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Abstract: Proteotoxicity plays a key role in many devastating human disorders, including Alzheimer’s,
Huntington’s and Parkinson’s diseases; type 2 diabetes; systemic amyloidosis; and cardiac dysfunc-

tion, to name a few. The cellular mechanisms of proteotoxicity in these disorders have been the focus

of considerable research, but their role in prevalent and morbid disorders, such as diabetes, is less
appreciated. There is a large body of literature on the impact of glucotoxicity and lipotoxicity on

insulin-producing pancreatic b-cells, and there is increasing recognition that proteotoxicty plays a key

role. Pancreatic islet amyloidosis by the hormone IAPP, the production of advanced glycation end-
products (AGE), and insulin misprocessing into cytotoxic aggregates are all sources of b-cell proteo-

toxicity in diabetes. AGE, produced by the reaction of reducing sugars with proteins and lipids are

ligands for the receptor for AGE (RAGE), as are the toxic pre-fibrillar aggregates of IAPP produced dur-
ing amyloid formation. The mechanisms of amyloid formation by IAPP in vivo or in vitro are not well

understood, and the cellular mechanisms of IAPP-induced b-cell death are not fully defined. Here, we

review recent findings that illuminate the factors and mechanisms involved in b-cell proteotoxicity in
diabetes. Together, these new insights have far-reaching implications for the establishment of unifying

mechanisms by which pathological amyloidoses imbue their injurious effects in vivo.

Keywords: proteotoxicity; islet amyloid polypeptide; RAGE; pancreatic b-cells; diabetes; amyloidosis;
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Introduction
Proteotoxicity plays a role in many prevalent human

disorders, including amyloidosis diseases. A range of

human diseases is associated with amyloid forma-

tion and additional disorders are associated with

proteotoxic aggregates that are not classified as clas-

sical amyloids. Amyloid formation refers to the
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aggregation of normally soluble, functional proteins

into insoluble fibrils that are partially ordered and

b-sheet rich in structure. This process can occur in

many different organs and tissues in the body, and

plays a role in a broad range of over 40 different dis-

eases, including Alzheimer’s disease (AD), Parkin-

son’s disease, and pancreatic islet amyloidosis; the

latter being a major source of proteotoxicity to

insulin-producing pancreatic b-cells in type 2 diabe-

tes (T2D). An increasing number of studies on a

variety of amyloidogenic peptides and proteins sug-

gest that there are underlying commonalities in the

mechanism(s) of amyloid formation and proteotoxic-

ity, which are independent of the details of the poly-

peptide sequence. Consistent with the hypothesis

that many amyloidogenic proteins invoke common

mechanisms of cytotoxicity,1 the receptor for

advanced glycation endproducts (RAGE) engages

multiple amyloidogenic proteins, such as islet amy-

loid polypeptide (IAPP or amylin), amyloid b (Ab)

peptide, serum amyloid A and prion-derived pepti-

des.2–6 However, of the amyloidogenic proteins that

bind RAGE and activate RAGE-mediated pathologi-

cal cellular signaling, only the specific kinetic spe-

cies of IAPP that engage RAGE during amyloid

formation have been meticulously characterized.2

This provides a foundation and blue print for defin-

ing distinct toxic RAGE-binding entities in amyloid-

osis diseases, besides T2D, for which RAGE has

been shown to impart pathogenic consequences.

T2D is characterized by the loss of b-cell func-

tion and mass, resulting in uncontrolled hyperglyce-

mia and downstream complications. In T2D, b-cells

are exposed to multiple diabetes-promoting factors,

such as hyperglycemia (gluco- and glycotoxicity),

hyperlipidemia (lipotoxicity), islet amyloidosis (pro-

teotoxicity), inflammatory cytokines, and other fac-

tors for prolonged periods in subjects susceptible to

metabolic disease. Each of these conditions triggers

inflammatory perturbation in islet cells and other

organs and, collectively, these considerations under-

score the need for investigations focused on examin-

ing the impact of islet inflammation on b-cell fate

and function. Pancreatic b-cells co-produce and co-

secrete insulin and islet amyloid polypeptide (IAPP

or amylin) in response to changes in blood glucose

concentration. In the homeostatic state, IAPP acts

both in the periphery and in the brain to regulate

satiety, adiposity and metabolism. However, in T2D,

IAPP undergoes amyloidosis in pancreatic islets by

an unknown mechanism and self-assembles into pro-

teotoxic oligomers that directly activate multiple cel-

lular pathways leading to islet b-cell stress,

dysfunction and death.7–9 Recent work also demon-

strates a role for human (h)IAPP in the cardiovascu-

lar complications of T2D,10 and implicates a

potential role for hIAPP in the pathogenesis of type

1 diabetes (T1D).11 However, a lack of molecular

understanding about the in vivo factors that pro-

mote pathological aggregation, and the upstream

cellular mediators that regulate the downstream del-

eterious events in hIAPP-induced cytotoxicity has

prevented identification of therapies to treat or pre-

vent its pathologies. Here, we summarize the key

biophysical and biochemical features, and cellular

mechanisms by which pancreatic islet amyloidosis

and other sources of b-cell proteotoxicity exacerbate

diabetes; factors that are likely to play a role in the

proteotoxicity of other amyloidogenic proteins.

