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Translating Immunopeptidomics to Immunotherapy-
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Immunotherapy is revolutionizing cancer treatment and has shown success
in particular for tumors with a high mutational load. These effects have been
linked to neoantigens derived from patient-specific mutations. To expand
efficacious immunotherapy approaches to the vast majority of tumor types
and patient populations carrying only a few mutations and maybe not a single
presented neoepitope, it is necessary to expand the target space to
non-mutated cancer-associated antigens. Mass spectrometry enables the
direct and unbiased discovery and selection of tumor-specific human
leukocyte antigen (HLA) peptides that can be used to define targets for
immunotherapy. Combining these targets into a warehouse allows for
multi-target therapy and accelerated clinical application. For precise
personalization aimed at optimally ensuring treatment efficacy and safety, it is
necessary to assess the presence of the target on each individual patient’s
tumor. Here we show how LC-MS paired with gene expression data was used
to define mRNA biomarkers currently being used as diagnostic test
IMADETECTTM for patient inclusion and personalized target selection within
two clinical trials (NCT02876510, NCT03247309). Thus, we present a way how
to translate HLA peptide presentation into gene expression thresholds for
companion diagnostics in immunotherapy considering the peptide-specific
correlation to its encoding mRNA.
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1. Introduction

Presentation of peptides on human
leukocyte antigen (HLA) molecules
is a central mechanism allowing the
adaptive immune system to differentiate
healthy from infected or cancerous
cells. The complex nature and flexibility
of the antigen processing machinery
across cell types and disease states
complicates the robust inference of
HLA-restricted peptide presentation by
predictive approaches using binding
motifs[1] or binding affinities.[2] The
incorporation of mass spectrometry-
based HLA peptidomics data into the
training of prediction algorithms has
recently regained a lot of attention after
its initial debut in the 1990s[3] and now
has been demonstrated to result in
substantial improvements compared to
HLA binding prediction trained on in
vitro data alone.[4–6] However, the low
prevalence of presented HLA ligands in
the available space of theoretical peptides
would require specificity above 0.999 to
achieve a positive predictive value of at

least 50%.[7] Thus, a large proportion of predicted targets might
not be presented on human cells and therefore, albeit potentially
showing in vitro as well as in vivo immunogenicity, may fail anti-
tumor activity.[8]

For these reasons, robust and precise identification and selec-
tion of new HLA peptides as targets for cancer immunotherapy
is ideally directly informed by the integrated analysis of a com-
prehensive and deep map of the HLA ligandome in health and
disease across tissue types. While the significant cost and the
labor-intensive nature of direct immunopeptidome analysis by
mass spectrometry represent a substantial barrier, the informa-
tion gained by this approachmay ultimately prove invaluable and
may enable-besides direct target identification-the further im-
provement of predictive approaches. Analysis depth also plays
an important role since antigen-specific immunotherapies are
restricted to certain HLA allotypes (e.g., A*02:01), thus reducing
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Significance Statement

Thegrowingnumber ofHLA ligandomes resolvedbymass
spectrometry paves theway for development of new im-
munotherapies. In thiswork,we showhow the knowledge
about thehuman immunopeptidomeacross healthy and
cancerous tissues canbeusedbeyond target discovery and
validation.Wedemonstrate thenecessity of quantitationof
HLAboundpeptides by label-free LC-MS to verify the peptide-
specific correlationwith the correspondingmRNAmeasured
byRNA-Seq.On that basis, we show thatmass spectrometry
guidedmRNAexpression thresholds canbedefined that allow
definitionof predictive biomarkers for clinical use in person-
alized therapies. This enables precision immunotherapies
against cancer by selectingpatients aswell as themost relevant
targets per patient.

