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Assessment of the key regulatory 
genes and their Interologs for 
Turner Syndrome employing 
network approach
Anam Farooqui, Safia Tazyeen, Mohd. Murshad Ahmed, Aftab Alam, Shahnawaz Ali   , 
Md. Zubbair Malik, Sher Ali & Romana Ishrat

Turner Syndrome (TS) is a condition where several genes are affected but the molecular mechanism 
remains unknown. Identifying the genes that regulate the TS network is one of the main challenges in 
understanding its aetiology. Here, we studied the regulatory network from manually curated genes 
reported in the literature and identified essential proteins involved in TS. The power-law distribution 
analysis showed that TS network carries scale-free hierarchical fractal attributes. This organization of 
the network maintained the self-ruled constitution of nodes at various levels without having centrality–
lethality control systems. Out of twenty-seven genes culminating into leading hubs in the network, we 
identified two key regulators (KRs) i.e. KDM6A and BDNF. These KRs serve as the backbone for all the 
network activities. Removal of KRs does not cause its breakdown, rather a change in the topological 
properties was observed. Since essential proteins are evolutionarily conserved, the orthologs of 
selected interacting proteins in C. elegans, cat and macaque monkey (lower to higher level organisms) 
were identified. We deciphered three important interologs i.e. KDM6A-WDR5, KDM6A-ASH2L and 
WDR5-ASH2L that form a triangular motif. In conclusion, these KRs and identified interologs are 
expected to regulate the TS network signifying their biological importance.

Search of disease related genes has gained momentum during the past one decade. Perhaps this is due to ever 
growing newer diseases on the horizon or perhaps a drastic change in the lifestyle of the people or both. Finding 
the cure of the disease requires its identification and diagnosis well on time. Though an increase in discovering 
disease-associated genes have been observed with time, there is still a large fraction of diseases without a known 
molecular basis. Network-based analysis of proteins has attained ample attention in recent years. Network-based 
approaches serve as potent prognostic tools that have been successfully applied in the characterization of genes 
in complex diseases such as cancer, ataxia, multiple sclerosis etc.1–4. Understanding gene regulatory network 
advances our knowledge regarding initiation and progression of disease. Such studies will augment system biol-
ogy research enhancing the efficacy of different therapeutic approaches.

Turner Syndrome (TS) is one such condition where a partial knowledge of its molecular basis is known but a 
large proportion of their associated candidate genes are still unknown. It is a rare chromosomal disorder affect-
ing females where an X chromosome of a female is partly or completely missing due to sporadic chromosomal 
non-disjunction5. This results in XO condition. Besides the cases of monosomy X (45, X) being the most common 
in TS, several cases have also been reported with mosaicism, where 45, X cell line is accompanied by one or more 
other cell lines having a complete or structurally abnormal sex chromosomes (X or Y)6. Signs and symptoms of TS 
are highly variable differing dramatically from one person to another. Thus, the association between genotype and 
phenotype also remains a challenge. It is known that mosaic cases show up milder phenotypic anomalies com-
pared to those with 45, X karyotype. Of all the observed symptoms, short stature and gonadal dysgenesis remains 
the most consistent one6. The other phenotypes of TS can be associated to the features that are less frequent such 
as cardiovascular congenital defects, aorta anomalies, renal alterations, cognitive inability that includes selec-
tive non-verbal deficiencies etc. Mental deficiency is not a characteristic of TS. It is believed that additional, 
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as-yet-unidentified genes on the X chromosome and some autosomal genes may play a role in the development of 
these co morbidities of TS. Identification of these factors is still lacking and needs to be evaluated.

The current approach for the prioritization of disease genes is mainly centred on the ‘guilt-by-association’ 
assumption, which means that the physically and functionally related genes are likely to be involved in the same 
biological pathways having comparable effects on the phenotypes7. Network theory is an important approach to 
understand topological properties and the dynamics of complex systems to co-relate with their functional mod-
ules. Most of the existing networks may be categorised into one of them, namely, scale-free, small world, random 
and hierarchical network. Amongst them, hierarchical type of network is of special interest to biologists as it 
includes the appearance of modules and sparsely distributed hubs regulate the network.

