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Across-subject offline decoding of 
motor imagery from MEG and EEG
Hanna-Leena Halme1 & Lauri Parkkonen   1,2

Long calibration time hinders the feasibility of brain-computer interfaces (BCI). If other subjects’ data 
were used for training the classifier, BCI-based neurofeedback practice could start without the initial 
calibration. Here, we compare methods for inter-subject decoding of left- vs. right-hand motor imagery 
(MI) from MEG and EEG. Six methods were tested on data involving MEG and EEG measurements of 
healthy participants. Inter-subject decoders were trained on subjects showing good within-subject 
accuracy, and tested on all subjects, including poor performers. Three methods were based on Common 
Spatial Patterns (CSP), and three others on logistic regression with l1 - or l2,1 -norm regularization. The 
decoding accuracy was evaluated using (1) MI and (2) passive movements (PM) for training, separately 
for MEG and EEG. With MI training, the best accuracies across subjects (mean 70.6% for MEG, 
67.7% for EEG) were obtained using multi-task learning (MTL) with logistic regression and l2,1-norm 
regularization. MEG yielded slightly better average accuracies than EEG. With PM training, none of the 
inter-subject methods yielded above chance level (58.7%) accuracy. In conclusion, MTL and training 
with other subject’s MI is efficient for inter-subject decoding of MI. Passive movements of other subjects 
are likely suboptimal for training the MI classifiers.

Brain–computer interfaces (BCI) translate user’s brain activity in real time into commands for an external device. 
Non-invasive BCIs have diverse applications in both basic and clinical neuroscience, including videogames, exer-
cise systems for increasing attention or relaxation, communication devices for disabled people and various tools 
for neurological rehabilitation. For example, hemiparetic patients can learn to control an orthosis attached to the 
paretic hand using motor imagery (MI) and concurrent feedback (see a review by Teo and co-workers1). This 
so-called neurofeedback training may enhance recovery of sensorimotor function compared to traditional phys-
iotherapy, but the clinical evidence of BCI therapy still remains vague2,3.

Electric brain activity can be measured noninvasively with e.g. electroencephalography (EEG) and the corre-
sponding magnetic fields with magnetoencephalography (MEG). MEG has recently gained interest in the context 
of BCI experiments as well4–7, mainly because it provides higher signal-to-noise ratio and spatial resolution com-
pared to EEG. MEG can be used to assist the development of eventually EEG-based BCIs, and MEG-based BCIs 
can be used in basic neuroscientific research.

Unfortunately, BCIs typically require dozens or even hundreds of samples of subject’s neurophysiological 
signals for training the classification algorithms to decode the user’s brain states with an accuracy exceeding the 
chance level. Due to large inter-subject variability of these signals, the user-specific brain responses are typically 
collected in the beginning of each session for calibrating the BCI and thus the total calibration time can be sig-
nificant. This process can be exhausting for patients suffering from neurological disorders. Although Foldes and 
co-workers showed previously that five minutes of MEG data are sufficient for calibrating a subject-specific BCI 
discriminating MI from rest7, this time is still away from therapy. In addition, when employing neurofeedback 
for rehabilitation, the feedback should drive brain activity towards that of a healthy brain and not to reinforce the 
prevailing pathological state as a patient-specific BCI might do.

In order to overcome these drawbacks, several research groups have made effort to develop inter-subject-generalized 
BCIs8–10 which can be trained in advance using data from previously measured subjects. Therefore, a new BCI user 
can begin the neurofeedback practice immediately without the initial calibration session, which saves both time and 
effort of the patients.

Successful inter-subject classification requires that globally relevant signal features are extracted from each 
training subject. Optimal features should accurately discriminate between the brain states of interest and they 
should generalize across subjects in order to enable inter-subject learning. Feature extraction is a crucial part of 
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a BCI, and selecting optimal features can significantly improve the classification accuracy, as shown e.g. in our 
previous study11.

Multi-task learning (MTL12,13) aims at selecting a few relevant features from a large feature set such that these 
features are shared across multiple related tasks; in the case of BCI training, the tasks are usually measurements 
from different subjects. MTL is beneficial for learning problems in which the number of samples is much lower 
than the number of features, since it effectively reduces the dimensionality of the feature space. MTL finds a 
sparse feature set that is correlated across tasks instead of optimizing features for each individual task, which 
makes the method robust to outliers. In case of inter-subject classification, MTL considers decoding of each sub-
ject’s data as a separate task. In contrast to data pooling, MTL does not assume that training data from all subjects 
are equally distributed, which allows variability between subjects.

Regularized logistic regression has been used, among other machine-learning applications, for classifying 
EEG signals14,15. Moreover, logistic regression with l2,1 -norm regularization is found to be efficient for selecting 
a small number of relevant features from a high-dimensional feature space16. Recently, MTL based on logistic 
regression and regularization with l2,1 norm minimization was successfully used for extracting features and clas-
sifying MEG signals in an inter-subject decoding paradigm17.