the available ligand space. For example, analyzing ten indepen-
dent patients will result in a combined dataset of peptides derived
from approximately 30 distinct class I allotypes[9] and thus only
a marginal fraction of the detected ligands will bind to the same
HLA.
Once the ligand space is defined, the selection of appropri-

ate targets requires confirmation of tumor specificity in vivo. For
neoantigens, this is an inherent feature as they are encoded by
non-synonymous somatic mutations defined by differential anal-
ysis of tumor and germline DNA. To circumvent limitations of
neoantigen targets[10] and expand therapy options to the vast ma-
jority of tumor types characterized by low mutational burden[11]

and to patients presenting no neoepitope by HLA, it is necessary
to consider the target space of non-mutated cancer-associated
peptides. However, target discovery and validation of these anti-
gens is more challenging and requires vast panels of tumor and
normal tissue samples to allow for the generation of a compre-
hensive map of the human immunopeptidome in health and
disease.
Once targets are selected and validated, there is a strong

need for predictive biomarkers defining target positive pa-
tients to allow personalization[12] thus only treating individu-
als for which a clinical benefit can be expected. The method
of choice to use in clinical settings is the quantitation of
mRNA expression by quantitative polymerase chain reaction
(qPCR). The use of mRNA assumes that HLA peptide pre-
sentation and mRNA expression are correlated. While it has
been shown that highly abundant transcripts usually result in
higher numbers of class I bound peptides,[13] this does not nec-
essarily hold true for every pair of peptide and correspond-
ing mRNA.[14] Here we show how mass spectrometry can be
used to establish the association between peptide presenta-
tion and mRNA expression for individual peptides and how
this association can be translated from LC-MS to RNA-Seq to
qPCR data to define predictive biomarkers allowing precision
medicine by personalized mRNA expression analysis guided by
immunopeptidomics.

2. Experimental Section

2.1. HLA Peptide Isolation and Mass Spectrometry

Integrated HLA ligandome–transcriptome analysis was per-
formed for a set of 170 HLA-A*02 positive tumor samples from
21 cancer types (see Table 1, Supporting Information) for which
paired LC-MS and RNA-Seq data was available. Samples were
surgically excised after written informed consent, snap-frozen
in liquid nitrogen upon extraction, and stored at −80 °C until
HLA precipitation. HLA peptide complexes were isolated by im-
munoprecipitation using the HLA-A*02-specific antibody BB7.2.
After ultrafiltration peptide extracts were separated by reversed-
phase chromatography (nanoACQUITY UPLC system, Waters,
Milford, MA) at 300nL min−1 using ACQUITY UPLC BEH
C18 columns (75 μm × 250 mm, Waters, Milford, MA) and
a gradient ranging from 1 to 34.5% ACN over the course of
190 min. Mass spectrometry was performed on Orbitrap LTQ,
Velos, and Fusionmass spectrometers (Thermo Fisher Scientific,
Waltham, MA) resulting in 135, 403, and 305 runs, respectively.
Mass spectral data was acquired by data-dependent acquisition
(DDA) in profile mode for at least four replicate injections by dif-
ferent mass analyzers in low- (ion trap) and high-resolution MS
acquisition mode (Orbitrap) using collision-induced dissociation
(CID) as well as higher-energy collisional dissociation (HCD) re-
sulting in 843 LC-MS runs total.

2.2. RNA Isolation and Sequencing

In parallel to every peptide preparation, total RNA was isolated
using TRIzol (Invitrogen, Karlsruhe, Germany) followed by pu-
rification with the RNeasy mini kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. RNA sequencing and
expression quantification were performed by CeGaT (Tübingen,
Germany). In brief, 1–2 μg total RNA were used as starting ma-
terial for the library preparation performed according to the Il-
lumina protocol (TruSeq Stranded mRNA Library Prep Kit). The
sequencing process was performed on an Illumina HiSeq2500
machine. For all experiments, a strand-specific protocol was used
to generate single-end reads of a length of 50 nucleotides. The
minimum number of reads was 43 700 000 per sample. The
quality of the sequencing process was monitored using PhiX
spike-ins.