Based on this understanding, the key regulators of the TS were identified by integrating protein-protein inter-
action (PPI) network in the present study. Our current paradigm for studying TS revolves around the identifi-
cation of the key regulators of TS among manually curated genes by combining protein interactions, functions, 
disease networks and orthologs. We also aim to understand its topological properties to predict important key 
regulators among which some are of fundamental importance for their activities and regulating mechanism.

Results
Data mining and curation of genes related to Turner Syndrome.  Through literature search, a list of 
thirty-one genes reportedly involved in TS and its related comorbidities was obtained (Table 1). These genes will 
be used for network construction and to study their biological significance.

Turner Syndrome network follows hierarchical scale free features.  The candidate genes listed in 
Table 1 were used to construct their regulatory network of which only twenty-seven genes participated as lead-
ing hubs. The main constructed network consisted of 3294 nodes and 97361 edges. The topological properties 
used to characterise the structural and organizational topographies of the TS network are probability of degree 
distribution P(k), clustering co-efficient C(k) and neighborhood connectivity CN(k). These properties could per-
haps relate to the functional and self-similar (fractal) constituents of the network. It was observed that these 

SN Gene Name Description Location References

1) SHOX Short Stature Homeobox Xp22.33 and Yp11.2 5,35

2) SRY Sex-determining Region Y Yp11.2 36,37

3) KDM6A Lysine Demethylase 6 A Xp11.3 12,38

4) TSPY1 Testis specific protein, Y-linked 1 Yp11.2 39

5) RPS4X Ribosomal protein S4, X-linked Xq13.1 40,41

6) RPS4Y1 Ribosomal protein S4, Y-linked Yp11.2 42

7) CSF2RA Colony Stimulating Factor 2 Receptor Alpha Xp22.33 and Yp11.2 43,44

8) PRKX Protein Kinase, X linked Xp22.33 12,45

9) ZFYVE9 Zinc finger FYVE domain-containing protein 9 1p32.3 12

10) TIMP1 TIMP metallopeptidase inhibitor 1 Xp11.3 12,46

11) IGF1 Insulin-like growth factor 1 12q23.2 47

12) STS Steroid Sulphate Xp22.31 43,48

13) NLGN4X Neuroligin 4, X-Linked Xp22.32-p22.31 48,49

14) MTHFR Methylenetetrahydrofolate reductase 1p36.22 50

15) GHR Growth Hormone Receptor 5p13.1-p12 51

16) BDNF Brain derived Neurotrophic Factor 11p14.1 13

17) VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor 12q13.11 52

18) AR Androgen Receptor Xq12 53

19) FOXP3 Forkhead box P3 Xp11.23 54

20) KCNH2 Potassium voltage-gated channel subfamily H member 2 7q36.1 55

21) SCN5A Sodium voltage-gated channel alpha subunit 5 3p22.2 55

22) IGFBP3 Insulin like growth factor binding protein 3 7p12.3 56

23) PTPN22 Protein Tyrosine Phosphatase, non-receptor type 22 1p13.2 57

24) XIAP X-Linked Inhibitor of Apoptosis Xq25 58

25) AMH Anti-Müllerian Hormone 19p13.3 59

26) PTPN1 Protein Tyrosine Phosphatase, Non-Receptor Type 1 20q13.13 60

27) DAZ1 Deleted in azoospermia 1 Yq11.223 36

28) USP9X Ubiquitin Specific Peptidase 9, X-Linked Xp11.4 48,61

29) TMEM27 Transmembrane protein 27 Xp22.2 48,62

30) EFHC2 EF-Hand Domain Containing 2 Xp11.3 63

31) SOCS2 Suppressor Of Cytokine Signalling 2 12q22 56

Table 1.  List of manually curated genes involved in TS. *The dosage sensitive X linked genes are highlighted in 
bold.
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topological properties obey power law behaviour as a function of degree k (Figs 1(A) and 2(A) first row against 
Level 0). The power law fits on the data sets of the topological variables of the network are done and verified fol-
lowing a standard statistical fitting procedure proposed by Clauset et al.8. Here, all statistical p-values for all data 
sets, calculated against 2500 random samplings, are found to be larger than a critical value 0.1, and goodness of 
fits is found to be less than and equal to 0.33. The values of the exponents are obtained from the power law fittings. 
The results for the complete network are summarized as follows,
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The negative values of α and γ suggest that the TS network follows hierarchical nature. The value of 
γ = .ln(2 6)/ln(3) which is 0.857, means that number of nodes increase with the advancement of disease as a 
power of 2.6 while links as a power of 3 thus, giving us the idea of being hierarchical as it shows presence of mod-
ules in our clustering experiment. The positive value of β indicates that the network carries the assortive mixing 
specifying that a large cluster of degree nodes (formation of rich club) regulates the TS network.