Diabetes: A Growing Worldwide Crisis

Diabetes mellitus, commonly referred to as diabetes,

describes a group of life-threatening metabolic disor-

ders characterized by elevated blood glucose levels

(hyperglycemia), resulting from the inability of the

body to produce and/or utilize the essential hormone

insulin, which is produced by pancreatic b-cells and

regulates the transport of dietary glucose from the

bloodstream into cells where the glucose is converted

into energy. Individuals with diabetes have a higher

risk of morbidity and mortality than the general

population. Chronic hyperglycemia leads to the dam-

age of various body organs and is the leading cause

of disabling health complications, such as retinopa-

thy, neuropathy, nephropathy, and cardiovascular

disease. The worldwide prevalence of diabetes in

adults has been steadily increasing over recent deca-

des. According to the International Diabetes Federa-

tion (IDF), over 425 million people (one in eleven

adults) worldwide are currently estimated to suffer

from diabetes (not including 212 million who are

undiagnosed), and the number is expected to grow

to more than 640 million by 2045, representing

slightly more than 10% of the world’s adult popula-

tion if current trends continue. The largest increases

are expected to take place in the regions where soci-

ety is transitioning from low-income to middle-

income economies, where three quarters of people

with diabetes live currently.12,13 The human cost of

diabetes is enormous. Diabetes is estimated to cause

5 million deaths per year among the 20 to 79-year-

old age group, a number which exceeds the com-

bined mortality from HIV/AIDS, tuberculosis and

malaria.12 The life expectancy of a diabetic patient

is half that of an age-matched control subject in the

United States.2 The financial cost of diabetes is also

enormous: 12% of global health expenditure is cur-

rently spent on diabetes ($727 billion), with over

$673 billion worldwide in 2015 for T2D.12,14

The diagnosis and classification of diabetes are

complex and have been debated and redefined over

many decades. Diabetes can be diagnosed by mea-

sures such as blood tests that detect glycated hemo-

globin (A1C), which indicate the average blood sugar

level over the past two or three months, and/or by

two or more separate blood sugar tests after
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overnight fasting.15 It is currently well accepted that

there are many types of diabetes; three of these con-

stitute the main forms: T1D, an autoimmune disor-

der whereby the body’s immune system attacks

insulin-producing pancreatic islet b-cells resulting in

the inability to produce insulin and islet amyloid

polypeptide (also known as IAPP or amylin); T2D,

which develops as a result of inadequate insulin pro-

duction and/or utilization (insulin resistance) over

time due to various factors; and gestational diabetes

mellitus, which is first detected during pregnancy.12

Of the different forms of diabetes, T2D is the most

common, accounting for 90% of diabetes cases.12

The Receptor for Advanced Glycation

Endproducts (RAGE) and Its Ligands

Advanced glycation endproducts

The accumulation of advanced glycation endproducts

(AGEs) in pancreatic islets, kidney, retina, nerves,

and atherosclerotic plaques has been linked to dia-

betic complications.2,16 AGEs are a heterogeneous

repertoire of compounds formed by reducing sugars,

such as glucose, that non-enzymatically modify

amino acids, lipids, and nucleic acids, particularly

during diabetes. In theory, every protein can be

modified by glycation. A multitude of pathways lead

to the formation of AGEs, which yield a large vari-

ety of products, including high molecular weight

compounds and aggregated endproducts. First, a

reversible Schiff base is formed by the reaction of

the aldehyde group in the sugar with the E-amino

group of a lysine residue generating a double bond

between the carbon atom of the sugar and the nitro-

gen in the lysine sidechain.17 Subsequent Amadori

rearrangement then leads to maturation of an AGE,

or upon oxidation, may form glycoxidation products

that facilitate the production of other distinct fami-

lies of AGEs.18 While AGEs come in many arrange-

ments, there are three common outcomes following

their formation: (1) Covalent cross-linking (particu-

larly at basement membranes and on collagen), (2)

disrupted osmotic balance of the system, and (3)

receptor engagement by the best-characterized AGE

receptor (RAGE) and other cell surface binding

sites.19 All of these may result in pathological

consequences.17

AGE formation can induce aggregation of pro-

teins into cytotoxic species.20–28 The toxicity of gly-

cated polypeptides may be due to the AGE

modification or due to the conformational properties

of the aggregated state. AGEs have also been dem-

onstrated to play a mechanistic role in protein

aggregation related to amyloidosis.29–31 Glycation of

albumin was first shown to promote the refolding of

this globular protein from a largely a-helical to a

cross-b structure commonly shared by all amyloids,

demonstrating that glycation may be a predisposing

factor for amyloid formation.32 AGE-modified amy-

loid deposits have been found in the brain tissue of

AD33 and transmissible spongiform encephalopathy

patients,34 and in the pancreatic islets of diabetic

patients.35 High levels of argpyrimidine have been

observed in protein aggregates derived from cases of

familial amyloidosis but not in controls lacking dis-

ease, indicating an important potential role for

methylglyoxal, an AGE precursor, in pathological

protein aggregation.36 Similar mechanisms have

been reported in neurodegenerative disorders.37–39

Studies have shown a correlation between AGEs

and both the induction and progression of AD patho-

genesis.40–44 These data indicate that glycation of

polypeptides, which have the propensity to aggre-

gate into amyloid fibrils, can accelerate the forma-

tion of cross b-sheet structure.