Another popular method for feature extraction is spatial filtering with the Common Spatial Patterns (CSP) 
algorithm, which has been applied to EEG18,19 as well as to MEG11. CSP aims at maximizing the covariance of 
signals representing one class (e.g. left-hand motor imagery) while simultaneously minimizing it for another 
class (e.g. right-hand motor imagery). The benefits of CSP are low computational cost and efficiency especially 
in motor function decoding20, but the extension to inter-subject classification is challenging, since the spatial 
patterns of each individual are slightly different, which may result in classifier overfitting.

In order to avoid overfitting and to improve generalization, both the covariance matrices and the objective 
function of CSP can be regularized towards a more generic filter decomposition by using additional regulariza-
tion parameters21. Regularization of CSP has been found to improve inter-subject classification of EEG data8,21–23, 
but to our knowledge has not yet been applied to MEG data. Furthermore, the discriminatory power of CSP can 
be improved with preceding dimensionality reduction using e.g. Spatio-Spectral Decomposition (SSD24), which 
maximizes the signal power at a frequency of interest while simultaneously minimizing it at the flanking frequen-
cies. SSD is especially beneficial for extracting neural oscillations occurring within a known frequency band, such 
as sensorimotor rhythms (SMR) consisting of ~10-Hz and ~20-Hz oscillations.

In the current study, we investigate inter-subject decoding of motor imagery (MI) -related MEG and EEG sig-
nals using different methods for feature selection and classification. The classification accuracy is evaluated using 
a dataset from healthy participants. The data include both MEG and EEG collected during passive movements 
(PM) and MI of the left and right hand. The decoding accuracy is evaluated using 1) MI and 2) PM as training 
data, separately for MEG and EEG. The rationale for using other subjects’ PM for training is based on previous 
studies showing that PM of the test subject can be used for calibration of an MI-BCI25–27. However, there is also 
evidence that the activity patterns during MI and PM are not similar28, which likely reduces the accuracy in 
inter-subject MI classification. Moreover, in previous studies, the decoding was performed between rest and MI, 
whereas in the current study we are decoding left- vs. right-hand MI. We therefore expect inferior results with PM 
training compared to MI training.

The evaluated decoding methods are based on either (1) CSP combined with linear discriminant analysis 
(LDA) classifier, or (2) logistic regression with l2,1- or l1-norm regularization. For the CSP-based methods, the 
following approaches (abbreviation in parentheses) are used for decoding:

	 a.	 CSP, classification with LDA (CSP + LDA)
	 b.	 CSP, classification with bootstrap aggregating & LDA (CSP + bagging)
	 c.	 Regularized CSP, classification with LDA (regCSP)

The functions included in MTJFL17 and MALSAR29 Matlab toolboxes were modified and used for the logistic 
regression –based methods. The following inter-subject decoding approaches, implemented in the MTJFL tool-
box, are used for decoding:

	 a.	 Pooling with logistic regression and l1-norm regularization (pooling)
	 b.	 MTL with logistic regression and l1-norm regularization (L1-MTL)
	 c.	 MTL with logistic regression and l2,1-norm regularization (L21-MTL)

In addition, we calculate the accuracies for within-subject decoding for comparison with the inter-subject 
decoding results. In this case, each subject’s own PM or MI data are used for training. PM training for MEG is 
tested in an online BCI paradigm using CSP + LDA. For EEG, similar PM training paradigm is conducted for the 
offline data. For both modalities, within-subject MI training is calculated offline using 10-fold cross-validation 
and l1-norm regularized logistic regression.

The main research questions of this study are: (1) do generalized classifiers perform above chance level 
and how does their performance compare to that of a subject-specific classifier, (2) can generalized classifi-
ers be trained equally well with responses to PM and MI, and (3) whether MEG and EEG data yield different 
inter-subject decoding results.

Results
The detailed results for different modalities and training data are presented in the following subsections. All clas-
sification results are summarized in Fig. 1.
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Within-subject decoding online and offline.  Table 1 represents the results for within-subject MEG 
decoding (1) in the online BCI paradigm, using subject’s own PM for training (see Section 4.4 for a detailed 
explanation) and (2) in the offline analysis using 10-fold cross-validation with subject’s own MI data and l1-norm 
regularized logistic regression.

The online accuracy was below the sample-size-adjusted chance level of 58.7%30 for 7 subjects. However, as the 
online decoding was done with PM training, we assumed these results probably did not reflect the robustness of 
MI or the ability to perform MI. Therefore, the decoding accuracy was also calculated offline with MI training in 
order to evaluate the individual MI performance. The mean accuracy for each subject was calculated as the aver-
age of online and offline within-subject accuracies. Five subjects with the lowest mean accuracy were discarded 
from the training data in further analyses, i.e. the poorly performing subjects were used only for testing the 
decoders. The purpose of discarding bad performers from the training data was to find out whether their results 
would be improved with good-quality training data from good performers.