The centrality measurements, namely betweenness centrality CB(k) and closeness centrality CC(k) represent 
the flow of information in the network and predict the influential candidates in the network. The well connected-
ness of nodes in a network is characterised by eigenvector centrality CE(k). It measures the efficacy of the spread-
ing (receiving) power of information of nodes from the network. These properties obey power law behaviours as 
follows,
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Figure 1.  (A) The behaviours of degree distributions (P(k)), clustering co-efficient (C(k)), neighborhood 
connectivity (CN(k)), betweenness (CB(k)), closeness (CC(k)) and eigen-vector (CE(k)) measurements as a 
function of degree k for original and BDNF knockout network at different levels of organization. (B) The 
changes in the exponents of the six topological parameters due to BDNF knock-out experiment. (C) Changes in 
the Energy distribution in the network quantified by Hamiltonian calculation as a function of network levels in 
original and BDNF knockout network.
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The power law natures of the three centrality measurements are again verified and confirmed using the proce-
dure of Clauset et al.8 of statistical power law fitting. Here p values are found to be more than 0.1 and goodness of 
fit larger than 3.5. It was observed that only few numbers of higher degree nodes have large centrality values (for 
all three centrality measurements). The number of most influencing hubs, which can control the network, is few. 
Therefore, the TS network is dominated by the low degree nodes (genes/proteins) and these low degree nodes 
regulate the functioning and organization of the network. Few of the sparsely distributed leading hubs might, 
however, take important participation in regulating as well as maintaining the network stability. The positive 
values of these centrality measurements show that the network exhibits hierarchical scale free or fractal features.

Thus, the overall topological properties of the TS network indicate that the same self-organise into a scale 
free fractal state and have hierarchical organization, i.e. they are composed of successive interconnected or 
inter-nested communities.

Identification of key regulators and properties.  The modular structure and their arrangement at 
various levels of organization are done following Newman and Girvan’s standard community finding algo-
rithm9. Using this algorithm, the TS network is found to be hierarchically organised through six different levels 

Figure 2.  (A) The behaviours of degree distributions (P(k)), clustering co-efficient (C(k)), neighborhood 
connectivity(CN(k)), betweenness (CB(k)), closeness (CC(k)) and eigen-vector(CE(k)) measurements as a 
function of degree k for original and KDM6A knockout network at different levels of organization. (B) The 
changes in the exponents of the six topological parameters due to KDM6A knock-out experiment. (C) Changes 
in the Energy distribution in the network quantified by Hamiltonian calculation as a function of network levels 
in original and KDM6A knockout network.
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(Fig. 3(B)). The corresponding modularity QN and Hamiltonian Energy (HE) as a function of levels of organiza-
tion are found to be decreased as one goes from top to down organisation (Fig. 4(A,B), respectively).

Here we put forward the idea of key regulators (KRs) as the genes/proteins which are deeply rooted from top to 
bottom of the network and vice versa, which serve as the backbone of the network organization. It is not essential 
for these KRs to be the large leading hubs in the network, but they rather change their popularities randomly at 
various levels of organization (Fig. 5). Since the network qualifies hierarchical characteristics, the removal of the 
leading hubs will not cause its breakdown. However, the removal of KRs from the network may cause maximum 
local and global perturbations, especially at a deeper level of organization. These perturbations will propagate 
through various levels of organization’s bottom to top or top to bottom causing topological change in the network. 
Thus, these KRs could be the possible key target genes of the TS network.