2.3. RNA-Seq Data Analysis

Reads were aligned against the human reference
genome GRCh38.p1 and annotated with Ensembl 77
(http://www.ensembl.org). Gene expression levels were de-
termined by extraction of read counts per exon using bedtools
2.19.1[15] and conversion to FPKM values by normaliza-
tion according to exon length and the number of mapped
reads. Assessment of target prevalence was based on RNA-
Seq data from the cancer genome atlas (TCGA, June 2015,
http://cancergenome.nih.gov/). DESeq[16] normalization was
performed to allow inter-sample comparisons of expression
values.

Proteomics 2018, 18, 1700284 1700284 (2 of 10) C© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.proteomics-journal.com


www.advancedsciencenews.com www.proteomics-journal.com

2.4. HLA Typing

DNA of every donor was isolated from tissue or whole blood us-
ing the QIAamp DNA Mini Kit (Qiagen) or the QIAamp DNA
Blood Mini Kit (Qiagen), respectively. The QIAamp Investigator
Kit (Qiagen) was used to isolate DNA in case of limited amounts
of tissue. HLA genotyping for HLA-A*02 was performed by PCR
and subsequent agarose gel electrophoresis using the Ambisolv
Primer Mix PM002 (Life Technologies) and recombinant Taq
polymerase (Life Technologies).

2.5. Mass Spectrometry Data Analysis

Tandem mass spectra (MS/MS) were extracted and centroided
using Proteome Discoverer 1.4 (Thermo Fisher Scientific,
Waltham, MA). Peptide sequences were identified by a propri-
etary in-house pipeline[17] combining protein database search,
spectral clustering, and retention time alignment. In brief, frag-
ment spectra are searched with SEQUEST (Thermo Fisher Sci-
entific, Waltham, MA) and MSGF+[18] against the international
protein index (IPI v3.78). The database search was configured
without cleavage specificity (no enzyme), variable modifications
for methionine (oxidation) and serine/threonine/tyrosine (phos-
phorylation), 3 ppm precursor mass tolerance, 0.01 Da frag-
ment mass tolerance for Orbitrap and 1 Da for Ion trap MS/MS.
Peptide spectrum matches were filtered using fixed thresholds
and 5% false discovery rate (FDR) based on concatenated re-
versed decoy database. In parallel, spectra were clustered us-
ing MSClustering[19] into a spectral archive to allow ID propa-
gation. Spectral clusters were based on 10 ppm precursor mass
tolerance and a mixture probability of 0.1. LC-MS peptide sig-
nal features were extracted by SuperHirn v1.0[20] to determine
peak areas of extracted ion chromatograms (XIC) for MS1-
based relative quantitation. After charge state deconvolution with
OpenMS Decharger 1.6,[21] LC-MS features were assigned to
identifiedMS/MS spectra. Retention time alignment of technical
replicates[20] was performed to allow matching of LC-MS signals
between runs. Peptide abundance levels per sample were deter-
mined by median total area of the replicates. The total-area was
defined as the sum of the normalized XIC areas of all observed
charge states. Systematic bias was rectified by central tendency
normalization[20] to account for differences in HLA expression
and technical variations.

2.6. Statistical Analysis

Threshold optimization was computed with Python 2.7.11 using
scikit-learn 0.17.1[22] and numPy 1.10.4[23] by maximizing the Fβ

score:

max
α, δ

Fβ =
(
1+ β2

) · TP (α, δ)

(1+ β2) · TP (α, δ) + β2 FN (α, δ) + FP (α, δ)
(1)

where α is the RNA-Seq threshold, δ is the threshold for the
number of identified HLA-A*02 peptides used to assess the
A*02 peptidome measurement depth (A*02 PMD), and β the
weighting factor between recall and precision set to 2. TP is the

number of true positives (peptide is detected and sample passes
the thresholds), FN the number of false negatives (peptide is de-
tected and sample does not pass at least one of the thresholds),
and FP the number of false positives (peptide is not detected
but sample passes the thresholds). Confidence intervals for the
RNA-Seq threshold were estimated using parametric bootstrap-
ping. A logistic regression model was fitted for each target on
the RNA-Seq expression values (log transformed) and the A*02
PMD (square root transformed). The probability of the peptide
being present was computed as

prob
(
patient i has the target detected

) = 1
1+ exp (−Xw)