Offline training by motor imagery.  Table 2 shows the results when the classifier was trained by MEG 
responses to motor imagery; the corresponding results for EEG are shown in Table 3. The best inter-subject 
mean accuracies of 70.6% for MEG and 67.7% for EEG were obtained with L21-MTL. Both results were signifi-
cantly (MEG: p = 0.000, EEG: p = 0.007) above chance level. For MEG, also pooling and L1-MTL yielded good 
results (66.5% and 67.8%, respectively) that were above chance level (pooling: p = 0.000, L1-MTL: p = 0.000). For 
EEG, L1-MTL yielded an average accuracy significantly better than chance (p = 0.01). Also, for both modalities 
within-subject decoding with MI training resulted in average accuracy better than chance (p = 0.000 for both 
MEG and EEG).

The statistical differences between the methods (p-values, calculated by paired t-tests and Bonferroni-corrected 
for multiple comparisons) are presented in Supplementary Table S1 for MEG and in Supplementary Table S2 for 
EEG.

For MEG, Friedman’s test indicated significant effect of method on classification results (χ2 = 34.29, p = 0.000). 
The post-hoc multiple comparison test revealed that pooling, L1-MTL and L21-MTL were significantly better 
(p < 0.05) than the CSP-based methods. Also, no significant difference was found between within-subject L1 
and inter-subject L21-MTL or pooling. For EEG, Friedman’s test also indicated a significant effect of method on 
results (χ2 = 19.84, p = 0.003). In post-hoc multiple comparisons, it was found that L21-MTL was significantly 
better than CSP + bagging, regCSP and pooling. In this case, no significant difference was detected between 
within-subject L1 and inter-subject L21-MTL, L1-MTL or pooling.

Figure 1.  Classification results for (A) Motor-imagery-trained MEG and EEG, (B) Passive-movement-trained 
MEG and EEG. The chance level is indicated with a dashed line. Error bars represent the standard deviation.
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Offline training by passive movements.  The classification results for MEG data with training by passive 
movements are presented in Table 4 and for EEG data in Table 5. For all subjects, the online within-subject MEG 
decoding yielded an average accuracy of 62.8%, which was not significantly better than chance. For EEG, the 
offline within-subject decoding resulted in an average accuracy of 66.8%, which was significantly above chance 
level (p = 0.008). For both MEG and EEG data, none of the inter-subject methods yielded accuracies significantly 
above chance level.

The statistical differences between the methods (p-values, calculated by paired t-test, Bonferroni-corrected 
for multiple comparisons) are presented in Supplementary Table S3 for MEG and in Supplementary Table S4 for 
EEG.

Subject Within-subject L1 Online decoding Average

1 86,25 71,30 78,78

2 88,75 77,50 83,13

4 71,25 75,00 73,13

6 85,00 67,50 76,25

7 82,50 62,50 72,50

8 58,75 85,00 71,88

9 86,25 68,80 77,53

10 63,75 63,80 63,78

13 95,00 57,50 76,25

15 95,00 53,80 74,40

16 77,50 51,30 64,40

17 86,25 56,30 71,28

18 91,25 55,00 73,13

3 48,75 47,50 48,13

5 60,00 52,50 56,25

11 66,25 60,00 63,13

12 53,75 66,30 60,03

14 53,75 58,80 56,28

Mean 75,00 62,80 68,90

Table 1.  Accuracies for offline 10-fold cross-validation with MI training and online PM-trained decoding for 
individual subjects. The subjects discarded from the training data for inter-subject classification are written in 
bold.