AGE adducts and RAGE-mediated proteotoxicity

One of the main mechanisms by which both protein-

AGE adducts and amyloidogenic proteins exert their

action in vivo is via binding to multi-ligand cell sur-

face receptors, such as RAGE, CD36, scavenger

receptor class A and B type I, the serine protease

tissue-type plasminogen activator receptor, and

other pattern recognition receptors, which are

expressed on a wide range of cell types.45–52 Among

the AGE binding receptors, RAGE is particularly

important and well-characterized.19,46,53–56 RAGE is

an immunoglobulin-like, multimeric cell surface

receptor with three distinct extracellular domains,

including the variable (V)-type immunoglobulin (Ig)

domain, which is primarily implicated in ligand

engagement19,57 [Fig. 1(A)]. RAGE is ubiquitously

expressed on a variety of cell types including mono-

cytes/macrophages, smooth muscle cells, endothelial

cells, and pancreatic b-cells. Upon binding AGEs or

one of its other ligands, including: IAPP, Ab, prion

peptides, transthyretin, S100/calgranulins, high

mobility group box (HMGB) proteins, phosphatidyl-

serine, and others, RAGE transduces signals

through the intracellular formin molecule, Diapha-

nous 1 (DIAPH1).2,58–61 A growing body of work in

other cell types, particularly smooth muscle cells,

cardiomyocytes and peripheral monocytes/macro-

phages, has revealed that DIAPH1 is required for

RAGE-dependent upregulation of cytokines, oxida-

tive stress, alterations in cellular migration and

retention, proliferation and survivability, and other

canonical facets of RAGE signaling58,62,63 [Fig. 1(B)].

DIAPH1 is expressed in pancreatic b-cells. However,

very little is known about the impact of DIAPH1 in

these cells. Thus, further investigation of this path-

way could potentially lead to a better understanding

of the pathological consequences of RAGE engage-

ment with its ligands in b-cells, particularly in dia-

betes. Of note, there are also other isoforms of

RAGE, including soluble RAGE (sRAGE), which
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lacks the transmembrane and intracellular domains,

and therefore fails to signal through DIAPH1 upon

ligand engagement. sRAGE has been demonstrated

to be protective as it acts as a decoy receptor that

binds AGEs and other RAGE ligands, including

some forms of amyloidogenic proteins, preventing

their interaction with cell membrane-bound RAGE

and the activation of pathological cellular signal-

ing.64 Together, the findings suggest that glycated

proteins may constitute a family of amyloidogenic

ligands with shared biophysical and biochemical

properties that facilitate engagement and activation

of pathological pattern recognition receptors. This

hypothesis rationalizes how the V-domain of RAGE

is capable of interacting with a diverse family of

ligands. More work is needed to fully determine the

specific protein structures and posttranslational

modifications involved in the generation of toxic

aggregates by AGEs.

Diabetes is among the diverse range of

inflammatory diseases associated with RAGE

activation

Increasing evidence implicates RAGE as an important

mediating factor in diabetes and pancreatic b-cell dys-

function. A Genome Wide Association Study (GWAS)

conducted on 3624 Finnish individuals revealed that

the rs2070600 and rs17493811 AGER (AGER is the

gene encoding RAGE) polymorphisms predicted

increased risk of developing T1D.65 rs2070600 has pre-

viously been shown to cause a decrease in sRAGE lev-

els, and an increase in ligand affinity.66–68 Other

studies have also shown that RAGE induction and

increased levels of RAGE ligands (S100B and other

members of the S100/calgranulin family, HMGB1, and

AGEs) drive dysfunctional glucose stimulated insulin

secretion (GSIS),69 amplify oxidative stress and

impairment of adenosine triphosphate (ATP) synthe-

sis, and increase apoptotic cell death in pancreatic b-

cells.70,71 In addition, RAGE inhibition in vitro, medi-

ated by anti-RAGE antibodies or RNA silencing tech-

niques, protected rodent and human b-cells from GSIS

dysfunction and apoptosis.72 Long-term treatment of

cultured rat pancreatic islets with aminoguanidine,

which inhibits AGE formation, conferred a benefit to

b-cell insulin secretion and biosynthesis.73 Subse-

quent studies have indicated that short term AGE

exposure to rat pancreatic islets protected against apo-

ptosis, whereas prolonged exposure promoted death.