, (2)

where X are the covariates and w the fitted coefficients. Bootstrap
replicates were generated by drawing the peptide detection state
from the Bernoulli distribution (Equation 2). Confidence inter-
vals were obtained by summarizing the bootstrap replicates to
the corresponding quantiles.
To assess the contribution of the gene expression to themodel,

an A*02 PMD threshold is obtained by maximizing the F score
without RNA-Seq expression values. The F score FNULL of the re-
sulting null model is compared to the F score of the combined
threshold to give�F= F− FNULL. A large�F score indicates that
peptide detection can be predicted by gene expression whereas a
small �F score indicates a dependence on PMD rather than on
gene expression.
The distribution of F and �F was visualized as scatterplot

and smoothed histogram using kernel density estimates (ggplot2
2.2.1). A set of 1000 peptides was randomly selected for different
bins of detection frequency. The binning is necessary since the
precision and therefore also the F-score distribution depends on
the prevalence of the predicted event.
All other statistics and data visualizations where generated

with R 3.1.0.[24]

3. Results and Discussion

3.1. Target Discovery

The human immunopeptidome was analyzed using the antigen
discovery platform XPRESIDENT R© [25] that combines mass spec-
trometry for identification and quantitation of HLA ligands with
expression analysis of corresponding mRNA (Figure 1A). Tissue
samples from cancer patients and healthy donors were used to
isolate mRNA, DNA, and HLA bound peptides. HLA peptides
were identified by LC-MS/MS independent of HLA binding pre-
diction. The relative abundance of HLA peptides was quanti-
fied by label-free LC-MS to establish quantitative peptide profiles
across samples. Differential analysis was then applied to iden-
tify peptides exclusively presented or over-presented on tumor
tissues (tumor-associated peptides [TUMAPs]). Thus, reducing
the risk for potential on-target toxicities in the patient.
Quantitative HLA peptidomics data was complemented and

integrated with RNA-Seq gene expression measurements to
provide an additional level of evidence for tumor selectiv-
ity of the target. Figure 2 shows the agreement between the
two levels for the exemplary glioblastoma target PTPRZ1p195
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Figure 1. Mass spectrometry guided target discovery with concomitant biomarker development and its translation into clinical application. A) For
target discovery, HLA ligands are identified by LC-MS/MS followed by restriction to HLA-A*02 positive donors. Label-free quantitation of HLA-peptide
abundance by mass spectrometry as well as gene expression by RNA-Seq is inspected across tumor (red) and normal (blue) tissues to define tumor-
associated peptides (TUMAPs). As part of target validation, parallel reactionmonitoring (PRM)mass spectrometry allows to determine absolute peptide
copy numbers per cell. Multiple targets can be combined to a target warehouse tomaximize treatment efficacy and safety. Based on the acquired data, for
every peptide the correlation between peptide andmRNA levels needs to be investigated to ensure that development of mRNA companion diagnostics is
feasible. For this, LC-MS peptide presentation is mapped to predictive RNA-Seq thresholds in FPKM (red) and calibrated to qPCR thresholds expressed
in �Ct (blue). Target genes expression above the determined threshold will be used as selection criterium within the diagnostic test. B) Personalization
workflow based on mass spectrometry guided qPCR thresholds. Biopsies from cancer patients are used to measure mRNA expression of warehouse
targets using qPCR. Target peptides are considered to be presented by the tumor if expression of corresponding mRNA is above the threshold. The
screened cancer patient receives a personalized target-specific product (e.g., engineered T cells for adoptive cellular transfer).