Subject CSP + LDA CSP + bagging regCSP Pooling L1-MTL L21-MTL Within-subject L1

1 61,25 62,50 58,75 77,50 77,50 78,75 86,25

2 86,25 76,25 67,50 77,50 81,25 81,25 88,75

4 82,50 77,50 71,25 70,00 63,75 63,75 71,25

6 68,75 67,50 52,50 63,75 66,25 68,75 85,00

7 56,25 53,75 58,75 67,50 75,00 83,75 82,50

8 71,25 56,25 58,75 67,50 62,50 61,25 58,75

9 70,00 67,50 65,00 68,75 70,00 71,25 86,25

10 50,00 50,00 50,00 65,00 65,00 61,25 63,75

13 65,00 62,50 55,00 65,00 70,00 70,00 95,00

15 68,75 67,50 65,00 86,25 93,75 96,25 95,00

16 51,25 55,00 60,00 73,75 72,50 76,25 77,50

17 57,50 62,50 53,75 73,75 73,75 76,25 86,25

18 58,75 48,75 56,25 71,25 76,25 81,25 91,25

3 52,50 55,00 55,00 58,75 53,75 56,25 48,75

5 57,50 58,75 56,25 65,00 53,75 46,25 60,00

11 51,25 51,25 53,75 75,00 70,00 70,00 66,25

12 52,50 50,00 51,25 52,50 62,50 60,00 53,75

14 66,25 71,25 61,25 68,75 60,00 67,50 53,75

mean 62,64 60,76 58,33 69,31 69,31 70,56 75,00

Table 2.  Accuracies of left- vs. right-hand MI decoding for the different methods using MI-trained MEG data.
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For MEG, Friedman’s test showed a significant difference between methods (χ2 = 16.81, p = 0.01). The 
post-hoc multiple comparison test showed that within-subject decoding was significantly better than all 
inter-subject methods. For EEG, the results were quite similar; Friedman’s test indicated significant effect of 
method (χ2 = 34.21, p = 0.000) and the post-hoc multiple comparison test revealed that within-subject decoding 
was superior to all inter-subject methods. Also for EEG, pooling yielded results inferior to all other inter-subject 
methods.

Discussion
In the current study, we investigated methods for inter-subject classification of motor imagery from MEG and 
EEG signals. We found that multi-task joint feature learning with logistic regression and l2,1-norm regulariza-
tion is an effective method for decoding left- and right-hand MI from both MEG and EEG data. The accuracy 
of L21-MTL was better than that of the other inter-subject decoding methods both for MEG and EEG data, 
when other subjects’ MI was used for training. In addition, with this method we achieved accuracies significantly 

Subject CSP + LDA CSP + bagging regCSP Pooling L1-MTL L21-MTL Within-subject L1

2 51,25 52,50 60,00 68,75 66,25 72,50 65,00

4 52,50 50,00 55,00 57,50 62,50 61,25 72,50

6 47,50 42,50 50,00 37,50 55,00 45,00 62,50

7 58,75 57,50 50,00 82,50 73,75 93,75 88,75

8 78,75 67,50 61,25 57,50 58,75 62,50 73,75

9 71,25 80,00 75,00 68,75 66,25 71,25 65,00

10 70,00 68,75 52,50 67,50 71,25 73,75 56,25

13 55,00 58,75 56,25 77,50 65,00 76,25 80,00

15 56,25 62,50 53,75 81,25 72,50 86,25 85,00

16 52,50 53,75 53,75 66,25 71,25 72,50 67,50

17 51,25 50,00 53,75 57,50 53,75 65,00 73,75

18 66,25 58,75 60,00 80,00 86,25 86,25 83,75

3 67,50 60,00 53,75 42,50 46,25 50,00 56,25

5 58,75 56,25 56,25 62,50 65,00 57,50 70,00

11 60,00 57,50 50,00 70,00 67,50 61,25 51,25

12 50,00 50,00 50,00 46,25 51,25 51,25 65,00

14 81,25 85,00 70,00 62,50 67,50 63,75 62,50

mean 60,51 59,49 56,54 63,90 64,71 67,65 69,34

Table 3.  Accuracies of left- vs. right-hand MI decoding for the different methods using MI-trained EEG data.

Subject CSP + LDA CSP + bagging regCSP Pooling L1-MTL L21-MTL Online CSP

1 61,25 68,75 57,50 63,75 57,50 65,00 71,30

2 81,25 72,50 63,75 46,25 58,75 56,25 77,50

4 78,75 87,50 50,00 53,75 50,00 51,25 75,00

6 58,75 51,25 61,25 55,00 56,25 53,75 67,50

7 52,50 50,00 56,25 58,75 56,25 57,50 62,50

8 57,50 50,00 76,25 63,75 57,50 63,75 85,00

9 62,50 66,25 62,50 53,75 53,75 52,50 68,80

10 60,00 50,00 61,25 56,25 57,50 61,25 63,80

13 52,50 53,75 56,25 47,50 48,75 46,25 57,50

15 43,75 48,75 50,00 66,25 60,00 65,00 53,80

16 51,25 50,00 51,25 47,50 46,25 40,00 51,30

17 56,25 53,75 57,50 63,75 63,75 60,00 56,30

18 50,00 50,00 56,25 63,75 56,25 57,50 55,00

3 51,25 50,00 48,75 51,25 52,50 46,25 47,50

5 58,75 56,25 50,00 58,75 53,75 53,75 52,50

11 51,25 57,50 53,75 61,25 47,50 41,25 60,00

12 52,50 65,00 50,00 50,00 36,25 40,00 66,30

14 56,25 50,00 52,50 56,25 51,25 53,75 58,80

mean 57,57 57,29 56,39 56,53 53,54 53,61 62,80

Table 4.  Accuracies of left- vs. right-hand MI decoding for the different methods using PM-trained MEG data.
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above chance level for both modalities. Also L1-MTL resulted in good average accuracy across subjects. When 
trained by MI, none of the CSP + LDA –based classification methods tested in this study reached an average 
accuracy equal to or higher than that of L21-MTL, L1-MTL or pooling with either MEG or EEG. Importantly, 
for both MEG and EEG, there was no statistical difference between within-subject L1 decoding and inter-subject 
L21-MTL decoding, suggesting that on average the performance of those methods was similar.