These findings suggest that the effect of RAGE activa-

tion may be dependent on the temporal dynamics of

RAGE/ligand engagement and on ligand

Figure 1. Schematic diagrams of extracellular RAGE structure and activation. RAGE is a cell surface receptor that is comprised

of three extracellular immunoglobulin-like domains (a V-type domain and two C-type domains), a transmembrane domain (TM)

and an intracellular domain (ID) that is required for signaling. (A) A ribbon diagram of the extracellular V-C1 domains of RAGE,

which form an integrated structural unit. b-sheets are yellow, helices are purple and loops are blue and white (PDB code

303U).54 (B) Activation of RAGE by its ligands leads to recruitment and binding of the intracellular formin molecule, DIAPH1,

resulting in pathological intracellular signaling that can induce oxidative stress, inflammation, cellular dysfunction and apoptosis.
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concentration.74 AGEs have also been implicated in

destabilizing PDX-1 protein, a critical factor for b-cell

survival, thereby impairing insulin synthesis.75

Recent breakthroughs in the transplantation of

human fetal pancreatic progenitor cells have shown

promise in preventing RAGE upregulation in the kid-

ney, protecting against diabetic nephropathy.76 While

these advancements are encouraging, more work is

needed to fully determine how RAGE and its ligands

influence pancreatic b-cell fate, and how modulation of

ligand production, engagement of the ligand with the

RAGE receptor, RAGE receptor, and DIAPH1-

dependent intracellular processes may be harnessed

to prevent b-cell dysfunction, diabetes induction, and

subsequent pathological consequences.

Islet Amyloid Formation Is a Significant Source

of b-Cell Proteotoxicity in T2D

The biosynthesis and processing of IAPP

IAPP belongs to the calcitonin peptide family, which

is comprised of a- and b-calcitonin gene-related pep-

tide (CGRP), calcitonin, intermedin, and adrenome-

dullin. These peptides all include an intramolecular

disulfide bridge near the N-terminus and an ami-

dated aromatic residue at the C-terminus.77 IAPP has

been found in all mammals studied and, like many

polypeptide hormones, is synthesized as a pre-pro-

form. In the case of the human polypeptide, the pre-

pro-hormone is 89 residues in length and includes a

22 amino acid residue signal sequence at the N-

terminus. The remaining 67 residues make up the

pro-form (proIAPP), which includes N- and C-

terminal extensions relative to mature IAPP (Fig. 2).

ProIAPP is processed in the Golgi and in the insulin

b-cell secretory granule to yield the mature hormone,

which is secreted in tandem with insulin.78–80 The N-

and C-terminal flanking sequences of the pro-form

are cleaved by the prohormone convertases, PC2 and

PC1/3.80 PC2 is responsible for cleavage of the N-

terminal extension and PC1/3 is primarily responsible

for the initial step in the C-terminal processing,

although PC2 can cleave here as well. Processing at

the C-terminus, which leads to an amidated C-

terminal Tyr, is a multi-step process. The initial C-

terminal cleavage leaves a Gly-Lys-Arg sequence as

the new C-terminus. The Lys-Arg dipeptide is

trimmed by carboxypeptidase, leaving the Gly, which

donates the nitrogen during amidation by the pep-

tidyl amidating monooxygenase complex (PAM).79,80

Defective post-translational processing of

proIAPP may be another factor that promotes islet

amyloid formation and proteotoxicity in T2D. There is

indirect evidence that normal processing of proIAPP,

at the N-terminal cleavage site, may be incorrect/

incomplete in T2D, resulting in secretion of an N-

terminal extended proIAPP intermediate.77,81–83 Com-

paratively little work has been done on amyloid forma-

tion by partially processed proIAPP, but it has been

proposed that retention of the N-terminal pro-

sequence leads to binding to sulfated proteoglycans in

the extracellular matrix, which in turn, could generate

a high local concentration of the polypeptide and

facilitate the formation of active amyloidogenic

“seeds.”82,84,85 In vitro biophysical studies demonstrate

that this partially processed form can bind to the gluco-

saminoglycan portion of proteoglycans, and that this

interaction promotes amyloid formation.82,84 Further-

more, the deposits formed can seed amyloid formation

by mature fully processed IAPP.84 Fully processed

IAPP is stored in the halo region of the insulin secre-

tory granule, while insulin is found in the dense core of

the granule.77,78 The concentration of IAPP in the

granule is only about 1–2% that of insulin, but this is a

much higher concentration than required to promote

aggressive amyloid formation in vitro.77,86–89 This sug-

gests that there are factors that inhibit irreversible

aggregation of IAPP in the granule.

Variations in the Primary Sequence of IAPP

Correlate with its Ability to Form Amyloid In

Vitro and In Vivo

IAPP is produced by all species examined to date,

but not all IAPP sequences form amyloid. The

Figure 2. Processing of human pre-proIAPP into the mature IAPP sequence. (A) The 89 amino acid residues of pre-pro-

peptide, including the 22-residue signal sequence which is shown in blue underlined font, and the flanking peptide regions of

the pro-hormone, which are illustrated in red italicized font. (B) The sequence of proIAPP showing the cleavage sites for PC2 at

the N-terminus of mature IAPP and PC1/3 after three residues (GKR) in the C-terminal flanking region. (C) Amidation of the C-

terminal Tyr is a multi-step process. CPE removes the KR pair of dibasic residues that remain after PC1/3 cleavage, and the

glycine is the nitrogen donor for amidation by PAM
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sequence of IAPP is strongly conserved, however

examined interspecies variations correlate signifi-

cantly with the ability to form amyloid in vitro and

with the presence or absence of islet amyloid in vivo.