(AIIDGVESV, P23471195-203) derived from protein tyrosine phos-
phatase Z polypeptide 1 (PTPRZ1). The HLA peptidome is
assumed to be more closely correlated to the transcriptome
than the proteome considering that many HLA bound pep-
tides are derived from defective ribosomal products, also called
DRiPs,[26] that are not identified by standard proteomics. Thus,
we focused on developing RNA-based companion diagnostics
as an amenable surrogate for peptide target copy numbers. Re-
cently, this has been supported by reports showing that inclu-
sion of protein expression data into prediction of HLA peptide
presentation only provides marginal benefit beyond inclusion

of RNA-Seq data, indicating a large redundancy of the two
factors.[4]

3.2. Peptide-Specific Correlation With Gene Expression

From the XPRESIDENT R© target discovery data, a subset of
170 HLA-A*02 positive tumor samples with paired RNA-Seq
and LC-MS measurements were used to establish predictive
biomarkers for patient and target selection within immunother-
apies using multiple targets combined to target warehouses (see
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Figure 2. Peptide presentation and gene expression profiling of glioblastoma target PTPRZ1p195 derived from protein tyrosine phosphatase Z polypep-
tide 1 (PTPRZ1) isolated from tumor (red) and normal (blue) tissues. A) Each dot represents a sample for which the peptide was identified and quantified
by mass spectrometry. B) Shows the mRNA expression for exon 6 of PTPRZ1 (ENSE00001288392) measured by RNA-Seq in FPKM. The peptide shows
tenfold higher peptide presentation levels and fourfold higher gene expression in glioblastoma samples (GBM) compared to healthy brain and on average
100-fold and 50-fold higher levels compared to other healthy tissues for presentation and expression, respectively.

Figure 1A). The most straightforward way to associate the two
datasets is by correlating peptide and mRNA levels using Pear-
son’s correlation coefficient and visualizing the data using a scat-
terplot. Peptide PDCD4p294 (ALDKATVLL, Q53EL6294-302) from
programmed cell death protein 4 (PDCD4) in Figure 3A rep-
resents a case where both measures correlate well (R = 0.49,
p < 0.001) while Peptide TSC2p526 (SLLDIIEKV, P49815526-534)
from tuberin (TSC2) does not show (Figure 3B) any observable
correlation (R= 0.07, p= 0.303). Individual correlations that vary
widely between genes have also been shown for the relationship
between proteins and their corresponding transcripts[27] under-
lining the fact that every target must be carefully validated to en-
sure that extrapolations from one “ome” to the other are valid.
In addition, the estimation of correlation itself will be only ap-
plicable for a small fraction of peptides. As soon as the peptide
is not detected in a sample, the correlation neglects the gene ex-
pression information for this data pair. Figure 3C gives an exam-
ple for a peptide with high correlation (R = 0.68, p < 0.001) yet
this peptide is not detected in 74% of the samples (Figure 3D).
This scenario is common for targets for immunotherapy which

are not expected to be constitutively presented but rather show
selective presentation on certain tumor types or subsets thereof.
This means that instead of investigating the log-linear relation
between gene expression and peptide presentation based on data
filtered for paired detection in both measurements, we modeled
a binary classifier for the prediction of peptide presentation as
a dichotomous event (detected vs. not detected) based on gene
expression.

3.3. Mass Spectrometry Guided Gene Expression Threshold

The difficulty in the prediction of peptide detection stems from
the complexity of missingness involved with peptide measure-
ments (Table 1). From a therapeutic point of view, the most in-
teresting case of missing data is missingness due to absent pre-
sentation on the cell surface. Yet, missing data is also caused by
left censoring due to the limit of detection in measuring a pep-
tide. This limit is sample-dependent and influenced by sample
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Figure 3. Correlation between gene expression and peptide presentation. A) Peptide PDCD4p294 from programmed cell death protein 4 shows good
correlation between gene expression and peptide presentation (R = 0.49, p < 0.001). B) Peptide TSC2p526 from tuberin shows no correlation between
gene expression as measured by RNA-Seq compared to peptide presentationmeasured by label-free LC-MS (R= 0.07, p= 0.303). C) Peptide SYNMp426
from synemin shows a correlation between gene expression and peptide presentation when filtered for samples with pairwise complete measurements
(R = 0.68, p < 0.001). D) Dot-box-plot of gene expression for SYNMp426 for samples with and without peptide detection.