Besides the average accuracy across subjects, it is also important to consider how inter-subject decoding 
affected the performance of individual subjects. Many subjects showed poor performance during the online 
BCI task, when the decoder was trained using their own PM data. By using the subject’s own MI data and 
cross-validation, the accuracy was improved for most of the poor online performers. This offline analysis implies 
that the activity patterns of left- and right-hand MI were indeed discriminable in most subjects with low accu-
racy in the online task. It seems that PM training is not robust enough for MI classification, since there was large 
inter-subject variability in online decoding.

However, it is also noteworthy that some subjects have poor decoding performance because of insufficient 
SMR modulation. For example, Subjects 3 and 5 did not show any discernible SMR modulation during MI, and 
their accuracy remained under chance level even when their own MI was used for training. In case of the men-
tioned subjects, inter-subject decoding did not remarkably improve the results. On the contrary, for Subjects 
11, 12 and 14, L21-MTL yielded better results with MEG (also with EEG for Subjects 11 and 14) compared to 
within-subject L1. We may thus conclude that for poorly-performing subjects showing at least some SMR mod-
ulation, inter-subject learning might improve the performance. On the contrary, for the good performers using 
other subjects’ training data was not beneficial, as most of them got worse results compared to training with their 
own data. However, inter-subject training still has the advantage of saving time in BCI sessions. It is an interesting 
question for future studies whether the good performers can adapt their brain activity such that they eventually 
get equally good accuracy with the generalized decoders.

As expected, training with PM resulted in lower inter-subject accuracy compared to training with MI – in fact, 
in this case the decoding accuracy was below chance level with all methods and both MEG and EEG. It is likely 
that this result is due to overfitting. It seems that the relevant features in PM data are different than the features 
in MI data, and thus it is difficult to classify MI using a classifier trained with other subjects’ PM. Some subjects 
achieved good performance when their own PM data were used for training, but the decoding accuracy decreased 
substantially when the training data were collected from other subjects. As a conclusion: even if the subject’s own 
PM pattern would be similar enough to the MI pattern to enable decoding of MI, the inter-subject generalized 
PM features are likely too different from the individual MI features. According to an EEG study by Formaggio and 
co-workers31, the activation patterns caused by MI are more lateralized than those caused by PM, which might 
explain this difference. However, the exact neural mechanisms underlying the difference between PM and MI 
remains unclear and should be investigated in the future. With regard to these findings, it can be argued that in 
inter-subject learning the performed mental task should be as similar as possible for the train and test subjects.

In their MEG classification study, Kia and co-workers17 used a bootstrapping approach for dividing the data 
into different tasks, i.e. the samples for train and test datasets were randomly selected from a pool of data from 
different subjects. As samples for every task were collected from the same database, it is inevitable that MEG 
data samples from one subject are present in multiple tasks as well as in the test data. Therefore, the perfor-
mance of the classifier may not reflect the true inter-subject generalizability. In the current study, we modified 
the approach of Kia and co-workers17 and divided the data in discrete training and test datasets to ensure that 
no training data were collected from the test subject. It is noteworthy that the modified classifier still yielded 

Subject CSP + LDA CSP + bagging regCSP Pooling L1-MTL L21-MTL Within-subject CSP

2 57,50 50,00 51,25 50,00 50,00 50,00 71,3

4 58,75 62,50 57,50 50,00 55,00 56,25 73,8

6 50,00 55,00 50,00 50,00 46,25 42,50 71,1

7 50,00 48,75 43,75 50,00 66,25 51,25 55,0

8 60,00 60,00 53,75 52,50 57,50 58,75 97,5

9 77,50 85,00 50,00 50,00 51,25 48,75 81,3

10 61,25 58,75 62,50 50,00 53,75 46,25 66,3

13 50,00 50,00 58,75 50,00 51,25 46,25 56,3

15 52,50 51,25 52,50 50,00 53,75 52,50 63,2

16 51,25 56,25 47,50 50,00 60,00 57,50 50,0

17 56,25 50,00 58,75 50,00 56,25 65,00 61,3

18 48,75 50,00 56,25 48,75 63,75 57,50 59,3

3 52,50 56,25 55,00 50,00 55,00 53,75 65,0

5 53,75 50,00 52,50 50,00 45,00 56,25 58,8

11 56,25 51,25 53,75 50,00 47,50 45,00 67,5

12 48,75 50,00 47,50 50,00 48,75 50,00 53,8

14 50,00 61,25 66,25 50,00 46,25 45,00 83,8

mean 55,25 55,66 53,97 50,07 53,38 51,91 66,76

Table 5.  Accuracies of left- vs. right-hand MI decoding for the different methods using PM-trained EEG data.
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sufficient inter-subject accuracy in MI classification. Kia and co-workers17 used the L21-MTL method for classi-
fying simulated MEG data and real MEG responses to visual stimuli, but to our knowledge the current study is 
the first one in which it was used to decode motor imagery.