In particular, rat IAPP (rIAPP), which has the same

amino acid sequence as mouse IAPP, differs from

the human polypeptide at six positions and does not

form islet amyloid in vivo. While there are some var-

iations in the IAPP sequences of rodents, rodent

IAPP generally is non-amyloidogengic in vitro under

conditions where the human peptide rapidly forms

amyloid (Fig. 3). Early comparison of the rodent and

human sequences led to the hypothesis that differ-

ences in the sequence of IAPP within positions 20–

29 correlated with the ability to form amyloid.14

Four of the six sequence differences between hIAPP

and rIAPP are found within this region (Fig. 3). The

most important of these are three proline residues

in rIAPP at positions 25, 28, and 29. Proline dis-

rupts interstrand hydrogen bonding and intermolec-

ular b-sheet formation, and this helps to explain the

lack of islet amyloid in rodents. Another important

difference between hIAPP and rIAPP is the replace-

ment of His-18 in hIAPP with Arg in rIAPP. This

substitution ensures that the sidechain at position-

18 will be positively charged at all physiologically

relevant pH values; the increased charge decreases

the polypeptide’s tendency to aggregate and form

amyloid.90,91 Naturally occurring sequence varia-

tions in IAPP have been reviewed recently.86 Studies

with synthetic variants of hIAPP have shown that

residues outside of the 20–29 segment play an

important role in modulating amyloidogenicity. For

example, substitution of Asn-14 or Asn-21 can have

drastic effects, as can proline substitutions outside

the 20–29 region.92,93 Conversely, replacement of

residues Arg-18, Leu-23, and Val-26 in rIAPP by the

corresponding amino acids of hIAPP (His-18, Phe-

23, Ile-26) has been reported to lead to a weakly

amyloidogenic polypeptide, despite it still containing

the three proline substitutions found in rIAPP.94

Taken together, these studies and other work dem-

onstrate that additional factors other than just the

sequence within residues 20–29 play an important

role in dictating amyloidogenicity. Elucidating the

factors that control hIAPP amyloidosis is important

since it can aid in the rational design of next genera-

tion soluble analogs of hIAPP for clinical usage in

the maintenance of metabolic homeostasis.95

The structure of monomeric hIAPP and of IAPP

amyloid fibrils

Mature hIAPP is a positively charged, hydrophobic

peptide that contains no negative charges at physio-

logically relevant pH’s due to the lack of acidic resi-

dues and the amidated C-terminus. hIAPP does not

adopt a well-defined globular conformation in its

unaggregated state, but samples an ensemble of rap-

idly interconverting, partial and less structured con-

formations.96 Thus, IAPP is considered to be a so-

called “natively unfolded” or “intrinsically disorder-

ed” monomer, although residues 5 through 22 of

hIAPP transiently sample helical phi psi angles in

solution.96 Interactions with membranes, particu-

larly ones with a high content of anionic lipids, can

promote formation of a more ordered partial helical

state.97,98 The tendency to form helical conforma-

tions may facilitate the conversion of hIAPP to b-

sheet rich amyloid fibrils by promoting initial

oligomerization.99–102

Figure 3. (A) The primary sequence of human and rat/mouse IAPP. (B) A cross section of the UCLA model of hIAPP amyloid

fibril (104). Two symmetric related peptides are shown in a top-down view of a stack. Several residues which have been pro-

posed to make key inter-stack contacts via sidechain interactions are indicated. (C) A ribbon diagram showing the arrangement

of the polypeptide orientation in the amyloid fibril
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Several high resolution structural models have

been proposed for hIAPP amyloid fibrils formed in

vitro and, although they differ in the details, they

share common overall features.103,104 The basic fibril

structure is made of two U-shaped stacks of IAPP

monomers with two b-strands per monomer con-

nected by a less ordered loop/turn region (Fig. 3).

Each monomer is hydrogen bonded to its immediate

neighbors in the same stack and the polypeptide

forms parallel b-sheets. The backbone hydrogen

bonds are between different molecules rather than

within a single polypeptide, and are thus oriented

parallel to the long axis of the fibril. The pair of U-

shaped stacks are aligned so that hIAPP molecules

in adjacent stacks are oriented antiparallel to each

other, and the stacks interact via networks of side

chain interactions. The different models vary in the

exact location of the two b-strands and the loop/turn

region. Both models place the disulfide-bridged loop

between residues 2 and 7, outside of the ordered

core of the cross b-structure (Fig. 3).

