounders of the relationship of individual biomarkers with ICI and should 

be taken into account in future studies. Neither individual hemostasis biomarkers nor 

biomarker scores mediated the association of stroke belt residence with ICI, and further 

studies are needed to elucidate the causes of this regional disparity.
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Refer to Web version on PubMed Central for supplementary material.
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Essentials

• Cognitive disorders are increasing and vascular risk factors play a role in this.

• We performed a nested case control study of hemostasis biomarkers and 

cognitive impairment (CI).

• Higher baseline fibrinogen, factor VIII and D-dimer were related to incident 

CI over 3.5 years.

• 2+ abnormal markers (but not single ones) led to higher risk adjusted for other 

risk factors.
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Table 1

Baseline Characteristics of Cognitive Decline Cases and Controls

Risk Factor
% unless otherwise specified

Cases (N= 495) Controls (N=587)* p-value

Black Race 33 36 0.34

Age, Mean 64.6 64.1 0.34

Male Sex 41 43 0.55

Education

 ≤ High school 33 32

 Some college 26 28

 ≥College graduate 41 39 0.83

Stroke Belt Region 65 52 <0.001

Income

 < $20k 29 12

 $20k–$34k 20 22

 $35k–$74k 25 37

 ≥ $75k 12 17

Did not Answer 14 12 <0.001

Smoking Status

 Current 17 12

 Past 38 37

 Never 45 51 0.02

Alcohol Use

 Heavy 3 5

 Moderate 28 34

 None 69 61 0.01

Diabetes 29 19 <0.001

Hypertension 61 55 0.05

Dyslipidemia 61 58 0.44

History of Transient Ischemic Attack 6 4 0.16

Atrial Fibrillation 10 9 0.61

Left Ventricular Hypertrophy 12 7 0.03

History of Coronary Artery Disease 21 13 <0.01

BMI Category (kg/m2)

 <18.5 underweight <1 <1

 >18.5 <25 normal 18 25

 ≥25<30 overweight 34 35

 ≥30 obese 47 40 0.03

Regular aspirin use 43 44 0.87

Statin use 34 31 0.34

Warfarin use 4 3 0.33

ApoE4 homo- heterozygous 32 31 0.69

C-reactive protein >90th percentile 14 10 0.04
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Risk Factor
% unless otherwise specified

Cases (N= 495) Controls (N=587)* p-value

D-dimer >0.50 μg/mL 46 39 0.04

Fibrinogen >90th percentile 16 10 0.002

Factor VIII antigen, >90th percentile 15 10 0.01

Protein C antigen, <10th percentile 11 10 0.64

Number of biomarkers elevated

 0 45 53

 1 37 38

 2 14 7

 3 4 2 0.0001

*
Weighted to analytic cohort, total N=17,630
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