Figure 3.  (A) Tracing of KRs through different levels in the network. (B) Organization of the modules/sub-
modules of the network.
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Following the definition of KR, we identified two KRs, namely, KDM6A and BDNF (Fig. 5), which are key 
regulators/organizers of the TS network. Unexpectedly, the first eleven leading hubs are not found to be KRs since 
they fail to reach till the deepest level of organization (Figs 4(C) and 5). These two KRs maintain a low profile/
popularity thereby regulating the network till the bottom level of organization. These KRs separate from each 
other after level one and then move separately till the motif level (Fig. 3(A)). These KRs may act as signal prop-
agators from top to bottom and vice versa to maintain network stability and inherent properties. The proteins 
SOCS2, GHR, CSF2RA and PRKX move till fifth level but fail to reach the motif level (Fig. 5).

To understand the regulating ability of each of the 2 KRs, we calculated the Probability Px(yl) of KR (Fig. 5).
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Where x is number of edges y[l] at level l and E[l] is total number of edges of the network or modules and 
sub-modules. The calculated Probability P y( )x

l  of all the key genes show an increase in Px as one goes top to bot-
tom direction as level l increases. This means the regulating ability of each key gene becomes more important at 
deeper level of organization.

Evidence of self-organization: local-community-paradigm (LCP) approach.  The LCP architecture 
assists not only the rapid delivery of information across the various network modules, but also through the local 
processing. We analysed the TS network to check the maintenance of its self-organization at various levels of 
network organization using LCP technique. The LCP-corr of all the modules/sub-modules at various levels was 
calculated. The average values of LCP-corr at each level (modules having zero LCP-corr are not taken in average) 
are greater than 0.85 and the values do not change with error bar (Fig. 4(D)). This indicates that the network 

Figure 4.  (A) Corresponding modularity QN as a function of levels of organization. (B) Corresponding 
Hamiltonian Energy (HE) as a function of levels of organization. (C) Characterization of twenty-seven leading 
hubs of the network by degree (D). Variation in the calculated average LCP-corr for TS network as a function of 
network level.
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maintains self-organisation and is compact and has efficient information processing. It represents strong LCP 
networks that are dynamic and heterogeneous, which facilitate network evolution and reorganization.

Local perturbations driven by key regulators.  The knock-out experiment of the KRs from the TS net-
work highlights the local perturbations driven and their consequence on global network properties. The knockout 
experiment for both the KRs was performed separately. In both the cases a significant change in the topological 
properties of the network is observed (Figs 1(A) and 2(A)). It was seen that α change significantly at level 0, 
whereas β and γ change only slightly (Figs 1(B) and 2(B)). Similarly, the changes in the exponents of central-
ity measurements (δ, µ and θ) at level 0 also show significant change (Figs 1(B) and 2(B)). The values of δ and 
θ changes slightly whereas a significant change is observed in the value of µ. It is evident from the changes in 
the exponents of topological parameters that as one goes to deeper level i.e. top to down direction the network 
perturbation increases (Figs 1(B) and 2(B)). In case of KDM6A, after the fourth level, its removal almost breaks 
down the sub-modules present in the remaining deeper levels. Whereas in case of BDNF, after the second level, 
its removal almost breaks down the sub-modules present in the remaining deeper levels. This indicates that local 
perturbation is maximum at deeper levels starting from bottom to top.

We then calculate Hamiltonian energy of the respective complete network and modules/sub-modules in 
the KR knockout experiment to understand change in energy distributions in the respective network. A slight 
decrease in the Hamiltonian energy is observed at each level due to knockout of the KRs (Figs 1(C) and 2(C)). 
This indicates that the removal of KRs cause enormous loss of wiring/rewiring energy which is propagated 
throughout the levels of network organization.

Centrality-Lethality in Turner Syndrome network.  The TS network is close to hierarchical network 
and hence the modules/sub-modules emerged are compact at upper levels of organization. The knockout of KRs 
(KDM6A and BDNF) from TS network does not cause the network breakdown. As observed in case of KDM6A 

Figure 5.  Network/modules/sub-modules at different network levels which accommodate leading hubs and 
key regulators. The probability distribution of the KRs as a function of level.
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and BDNF, their knockout almost breaks down the sub-modules from fourth and second level respectively, 
whereas other modules/sub-modules remain stable to preserve the network properties. Hence, TS network rules 
out centrality-lethality rule10. However, the identified KRs have important regulating activities in the network 
which is reflected in the changes in the topological properties and other parameters of the network and its asso-
ciated communities at various levels of organization.