The physiological role of IAPP
The circulating concentration of IAPP is reported to

be on the order of three to five picomolar in rats,

and to rise to 15 to 20 picomolar with elevation of

blood glucose levels.77 The local concentration at the

site of release from the granule is significantly

higher and this is likely the more relevant value for

amyloid formation. hIAPP is believed to play a role

in controlling gastric emptying, maintaining glucose

homeostasis, and suppressing glucagon release. The

hormone is also involved in controlling satiety and is

proposed to act as an adiposity signal.105,106 A reduc-

tion in weight induced by IAPP has been reported

for obese rats and humans, and animal studies have

led to the hypothesis that weight loss occurs through

a mode of action that is similar to that found in

cases of enhanced leptin sensitivity.107,108 As the

focus of this review is on proteotoxicity rather than

normal function of IAPP, the interested reader is

referred to several recent reviews that discuss the

proposed function(s) of IAPP in more depth.77,86,89

Does islet amyloid have an extracellular or

intracellular origin?

In human T2D and in all cell and animal models,

IAPP fibrils are found in invaginations of the b-cell

membrane, but the question of where islet amyloid

originates is still open to debate and there are con-

flicting reports in the literature concerning the initi-

ation site for islet amyloid deposition in vivo. As

noted, amyloid deposits found in human T2D appear

to be extracellular and early studies with transgenic

(Tg) mice were consistent with an extracellular ori-

gin for islet amyloid; but other studies with rodent

models that overexpress IAPP are consistent with

an intracellular origin.77,109 It should be noted that

some Tg mouse models of islet amyloidosis contain

high copy numbers of the human IAPP gene and

produce high levels of hIAPP. This could play a role

in the reported intracellular aggregation. Defining

whether islet amyloid has an intracellular or extra-

cellular origin might affect drug design, and is thus

of practical, as well as academic interest. The inter-

ested reader is referred to the recent review by

Clark and co-workers for a more in-depth discussion

of the issue of intra- vs. extracellular islet amyloid

formation.89

Mechanisms of hIAPP-induced toxicity

Irrespective of the intra- and/or extracellular origin

of IAPP aggregation, it is certain that discrete toxic

forms of this polypeptide cause pathological conse-

quences in key metabolic tissues. Indeed, identifica-

tion of the toxic species in amyloidosis is a major

challenge and the nature of the toxic species is con-

troversial, due to the difficulty of isolating pure frac-

tions of transient kinetic species that form over the

course of amyloid formation. The preponderance of

evidence indicates that soluble oligomeric species

populated during amyloid formation are responsible

for toxicity in islet amyloidosis and recent in vitro

time-resolved biophysical and biological measure-

ments have demonstrated that pre-amyloid oligom-

ers are more toxic than hIAPP amyloid fibrils or

monomeric hIAPP.89,109,110 The biophysical proper-

ties of toxic hIAPP oligomers have been shown to be

distinct from those produced in other amyloidosis

diseases,110 providing a target for rational drug

development. However, the origin of the events that

lead to b-cell death in vivo are still debated. Does

induction of stress and dysfunction arise from within

the cell or is it triggered from events that occur after

secretion of the polypeptide from the b-cell? It has

been proposed that hIAPP toxic oligomers are pre-

sent in the cytoplasm of cells which overexpress

hIAPP, and reactivity to an anti-oligomer antibody

has been reported for b-cells in Tg hIAPP

mice.111,112 However, some of these studies made use

of a conformational antibody, which was not raised

against hIAPP. These antibodies are clearly useful

in vitro, but their applicability to IAPP detection in

vivo has been questioned.113,114 Conversely, work

with a cultured islet model that produces physiologi-

cally relevant levels of hIAPP show that, in this sys-

tem, the secretion of IAPP is an important factor for

islet amyloid formation and b-cell toxicity. In that

study, inhibiting IAPP secretion, while maintaining

the level of IAPP production, was found to reduce

amyloid formation. In contrast, promoting increased

secretion in this model without increasing hIAPP

production led to increased toxicity and amyloid for-

mation.115 The differences observed between the var-

ious models may be related to the level of production

of hIAPP.89,114
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The pathways that lead to IAPP-induced b-cell