quality, degree of necrosis, HLA expression, efficiency of pep-
tide extraction, as well as performance of the LC-MS system.
To better assess the likelihood that a peptide could be de-
tected in a sample, we included the A*02 peptidome mea-
surement depth (A*02 PMD) as a confounding factor in our
classifier. We assessed the A*02 PMD by the total number
of unique A*02 peptides identified by LC-MS at 5% FDR.
How the PMD translates into likelihood of detection of a
given peptide depends on the binding affinity of the peptide
but also on analytical properties like ionization efficiency or
hydrophobicity.
Another reason for missing data is randomly missing iden-

tifications, for instance, due to the stochastic nature of DDA
in sampling peptides for fragmentation by mass spectrome-
try. Also, interference with other abundant co-eluting ions in
the samples might contribute to this effect. Due to the ran-
dom nature, this effect cannot be directly expressed as a factor
in the classification model but was handled using resampling
techniques.

Table 1. Missingness categories with respect to missing data giving an
overview of main reasons explaining why a peptide is not detected or even
not present. The different effects influence the different quadrants in the
classification plot (Figure 4).

Missingness category Peptide
presented

Peptide
detected

Affected
quadrants

No or low gene expression No No Q3, Q4

Differential antigen processing No No All quadrants

Left censoring Yes No Q2, Q3

Missing identification Yes No All quadrants

Successful detection Yes Yes Q1

Based on the assessment of potential reasons for missing data,
we trained a peptide-specific two-factor binary classifier that dif-
ferentiates detection of a peptide from missing detection based
on gene expression corrected for PMD. A possible approach
would be to train a logistic regression model with the two factors
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(Figure 4A). Yet, since the goal of this study is to define an RNA-
Seq threshold independent of peptide measurement effects, we
used a decision tree for binary classification. Thismethod ignores
additivity of the two factors but allows for optimizing the PMD
and RNA-Seq threshold simultaneously. Thus, the decision tree
segments the data space into four quadrants (Figure 4B). The
horizontal threshold (red line) describes the lower limit of gene
expression and the vertical threshold the lower A*02 PMD (black
line) necessary for the peptide to be detected if present. This
means that quadrant Q1 contains the predicted positives while
Q2–Q4 are predicted negative. The samples missing due to left
censoring represent quadrants Q2 and Q3 while peptides absent
due to low gene expression represent Q3 and Q4 (Table 1). Con-
founding effects due to randomly missing identifications will af-
fect all quadrants.
To estimate the two thresholds, we used the F score to optimize

sensitivity (recall) as well as precision (positive predictive value) at
the same time. Since censoring is likely the dominating factor in
the model, both metrics were weighted accordingly. To account
for random missingness, the optimization involves resampling
using parametric bootstrapping which also allows for assessing
confidence in the threshold estimation (Figure 5). The size of the
interval reflects how much the threshold might be influenced
by single mislabeled data points inherent to the measurement
procedure.

3.4. Biomarker Assessment

To finally assess if the estimated biomarker threshold is suited for
predicting peptide presentation, the F score and �F score were
inspected. The F score reflects the general quality of the model in
predicting peptide presentation while the �F score reflects the
contribution of expression of the peptide’s coding gene which
is relevant for the later clinical application relying on mRNA
measurements. In addition, the reliability in the threshold

estimate can be assessed by inspection of the threshold confi-
dence interval.
Inability to predict peptide detections is caused by additional

factors that influence peptide presentation that are not reflected
in the model. This includes regulation and rate of translation,[28]