Predicting essential protein interactions: Interologs.  Following the centrality measurements-based 
methodology (see in Methodology), we examined the top thirty genes each one identified by its centrality and 
degree measurements. We got 120 genes from all measurements (Supplementary Table S1). Among these 120 
central genes, 2 genes (HDAC3 and RPS3) were found to be the interacting partners of the hub genes, SRY and 
RPS4Y respectively in TS network.

Analysing the interacting partners of the disease associated genes play an important role in the prediction of 
genotype-phenotype associations and helps in identifying new disease genes candidates (i.e. the genes coding for 
the interacting proteins are putative disease-causing genes). It is thus expected that the interacting partners of the 
key regulators may also be associated with TS. Built on this assumption 8 PPI were selected for further analysis 
listed in Table 2.

One of the most important features of essential proteins is their conservative property. Many studies have 
shown that essential proteins evolve much slower than the other proteins. They are more evolutionarily conserved 
than non-essential proteins11. By considering the facts that essential proteins depend not only on the interactions 
between proteins but also their orthologous properties, we find orthologs of the proteins listed in Table 2 in dif-
ferent species namely, C. elegans, cat and macaque monkey (Supplementary Table S2). If two proteins physically 
interact in one species and they have orthologous counterparts in another species, it is likely that their orthologs 
interact in that species too. If such conserved interactions exist, they are called interologs.

The network of C. elegans, cat, macaque monkey, and human were constructed from these 8 essential interact-
ing proteins as hub genes for the analysis of the interologs (Fig. 6). Though it is expected that all these interactions 
play important role in TS network regulation, it was observed that only two protein-protein interactions (high-
lighted in bold in Table 2) remained conserved at each level of organism. Also, it is noteworthy that both these 
interactions involve the key regulator KDM6A and these proteins form a triangular motif (Fig. 6). These predicted 
interologs might play major role in the pathophysiology of TS.

Discussion
Understanding the regulation of a disease network is of great relevance towards the development of treatments 
for various diseases in the field of pharmacogenomics. One of the ways is to identify the key drivers that regulate 
the complete network. We have attempted to construct TS network focusing on genes that are regulated through 
this network.

The TS network constructed from manually curated set of genes show hierarchical features, which means that 
the network has system level organization involving modules/communities which are interrelated. Since the net-
work is hierarchical, individual gene activities are not of much significance, rather their synchronisation exhibits 
various important functional regulation of the network. Significant genes (leading hubs) were recognized as key 
regulators of the network by influencing motifs and module regulation, indicating their biological significance. 
The leading hubs have significantly important functions. They integrate the lower degree nodes for organizing 
and regulating activities like inter and intra cross-talk among various other essential genes, maintaining network 
properties and stability, and optimizing the network signal processing. However, out of these leading hubs, two 
are key regulators, playing important roles in keeping network in order. In TS network, out of twenty-seven 
leading hubs, we identified two such KRs which are KDM6A and BDNF. KDM6A is an X-linked gene that plays 
a central role in coding the histones. It escapes X-chromosome inactivation suggesting that it could be a potential 
candidate gene of TS12. Also, it has been reported that this gene may be involved in premature ovarian failure. 
BDNF gene is localised on chromosome 11 and is a member of the neurotrophin family of growth factors. It has 
been reported that TS patients have higher BDNF levels than healthy ones13. These KRs serve as the backbone for 
any network activities and their regulations and could be a possible target gene for disease control. Surprisingly, 
these KRs do not fall in first few largest hubs (eleven hubs) and thus keep a low profile in the network. Since the 
network possesses hierarchical properties, removal of KDM6A and BDNF does not cause network breakdown, 
instead the network adapt itself functionally.

Hub Gene Interacting Partner
Location of 
Interacting partner

SRY HDAC3 (Histone Deacetylase 3) 5q31.3

RPS4Y1 RPS3 (40S ribosomal protein S3) 11q13.4

KDM6A
WDR5 (WD repeat-containing protein 5) 9q34.2

ASH2L (Ash2 histone methyltransferase complex subunit ASH2) 8p11.23

BDNF

MBTP1 (Membrane-bound transcription factor site-1 protease) 16q23.3-q24.1

CAPS2 (Calcium-dependent secretion activator 2) 12q21.1-q21.2

CPE (Carboxypeptidase E) 4q32.3

NOS3 (Nitric oxide synthase 3, endothelial) 7q36.1

Table 2.  Essential PPI interactions in TS network.
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The topological properties of the network exhibit power law behaviour indicating that the network obeys 
fractal nature. This could be a signature of self-organization in the network. It was also studied that TS represents 
strong LCP networks that are dynamic and heterogeneous, which facilitate its evolution and reorganization. This 
indicates that the network maintains self-organisation and is compact and has efficient information processing.