dysfunction and apoptosis are not yet fully

defined.9,116–121 There are likely to be multiple

mechanisms of toxicity and a variety have been

reported; their relative contributions could depend

upon cellular conditions. Defects in autophagy,

increased production of pro-inflammatory cytokines,

endoplasmic reticulum (ER) stress, permeabilization

of cell membranes, mitochondrial membrane dam-

age, activation of Calpain-2, receptor-mediated

mechanisms including Fas and RAGE activation

linked to induction of cell stress and apoptotic sig-

naling pathways, have all been proposed to contrib-

ute to IAPP-induced b-cell cytotoxicity.2,7–9,111,116–132

Impairment of autophagy, and ER stress in

hIAPP-induced b-cell proteotoxicity. Defects in

autophagy play a role in the toxicity of a range of

amyloidogenic proteins. In neurodegenerative dis-

eases, for example, upregulation of autophagy acts

as a protective adaptation to the accumulation of

toxic amyloidogenic aggregates. However, lysosomal

degradation of amyloidogenic polypeptides and auto-

phagocytosis may not always be completely success-

ful. The resulting accumulation of amyloidogenic

aggregates can lead to autophagy-mediated lyso-

somal cell death or dysfunction. Along these lines,

the overexpression of hIAPP in b-cells has been

reported to lead to impairment in autoph-

agy.125,129,130 Stimulation of autophagy has been

shown to protect against IAPP toxicity, while inhibi-

tion of autophagy-lysosomal degradation has been

shown to enhance hIAPP-induced b-cell apopto-

sis.125,130,133–135 ER stress, defects in the unfolded

protein response (UPR) and in ER-associated protein

degradation have all been proposed to contribute to

hIAPP-induced b-cell death in T2D. ProIAPP and

partially processed proIAPP could contribute to tox-

icity in cases where toxicity arises from intracellular

aggregates since proIAPP mis-processing occurs in

T2D, and processing is completed in the Golgi and

insulin secretory granules.77,86 It is important to

note, however, that the role of ER stress in hIAPP-

mediated toxicity is still controversial. Studies using

exogenously added hIAPP and Tg mice that overex-

press hIAPP have reported that ER stress is a mech-

anism of hIAPP-induced b-cell dysfunction,111,124

while ER stress was not detected in studies employ-

ing cultured islets that produce more physiologically

relevant levels of IAPP.127

Membrane disruption by hIAPP aggre-

gates. Perturbation of membrane integrity by

hIAPP has also been proposed to contribute to toxic-

ity89,128,132 and there is a large literature on in vitro

studies of the ability of hIAPP to disrupt model

membranes.89,136 Unfortunately, it is not clear if

there is a direct one-to-one correlate between in

vitro investigations and behavior in vivo.89,137 The

effect of hIAPP depends on the lipid to peptide ratio,

the lipid composition, ionic strength and the pH.

Many commonly used model systems that lack cho-

lesterol contain a much higher percentage of anionic

lipids than is found in the b-cell membrane.138

These are important factors since cholesterol modu-

lates hIAPP/membrane interactions and high per-

centages of anionic lipids significantly promote

IAPP/membrane interactions.139

Toxic hIAPP aggregates cause pancreatic islet

inflammation. hIAPP-induced b-cell proteotoxic-

ity is linked to local islet inflammatory pro-

cesses.7,122,140,141 Activation of the inflammasome by

hIAPP aggregates can contribute to local islet

inflammation and b-cell dysfunction.7,131 Inflamma-

somes are multiprotein intracellular assemblies that

sense a diverse range of pathogenic stimuli and reg-

ulate the production of active caspase-1. In turn,

caspase-1 activates the pro-inflammatory cytokines

interleukin-1b (IL-1b) and IL-18 by cleaving of their

pro-forms into mature sequences. The role of IL-1b

in hIAPP-induced b-cell death and dysfunction is

currently a major focus in the field.7,131 The deple-

tion of islet-resident macrophages, key modulators of

inflammation, has been shown to improve glucose

intolerance and increase islet amyloid accumulation,

consistent with reports that amyloid fibrils are not

toxic; suggesting that toxicity may be due to the

activation of phagocytic cells that attempt to remove

cytotoxic IAPP aggregates from the islet.141 Interdis-

ciplinary approaches combining studies in human

diabetic pancreas, mouse models, cell physiology and

molecular biophysics show that toxic prefibrillar

form(s) of hIAPP (and not nontoxic monomers and

not amyloid fibrils) are ligands of RAGE, and that

hIAPP-induced upregulation and activation of RAGE

leads to the induction of NADPH (nicotinamide ade-

nine dinucleotide phosphate) oxidase (NOX), produc-

tion of reactive oxygen species (ROS) and

subsequent oxidative stress, a proximate mechanism

preceding the development of b-cell inflammation,

dysfunction, and ultimately, cleavage of caspases,

and b-cell apoptosis.2,110 A direct relationship

between loss of b-cell area and b-cell stress, apopto-

sis and RAGE expression; and a lack of correlation

between these parameters and islet amyloid area in

a Tg hIAPP mouse model, support in vitro and in

vivo findings that toxic pre-amyloid hIAPP inter-

mediates are more deleterious than amyloid fibrils.2

Macrophage chemo-attractants (Ccl2, Cxcl1 and

Cxcl2) and other pro-inflammatory mRNA tran-

scripts (Il1b and Il18) in the pancreas of Tg hIAPP

mice with islet amyloidosis were significantly upre-

gulated, while inhibition of hIAPP/RAGE interac-

tions protected pancreatic islets, cells and Tg hIAPP

mice from IAPP-induced stress, inflammatory gene
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expression, metabolic dysfunction, islet amyloid

deposition and loss of b-cell area.2 Together, these

findings establish RAGE as a mediator of pathologi-

cal b-cell signaling during islet amyloidosis in T2D,

and highlight the interaction of RAGE and pre-

amyloid hIAPP intermediates as a primary target

for b-cell preservation in metabolic disease.