protein turnover, processing by the proteasome, cytosolic pep-
tidases, transporter for antigen processing (TAP), and binding
affinity to HLA.[29] Every organ, every transcript, and every pep-
tide therefore might be differently affected by these components.
The peptides ETNPPLp355 (TLIGDIRGIGL, Q8TBG4355-365)

derived from ethanolamine-phosphate phospho-lyase (ETNPPL)
and GFAPp96 (ALAAELNQL, P1413696-104) derived from glial
fibrillary acidic protein (GFAP) shown in Figure 5C,D are well
predictable by gene expression with F = 0.909 (�F = 0.370)
and F = 0.902 (�F = 0.640), respectively. On the other hand,
the peptide PIGCp89 (GLASSLIGYV, Q9253589-98) derived
from phosphatidyl-inositol N-acetyl-glucosaminyl-transferase
subunit C (PICG) represents an example where the relationship
between gene expression and peptide detection is disconnected
(Figure 5A) reflected by the low F-score, F = 0.357. The peptide
is exclusively presented on glioblastoma multiforme (GBM) and
healthy brain tissue while the gene is constitutively expressed
with particularly low levels on brain (Figure 1A,B, Supporting
Information).
Detection of the peptide SYNMp426 (RTFSphosPTYGL,

O15061426-434)[30] shown in Figure 3C,D is also not well pre-
dictable by gene expression (Figure 5B). Despite a high F score
(F = 0.819), PMD alone is sufficient to result in similar high
F scores (�F = 0.009). The peptide is derived from synemin
(SYNM) which is phosphorylated at Serine p429. The most
straightforward explanation for the missing values not explained
by synemin expression would be dephosphorylation of synemin.
However, we also observed a strong negative association with
the immunoproteasomal subunit LMP7 (Figure 1C, Supporting
Information), which might indicate selective generation of the
peptide in cells with decreased immunoproteasome activity.

Figure 4. Two-factor binary classification of KCNJ10p371 (ALSVRISNV, P78508371-379) derived from potassium inwardly rectifying channel protein, sub-
family J, member 10 (KCNJ10). Peptide detection is predicted using (A) logistic regression and (B) decision tree based on gene expression by RNA-Seq
and A*02 PMD (HLA-A*02 peptidome measurement depth). The decision line (dotted line) in (A) separates all samples that are more likely to have the
peptide detected from all samples that are more likely to not have the peptide detected. The quadrants defined in (B) are defined by optimizing the A*02
PMD (black line) and RNA-Seq threshold (red line) using the F score.
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Figure 5. Threshold optimization and confidence estimates for binary classification of peptide detection by gene expression corrected for A*02 PMD
(HLA-A*02 peptidome measurement depth). The FPKM score predicting peptide detection with optimal F-score is shown as red line while the 95%
confidence interval is depicted as dashed line. A) Detection of PIGCp89 cannot be predicted by gene expression and PMD (F = 0.338). B) Detection of
SYNMp426 can be predicted by gene expression (F= 0.810) but equally well by PMD alone (�F= 0.009). C) Detection of ETNPPLp355 is well predictable
by gene expression (F = 0.909) compared to PMD alone (�F = 0.370). D) For detection of GFAPp96 the improvement of prediction performance is
even more pronounced with �F = 0.640.

The proteasome is a key part of the class I antigen process-
ing pathway. On Interferon γ stimulation, the proteasome
exchanges subunits that form the immunoproteasome. For
instance, β5 (PSMB5) is replaced by LMP7 (PSMB8), which
alters the cleavage specificity and therefore ultimately the HLA
ligandome composition. However, whether dephosphorylation
or immunoproteasome upregulation is the cause for absence
of the peptide, or if both are caused by an unknown third
factor, cannot be inferred from the data. While the classi-
fier could in general be extended to incorporate additional
factors like immunoproteasome expression, one has to take
care to avoid overfitting when the number of covariates in
the model is increasing. In addition, further experimental
validation is needed to understand the underlying mecha-
nisms since they cannot be inferred from observational data
only.
To perform a global assessment of classifier performance