The knock out experiment of the KR indicates that the change in the network properties do not cause signifi-
cant change in its topology. This indicates that the system does not prefer a change due to perturbation imparted 
by KR knock out. The network reorganizes itself and adapt according to the changed topological properties. 
The ability to adapt for a better network organization without breakdown of the system is another signature of 
self-organization14. By considering the facts that essential proteins are more evolutionarily conserved than non-
essential ones and essential proteins frequently bind each other, we predicted the essential proteins by integrating 
the orthology with PPI. We deciphered three important interologs (evolutionarily conserved protein-protein 
interactions) i.e. KDM6A-WDR5, KDM6A-ASH2L and WDR5-ASH2L, thus forming a triangular motif. 
KDM6A already has been found to be the key regulator of TS network, therefore these interologs are expected to 
play major role in TS.

It is likely that the above mentioned genotypic constitution is operative in normal female. However, the Table 1 
shows presence of several Y-linked genes including SRY. This raises a question if this scenario is applicable to 
males also. Alternatively, this may be operative in both the sexes for normal function of both the genome. While 
this seems to be simple and more convincing proposition, it raises yet another question as we know no two turner 
patients are alike. Thus, genotypically every Turner is unique with respect to its genotype. If we superimpose on 
different phenotype of Turner patient, will that eventually generate a consensus on regulatory protein and their 
interacting partner. While this may be a logical expectation, it still poses yet another challenge both logistical 
and experimental ones. It would be extraordinarily informative if every single gene listed in Table 1 is analysed 
with respect to its normal vs mutational status, copy number variation, expressional dynamics and interactomes 
involved therein. Such analysis would surely augment the understanding on the mechanism of formation of TS 
and perhaps identification of key regulatory genes. Information on these lines is envisaged to be useful for a better 
diagnosis and prognosis of TS.

Methodology
Data mining and curation of genes related to Turner Syndrome.  The information of TS related 
genes and proteins were collected from the literatures. The genes expected to be involved in TS and related 
co-morbidities were manually curated from various sources like repositories (PIR)15, reviewed literatures (i.e. 
PubMed), OMIM16 etc.

Construction of Gene Regulatory Network.  For the construction of the primary network of the 
expressed proteins, the curated genes were mapped to their respective UniProt IDs and their associated functional 
information were retrieved. The simple concept of one gene, one protein was used to build the gene regulatory 
network of TS.

Figure 6.  Interologs in the network from lower to higher organism. α is the clustering coefficient of the 
network.
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The network was constructed with available large-scale protein interaction networks using Pathway 
Commons17,18 (a built-in cytoscape feature) and then visualised in cytoscape 3.4 version19. Pathway Commons 
is a metasearch platform, which, in addition to PPI data retrieval, also collects pathway data from multiple pub-
licly available databases, including REACTOME, Systems Biology Centre New York (http://sbcny.org/data.htm), 
HumanCyc (http://humancyc.org/), The Cancer Cell Map (cancer.cellmap.org) and PID. Pathway Commons 
includes biochemical reactions, complex assembly, transport and catalytic events and physical interactions. It can 
easily be accessed either directly online, or through Cytoscape’s built-in import “Network from Web Services” 
function.

Characterization of Topological Properties of Networks.  The structural properties of complex net-
works are characterized through the behaviours of the topological parameters. The following topological proper-
ties of the networks (graph) were studied to learn the important behaviours of the network: Degree distribution, 
Neighborhood connectivity, clustering co-efficient, Betweenness centrality, Closeness centrality and Eigenvector 
centrality.