According to our results, MTL seems to yield slightly but not significantly better results for MEG than EEG. 
In EEG we used fewer measurement channels and thus less features for classification than in MEG, which might 
explain the results. However, selecting an equal number of EEG electrodes and MEG sensors would not be neu-
rophysiologically justified, as they would then cover a different area of the scalp. Therefore, we chose to select 
channels above the motor cortex in both modalities. It is also possible that MEG has a better signal-to-noise ratio 
than EEG, or that MEG is able to detect signals from sources not clearly visible to EEG. In light of these results, 
probably the best approach would be to utilize information from both MEG and EEG.

For the offline analyses, we wanted to have optimal data quality. Therefore, we suppressed interference in MEG 
with the signal-space separation method, aligned the head positions, and manually removed artifacts from EEG. 
It should be pointed out that this kind of thorough preprocessing is often not possible, or at least not practical, 
during online analysis. Head position alignment could be implemented in an online MEG data processing pipe-
line in the near future, so its use in the offline analysis was considered reasonable. In the case of EEG, one should 
carefully avoid artifacts during online decoding.

The motivation of decoding left-vs-right hand MI is based on the assumption that neural plasticity during 
stroke recovery might result in decreased functionality if inappropriate activation patterns are enhanced. Many 
stroke patients with motor disabilities have difficulties in SMR modulation in the affected hemisphere. Instead, 
the unaffected hemisphere shows increased motor-related activity due to reduced intracortical inhibition. 
Therefore, discriminating between MI and resting state is not likely a good target for a rehabilitative BCI, since 
it might only boost the activity of the motor areas on the healthy hemisphere instead of the affected hemisphere. 
Here we have shown that inter-subject decoding of left-vs-right MI from MEG and EEG yields reasonably good 
accuracy. The presented L21-MTL method can also be applied to online decoding.

In future studies, we aim at designing an adaptive online BCI paradigm based on the results of the current 
study. The BCI training could be started with generalized classifiers, and in the following sessions, as the patients’ 
performance improves, their own data could be added to the training set in order to update the classifiers, as has 
been proposed in recent studies32,33. Another valid option is to use only the generalized classifier trained with 
other subjects. In this case, the test subjects should adapt their neural activity to match the MI representation 
of the healthy subject population. The latter approach would encourage the patients to change the activity of the 
damaged motor cortex towards normal function, which could boost rehabilitation. As the key concept in BCI 
therapy is to enhance activity-dependent brain plasticity34,35, it is crucial to ensure that the targeted activity cor-
responds to the normal motor-cortex function. Therefore, calibrating the BCI with healthy subjects’ data might 
actually lead to improved clinical outcome compared to calibration with patient’s own data. This issue will also be 
addressed in future studies.

Methods
Participants.  Eighteen healthy volunteers (5 males, 13 females, age 27.7 ± 5.0 y, 3 left handed by self-report) 
were recruited for this study. None of the subjects reported any neurological illnesses or motor deficits, and all 
subjects had normal or corrected-to-normal vision. Subjects having any metal objects inside their body or other 
MEG contraindications were excluded from the study. The study was approved by the Aalto University Research 
Ethics Committee. The research was carried out in accordance with the guidelines of the Declaration of Helsinki, 
and the subjects gave written informed consent prior to the measurements. Two of the subjects had participated 
in our previous experiment11, and the others had no previous BCI experience.

Pneumatic hand stimulators.  The stimulators used in this study consisted of two plastic frames support-
ing each hand, and of 8 elastic pneumatic artificial muscles (PAM; DMSP-10-100 AM-CM, diameter 10 mm, 
length of the contracting part 100 mm; Festo AG & Co, Esslingen, Germany) attached to fingers 2–5 of both hands 
with tape. During the experiment, the subject’s hands and arms were resting on the plastic frames and the PAMs 
were touching the fingertips horizontally from beneath the frame (Fig. 2). The PAMs were connected to the frame 
via moving hinges, so that the stimulator system could be adjusted to fit the subject’s hand.