across many different peptide-MHC targets, we investigated the
distribution of F scores versus �F scores for a representative set

of 1000 randomly selected peptides within a given bin of detec-
tion frequency. Figure 2, Supporting Information shows the dis-
tribution for peptides within the 10% bin which is representative
for the application focus.We observed that one out of six peptides
can be reliably predicted in their detection (F > 0.7) and shows
relevant contribution of source gene expression (�F > 0.1) at
the same time. This set of peptides is suited for the development
of single-factor mRNA biomarkers relying only on the expres-
sion of the coding gene. For the other peptides, additional factors
(e.g., immunoproteasome expression) or stratifications (source
tissue) might need to be included to allow prediction of peptide
presentation.

3.5. Translation to Clinical Use

Based on the established RNA-Seq threshold, we estimated
the prevalence for peptide positive tumor patients us-
ing RNA-Seq data from the cancer genome atlas (TCGA,
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http://cancergenome.nih.gov/). These prevalence estimates
help to approximate recruitment times as well as patient sub-
groups potentially benefiting from therapeutic interventions for
a given target. The prevalence estimates might be based on the
threshold itself or on the estimated confidence intervals. For
example, the peptide ETNPPLp355 is expected to be present
in more than 80% of all brain and liver cancer patients
(Figure 3, Supporting Information) based on the RNA-
Seq threshold shown in Figure 5C (Gene expression
ENSE00001081308 > 0.63 FPKM). Since ETNPPLp355 is
also presented by healthy brain and liver, in line with high
gene expression on these tissues,[31] the peptide lacks tumor
association, which makes it unsuitable as a target for cancer
therapy.
For the development of companion diagnostics, the RNA-

Seq threshold was mapped to qPCR by establishing a standard
curve. For 31 tumors with available RNA-Seq data, qPCR mea-
surements were acquired. Figure 1B shows a schematic corre-
lation of RNA-Seq data with qPCR data which allows to map
the RNA-Seq threshold in FPKM (red line) to a qPCR thresh-
old in �Ct values (blue line). For every target of a target ware-
house, a qPCR threshold needs to be established followed by
validation of the corresponding assay. The first diagnostic test
developed according to the describedmethods is IMADETECTTM

incorporated as inclusion criterion within two phase I clinical
trials (NCT02876510, NCT03247309) conducting adoptive cellu-
lar transfer. Within IMADETECTTM, mRNA expression in pa-
tient biopsies was measured with qPCR. �Ct values meeting
the predefined threshold criteria were used as predictive for tar-
get peptide presentation. Thus, the mass spectrometry defined
gene expression thresholds allowed selection of targets from the
warehouse to actively personalize cancer immunotherapy. This
method can easily be applied to other datasets, yet since RNA-Seq
and qPCR values will not be comparable on an absolute scale, it
will be necessary to reestablish thresholds and standard curves
specific for that dataset.

4. Concluding Remarks

Mass spectrometry has enabled the in-depth analysis of the hu-
man immunopeptidome which extends the space of available
targets for immunotherapy. Here we show that mass spectrom-
etry also allows for defining mRNA-based predictive biomark-
ers that can be used as qPCR companion diagnostics in clinical
studies to define peptide target positive populations thus estab-
lishing personalized peptidomics. Availability of these biomark-
ers allows improved treatment efficacy by implementing pre-
cision medicine for cancer immunotherapies. Assuming that
T cells are still more sensitive in recognition of peptide-HLA
complexes than cutting-edge mass spectrometry approaches, we
consider the described thresholds as conservative. Most likely
also patients with lower expression levels could be treated. The
suggested threshold is a starting point for early clinical studies
and needs to be validated and adjusted during clinical develop-
ment. Beyond that, multiple targets can be combined to target
warehouses allowing active personalization andminimize tumor
evasion.
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