Degree distribution.  In a network, the degree k is a centrality measure that represents the number of links the 
node connects with other nodes. For a network defined by a graph G = (N, E), where N and E are number of 
nodes and edges respectively, the probability of degree distribution (P(k)) of the network is the ratio of the num-
ber of nodes having degree to the network size;

=P k n
N

( ) (4)
k

Where, nk is the number of nodes having degree k and N is the total number of nodes in the network. P(k) indi-
cates the importance of hubs or modules in the network. It obeys power law P(k) ~k−γ in scale-free and hierar-
chical networks depending on the value of γ which specifies the importance of hubs or modules in the network20.

Neighborhood connectivity.  The number of neighbors of a node is considered as its connectivity. The neighbor-
hood connectivity of a node n is defined as the average connectivity of all neighbors of n21. In the network (CN(k)) 
Neighborhood connectivity is given by,

∑=






C k qP q

k
( )

(5)N q

where, ( )P q
k

 is the conditional probability that a link belonging to a node with connectivity k points to a node with 
connectivity q. The positive power dependence of CN(k) could be an indicator of assortivity in the network 
topology.

Clustering co-efficient.  This topological parameter of a network represents the measure of the interconnection of 
a node with its neighborhood node and strength of its interconnection. It is the ratio of the number of its nearest 
neighborhood edges ei to the total possible number of edges of degree ki. For an undirected network, clustering 
co-efficient (C(ki)) of ith node can be calculated by,

=
−

C k e
k k

( ) 2
( 1) (6)i

i

i i

Betweenness centrality.  Betweenness centrality CB of a node represents the prominence of information flow in 
the network, and the extent to which the node has control over the other nodes in the network through commu-
nication22,23. If dij (v) indicates the number of geodesic paths from node i to node j passing through node v, and 
dij indicates number of geodesic paths from node i to j, then betweenness centrality (CB(v)) of a node v can be 
calculated by,

∑= ≠ ≠C v
d v

d
( )

( )

(7)
B i j i j k

ij

ij
, ,

Closeness centrality.  Closeness centrality (CC) measures how fast information is spread from a node to other 
nodes accessible from it in the network24. CC of a node i is the reciprocal of the mean geodesic distance between 
the node and all other nodes connected to it in the network, and is given by,

=
∑

C i n
d

( )
(8)

C
j ij

where dij represents the geodesic path length from nodes i to j, and n is the total number of vertices in the graph 
reachable from node i.

Eigenvector centrality.  Eigenvector centrality of a node i (CE(i)) in a network is proportional to the sum of i’s 
neighbor centralities25, and it is given by,

http://sbcny.org/data.htm
http://humancyc.org/
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∑λ
=

=
C i v( ) 1

(9)
E

j nn i
j

( )

where, nn(i) indicates nearest neighbors of nodes i in the network. λ is eigenvalue of the eigenvector vi is given by, 
Avi = λvi where, A is the adjacency matrix of the network (graph). The principal eigenvector of A, which corre-
sponds to maximum eigenvalue λmax, is taken to have positive eigenvector centrality score. Eigenvector centrality 
can be used as an indicator of node’s spreading power in the network.

Community detection/finding: Leading Eigen-vector method.  The activities of the constructed net-
work were defined at various levels of hierarchy to describe the modular nature, properties and the organizing 
principle of the hierarchical network. To detect the communities, the Leading Eigen Vector method (LEV)26,27 
was used in R from package ‘igraph’28 in this study. The LEV method is the most promising one for community 
detection as it calculates the Eigen value for each link, exemplifying the significance of each link, not nodes. To 
obtain only motif, we detected modules from complete network and then sub-modules from the modules at each 
level of organization.

Modularity.  Modularity is the measure of how fine a network is divided in communities9. Modularity (Q) is 
expressed as follows,

∑ δ=





−



 ( )Q

m
A

k k
m

C C1
2 2

,
(10)ij ij

i j
i j

where m is the total number of edges in the community, Aij is the adjacency matrix of size i × j, k represents 
degrees, and the δ function yields 1 if nodes i and j are in the same community.

Tracing of the Genes and Knock out Experiment.  One particular challenge is to identify the main 
drivers that control the regulation of TS network. This was done through tracing of genes. This tracing of genes 
was performed up to motif level in various modules/sub-modules obtained from clustering. Through tracing the 
most significant and influential nodes within the network constructed was identified that regulates the network.