During the stimulation paradigm, the PAMs moved horizontally according to the internal air pressure 
(1–4 bar). The pressure to each PAM was switched on and off by a solenoid valve (SY5220-6LOU-01F-Q, SMC 
Corporation, Tokyo, Japan) controlled by trigger pulses. The valves were placed outside the magnetically shielded 
room, and 3.5-m long semi-elastic tubes (internal diameter 2.5 mm) conveyed the pressurized air to the PAMs. 
A computer controlled the valves such that all the four PAMs for either left or right hand contracted sequentially 
(each for 500 ms) at intervals of 500 ms and flexed the fingers, thus mimicking small finger-tapping movement. 
After the contraction, each PAM returned to its resting length and extended the corresponding finger, returning 
it back to the initial positions. This four-finger movement sequence was repeated twice during each epoch.

MEG and EEG recordings.  MEG was recorded at the MEG Core of Aalto University School of Science with 
a 306-channel Elekta Neuromag™ Vectorview system (Elekta Oy, Helsinki, Finland) using a sampling frequency 
of 1 kHz. Five head-position indicator (HPI) coils were attached to the subject’s scalp for head position estimation 
and alignment with a standard coordinate system. Visual stimuli were delivered on a screen located approxi-
mately 50 cm from the subject’s eyes via a projector outside the shielded room. EEG was measured simultaneously 
using a MEG-compatible cap with 60 electrodes and 1-kHz sampling rate. However, only the MEG data were used 
for real-time classification.

Raw MEG data were continuously written in 300-ms segments to a network-transparent ring buffer36,37 hosted 
by the MEG acquisition workstation (6-core Intel Xeon CPU at 2.4 GHz, 64-bit CentOS Linux, version 5.3). The 
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buffer was read over a local network connection by another computer (Intel Core i7-4771 CPU at 3.5 GHz, 64-bit 
Ubuntu Linux, version 14.04). This computer processed the MEG data in real time using functions implemented 
in the MNE-Python software38, controlled the pneumatic hand stimulators and presented the visual stimuli using 
PsychoPy version 1.8339.

Experimental paradigm.  Each measurement session consisted of the two tasks described below. The whole 
experimental paradigm is illustrated in Fig. 3. The subjects were allowed to rest eyes closed between the tasks for 
a few minutes. The duration of each task was approximately 15 min, and the whole experiment lasted for approx-
imately 40 min including breaks.

In the passive-movement task, hand movements were elicited by the pneumatic stimulators according to the 
predefined sequence. Each sequence onset was accompanied with a visual cue. The subjects were instructed to 
keep their muscles relaxed and gaze on a fixation cross throughout the task. A total of 80 passive-movement 
epochs, 40 for each hand in a pseudo-randomized order, were delivered. Each epoch began with a gray back-
ground and a black fixation cross in the middle of the screen. At second 5, the fixation cross turned green, indi-
cating preparation for the upcoming movements. At second 7, a black cue arrow appeared on either left or right 
side of the screen, and the stimulators moved the subject’s fingers on the corresponding hand continuously for 
4 s. At second 11, a black fixation cross was shown and the PAMs returned to their original positions, leaving the 
fingers at rest.

After the first task, the subject was instructed to relax for a few minutes without making large head movements. 
In the meantime, a classifier was trained using the MEG data collected during passive movements. Signals from 
64 MEG gradiometers over the parietal areas were included in the online analyses (see Fig. 4). First, the frequency 
band showing the strongest SMR suppression was estimated by comparing the SMR power at rest, i.e. during the 
pauses in the first experiment, and during passive movements. Power decrease was calculated in 1-Hz frequency 
bins in 8–30-Hz range. The center frequency was defined as the frequency with the highest power decrease, and 
the frequency band of interest as the center frequency ±3 Hz. After that, relevant signal features were extracted 
with SSD24 and consecutive Common Spatial Patterns (CSP) filters. The frequency band of interest was used for 
SSD. Other details for SSD and CSP can be found in our previous study11. Finally, a Linear Discriminant Analysis 

Figure 2.  Pneumatic passive-movement stimulator.

Figure 3.  The experimental paradigm in (A) passive movement, (B) motor imagery tasks.
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(LDA) classifier was fit to the data to discriminate between left- and right-hand-imagery-related suppression of 
the SMR.

In the motor imagery (MI) task, the subjects were instructed to imagine finger movements similar to the pas-
sive movements they received in the earlier task and to pay attention to the visual and tactile feedback following 
each MI period. The aforementioned SSD and CSP filters and the LDA classifier were applied in real time to each 
MI epoch to predict left- vs. right-hand MI.

The MI task comprised 80 trials of MI with feedback. Each trial began with a black fixation cross in the middle 
of the screen. At second 5, the fixation cross turned green, indicating preparation for the upcoming movement. 
At second 7, a black cue arrow appeared on either side of the screen, indicating the beginning of MI. At second 
9, the feedback started; if the MI trial was successful, i.e. the classification probability of the target hand exceeded 
50%, the cue arrow turned green and the predefined sequence of PAM stimulator movements started, lasting 4 s. 
In case of an unsuccessful MI trial, the cue arrow turned red and the PAMs did not move.