Insulin Misfolding and Other Signals of

Proteotoxicity in Diabetes

IAPP is co-produced and co-secreted with insulin by

pancreatic b-cells. The biosynthesis of insulin by b-

cells, like that of IAPP, is a multistep process, and

mutations in the pre-proinsulin gene, or disruptions

in posttranslational modifications at any major

stage, can result in the formation of proteotoxic

aggregates and activation of cellular stress mecha-

nisms leading to b-cell toxicity and diabetes.142–146

Insulin is initially translated in the cytosol as a pre-

prohormone (pre-proinsulin), which is translocated

across the ER membrane where it is enzymatically

cleaved to form proinsulin.147 Misprocessing during

this early step results in the accumulation of pre-

proinsulin in the juxtanuclear compartment and

induction of heat shock protein 70 (HSP70), which

promotes human b-cell apoptosis.147 Inside the oxi-

dizing environment of the ER, generation of three

evolutionarily conserved disulfide bonds facilitate

the proper protein folding of proinsulin (PI). Disrup-

tion of this key process leads to PI misfolding and

its aggregation into cytotoxic species. For example,

in the male Akita murine model of diabetes, a PI-

C(A7)Y mutation in the A chain of PI prevents the

formation of a critical disulfide bond, leading to pro-

teotoxic aggregation, ER stress, increased XBP1

mRNA splicing, b-cell dysfunction, and the develop-

ment of postnatal diabetes within weeks.143,148

Proper posttranslational modification of the A-chain

epitope of PI is also required for b-cell recognition

and induction of adaptive immune attack by human

T-cells.149,150 Taken together, these data highlight

the importance of posttranslational modification in

insulin maturation and signaling, and indicate that

defects in insulin processing can lead to PI proteo-

toxicity and/or autoimmunity, and subsequent b-cell

apoptosis.

Elevated levels of PI have been shown to be cor-

related to the degree of b-cell secretory impairment

in T2D patients.151 In the b-cell, transport-compe-

tent secretory peptide precursors, including PI, are

regulated by autophagy, whereas efficient clearance

of transport-incompetent mutated forms of PI by

alternative degradative pathways may be necessary

to avoid b-cell proteotoxicity.146,152,153 Insulin resis-

tant Akita and db/db mice, as well as Zucker dia-

betic fatty rats display increased autophagosome

flux, and disrupting autophagy in these models

drives b-cell UPR stress and the progression of

diabetes.154–157 Reduction of PI autophagic degrada-

tion increases its residency in the secretory pathway

and enhances its secretion in response to stim-

uli.152,154,158 The production and overproduction of

insulin in and of itself, drives cellular stress. Specifi-

cally, mitochondrial ROS have been implicated as an

obligatory signal for GSIS,159–162 and pharmacologi-

cal inhibition of ROS diminishes insulin secretion.

In the context of glucolipotoxicity, in which basal

insulin hypersecretion and pronounced impairments

in GSIS are known to occur, ROS stimulates insulin

secretion from b-cells in a concentration-dependent

manner.163 This phenomenon is bidirectional, as

NOX, a major driver of ROS production, is upregu-

lated prior to b-cell dysfunction.163 These reactive

molecules, which play an adaptive role in cellular

oxidative signaling, must be rapidly removed or else

they elicit b-cell oxidative stress and metabolic

defects.163 Insulin stimulated insulin secretion has

also been demonstrated in pancreatic b-cells,164,165

providing another feed-forward mechanism by which

augmentation of insulin production by b-cells may

promote increased oxidative stress, further insulin

secretion, more pronounced proteotoxicity and ROS

production in a deleterious cycle, ultimately promot-

ing b-cell failure and diabetes.

Conclusion

Protein aggregation and amyloid formation have

long been recognized as key events in a range of

neurodegenerative diseases, including AD and Par-

kinson’s disease, and in the systemic amyloidoises,

but their role in T2D is less appreciated. The vari-

ous investigations highlighted in this review develop

a strong case for the role of aberrant protein mispro-

cessing, modification and aggregation in the patho-

physiology of T2D. Aggregation of IAPP to form islet

amyloid contributes to b-cell death and dysfunction

in T2D, while aggregation of misprocessed insulin

has been implicated to contribute to proteotoxicity in

the disease. The co-secretion of insulin and IAPP

suggests the potential forging of shared molecular

and biochemical mechanisms of toxicity in pathologi-

cal microenvironments. AGE formation is likely to

play a significant role in proteotoxicity in T2D, given

that the diabetic milieu is favorable for the genera-

tion of AGEs. AGE formation is thought to play a

role in other protein deposition diseases and engage-

ment of RAGE with toxic aggregates derived from

different amyloidogenic proteins may provide a com-

mon unifying theme. It is not known whether RAGE

plays a role in b-cell function; more work is needed

to determine whether acute activation of RAGE in

b-cells may be beneficial. But chronic activation of

RAGE by its ligands, including those linked to pro-

tein aggregation or AGEs, can be detrimental. Com-

pounds that interfere with the interaction of RAGE

with its ligands, or suppress RAGE-mediated
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cellular signaling triggered by binding of RAGE

ligands, especially in the setting of pathological

ligand conformation and/or concentration, may thus

have therapeutic potential for a range of inflamma-

tory diseases, including diabetes.2,166
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