Further, the change in the organization of the network in the absence of these significant nodes was observed 
through the knockout experiment. The identified key regulators were successively removed from the constructed 
complete network, and the topological properties of the modified network were calculated again to describe the 
perturbations caused within the network due to the absence of these key regulators. The knockout experiment 
was repeated at different level of network organization to comprehend the role of these key genes in the network. 
The topological properties of the network were calculated using Network Analyzer, a plug-in in Cytoscape ver-
sion 3.4, whereas for eigen value calculation, we used CytoNCA29, another plug-in in Cytoscape for topological 
properties.

Local-community-paradigm (LCP) approach: Compactness of the network.  LCP-Decomposition 
Plot (LCP-DP) is an approach to represent topological self-organisation as a local-community-paradigm (LCP), 
and consequently is used to visualise and examine the effect of LCP on network topology. It is a function of com-
mon neighbors (CN) index of interacting nodes and local community links (LCL) of each pair of interacting 
nodes in the network. It provides information on number, size and compactness of the communities in a given 
network30. The CN index between two nodes x and y can be calculated from the measure of overlapping between 
their sets of first-node-neighbors S(x) and S(y) given by, ∩=CN S x S y( ) ( ). If there is significant amount of over-
lapping between the sets S(x) and S(y) (large value of CN), the possible likelihood of interaction of these two 
nodes could happen and so an increase in CN represents the rise in compactness of the network, showing its 
faster information processing abilities. Further, the LCLs between the two nodes x and y, whose upper bound is 
defined by, = −LCL CN CNmax( ) ( 1)1

2
, is the number of internal links in local-community (LC), which is 

strongly inter-linked group of nodes. Most probably these two nodes link together if CN of these two nodes are 
members of LC30. LCP-DP has been found to have a linear dependence between CN and LCL .

The LCP correlation (LCP-corr) is the Pearson correlation co-efficient between the variables CN and LCL 
defined by − =

σ σ
LCP corr cov CN LCL( , )

CN LCL
 with CN > 1, where cov(CN, LCL) is the covariance between CN and LCL, 

σCN and σLCL are standard deviations of CN and LCL, respectively.

Distribution of energy in the network: Hamiltonian energy calculation.  At each level of the net-
work, certain level of energy is maintained that helps organise the network at that level. This is measured by using 
Hamiltonian Energy (HE) of the network at that level/state within the formalism of Constant Potts Model31,32. HE 
gives the energy distribution not only at the global level of a network, but also at modular level, which is in the 
self-organization of the system. HE of a network or module or sub-module can be calculated by,

∑ γ= − −H e n[ ] (11)
c

c c c
[ ] 2

Where ec and nc are the number of edges and nodes in a community ‘c’ and γ is the resolution parameter acting as 
an edge density threshold which is set to be 0.5.
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Predicting essential interactions by integrating the Orthology with PPI.  Study has shown that 
there is a positive correlation between essentialities (essential proteins) and topological properties (centralities) 
of the proteins in PPI networks. As a consequence, a series of centrality measures based on network topological 
features have been used for identifying essential proteins, such as Degree Centrality, Betweenness Centrality, 
Closeness Centrality and Eigenvector Centrality. The proteins in the TS network were ranked in terms of their 
centrality (top 30 in each centrality). Then the ranking scores of these proteins were used to judge whether a 
protein is essential. Further the interacting partners of the hub proteins that fall into this category were identified.

In view of the facts that essential proteins are more evolutionarily conserved than non-essential proteins and 
they frequently bind each other, the prediction of essential proteins was done by integrating the orthology with 
PPI networks. To measure the conservation of the selected interacting proteins, their orthologous proteins in four 
different species namely, Caenorhabditis elegans, Felis catus (domestic cat), Macaca mulatta (macaque monkey), 
and Homo sapien were investigated (lower to higher level organisms). Information on orthologous proteins is 
taken from Version 8 of the InParanoid database33 (an ortholog database) which contains a collection of pairwise 
comparisons between 100 whole genomes (99 eukaryotes and 1 prokaryote) constructed by the INPARANOID 
program. Further the network of C. elegans, cat, macaque monkey, and human were constructed considering 
these 8 essential interacting proteins as hub genes for the analysis of the conserved interactions from STRING 
Protein Database34. STRING quantitatively integrates interaction data for a large number of organisms, and trans-
fers information between these organisms where applicable.
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