Preprocessing for offline analyses.  Similar preprocessing routines were applied to the data from both 
tasks. First, the data were processed with the MaxFilter software (version 2.2.15; Elekta Oy, Helsinki, Finland)40, 
including transformation of head positions of all subjects into the same orientation, signal space separation for 
suppressing external magnetic interference and removal of static bad channels. The common-average reference 
was utilized for all analyses of EEG data. Both MEG and EEG data were bandpass-filtered to 6–45 Hz with a fast 
Fourier transform (FFT) -based finite impulse response (FIR) filter, with filter length equal to the epoch length. 
The data were split into 3-s epochs and baseline corrected (epoch −1.0…2.0 s, baseline −1.0…0.0 s from cue 
onset). Artifact correction for EEG data was done by performing independent component analysis (ICA; imple-
mented in MNE-Python38) and manually removing components including artifacts or high-amplitude noise. 64 
MEG sensors and 28 EEG electrodes close to parietal areas were included in further analyses (see Fig. 4).

Train and test data in offline analyses.  The measurements were split into train and test data in a 
leave-one-subject-out manner, i.e. the data from all except one subject were used for training the classifiers and 
the remaining subject’s data for testing classification performance. The MEG and EEG signals were evaluated 
separately. In addition, we evaluated the validity of both passive movements (PM) and MI of other subjects for 
training the classifier. In case of PM, the training data were PM epochs from all but one subject and the test data 
were MI epochs from the remaining subject.

Feature extraction and classification.  Spatial filtering and LDA.  Before CSP filtering, the data dimen-
sionality was reduced with spatio–spectral decomposition (SSD)24. The frequency band of interest was defined as 
10 ± 3 Hz in both datasets for all subjects, and 20 SSD components were retained. CSP decomposition was calcu-
lated on the SSD-filtered data. Ten CSP components were extracted, averaged over time and log-transformed, and 
finally used as features for the LDA classifier.

In the CSP + bagging approach, the LDA classifier was first fit to each training subject’s data separately, and 
the individual predictions were aggregated to form the final predictions for the test data. The BaggingClassifier 
algorithm of the scikit-learn Python package41 was modified such that instead of dividing the training data into 
random subsets, each division contained all data from one train subject.

The regularized CSP algorithm was adopted from Regularized CSP (RCSP) Matlab toolbox21 and implemented 
in Python. The generic covariance matrices Gc for each class c were calculated as weighted sums of covariance 
matrices Cc from N training subjects22:

Figure 4.  Locations of (A) MEG sensors and (B) EEG electrodes (marked in blue) included in analyses.
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Values for parameters β and γ were selected by cross-validation such that one subject was used for testing, half of 
the remaining subjects for parameter optimization and the other half for training. The parameters were optimized 
discretely on range from 0 to 1 with a step size of 0.1. Leave-one-out cross-validation was used for the parameter 
optimization dataset to find out the parameters yielding the best classification results, and those parameters were 
used for the actual training and testing.

Multi-task joint feature learning.  The MTL optimization problem can be expressed as an empirical risk mini-
mization problem:
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where Xi,j denotes sample j of the i-th task, yi,j denotes the corresponding label, Wi and ci are the model for task i 
and the regularization parameter ρ1 controls group sparsity.

Prior to feature selection and classification, the epochs were decimated by 10, i.e. every 10th timepoint was 
selected, to speed up calculation. The bootstrap data sampling scheme used in the L21-MTL algorithm of MTJFL 
toolbox was replaced by a leave-one-subject-out scheme, in which no data from the test subject were included in 
the training set. In the MTL, the data were split such that each task included all data from a single train subject, 
and the test data included all data from the test subject. In the pooling approach, the data from all except one sub-
ject were used for training, and the data from the remaining subject for testing. This train/test split ensured that 
the classifier actually generalized between the subjects and did not use any of the test subject’s data for training. 
In the within-subject decoding, 10-fold cross-validation was used for dividing each subject’s data into train and 
test sets. In all approaches, the regularization constant lambda was selected by choosing the parameter yielding 
the best results in L21-MTL classification, and a similar lambda was used also for L1-MTL. The parameter was 
selected separately for all datasets and conditions.

Statistical analysis of classification results.  The chance level for left-vs-right MI classification was 
defined according to the study by Combrisson and Jerbi30. The probability for getting a correct classification 
by chance is 58.7% for 80 samples and a p-value of 0.05, and we used this value as a threshold for determining 
whether the decoding results differ from chance level.

The statistical difference between results of different classification approaches was calculated with Friedman’s 
test, a nonparametric version of two-way analysis of variance. Post-hoc analysis was conducted using Bonferroni 
correction for multiple comparisons, implemented in MATLAB (R2017a; Mathworks Inc., MA, USA) function 
multcompare.

Data availability.  The data measured and analysed for the current study are available from the corresponding 
author on request.
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