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Abstract

Purpose of Review—Recently, there is a significant amount of progress in the research related 

to regenerative medicine. At the same time, the biomedical implants in orthopedics and dentistry 

are facing many challenges and posing clinical concerns. The purpose of this chapter is to provide 

an overview of the clinical applications of current regenerative strategies to the fields of dentistry 

and orthopedic surgery. Major research question in this review is what are the major advancement 

strategies in regenerative medicine that can be used for implant research?

Recent Findings—The implant surfaces can be modified through patient-specific stem cells and 

plasma coatings, which may provide methods to improve osseointegration and sustainability of the 

implant.

Summary—Overall understanding from the review suggesting that the outcome from the studies 

could lead to identify optimum solutions for many concerns in biomedical implants and even in 

drug developments as a long-term solution to orthopedic and dental patients.
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1. Introduction

Diseases such as osteoarthritis, spondylosis, and tooth decay result in irreversible structural 

damage to the affected tissues. When non-invasive therapies fail to reduce symptoms to a 

manageable level, surgical intervention is often the next logical treatment option. Removal 

of damaged tissue and replacement with a synthetic implant is widely used to restore 

function and reduce pain, which includes orthopedic implants (total hip replacements, total 

knee replacements, intervertebral disc replacements, etc.), and dental implants. Further, in 

recent years, common procedures (such as total joint arthroplasty and artificial tooth 
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replacement) have seen a gradual increase in frequency and these trends are expected to 

continue into the foreseeable future [1–3].

The 2017 annual report from The American Joint Replacement Registry, representing more 

than 4700 orthopedic surgeons, revealed that over 860,000 total hip (THA) and knee (TKA) 

arthroplasties were performed in 2016 alone, a significant increase from years prior [1]. 

THA and TKA procedures often provide symptomatic relief for the majority of recipients 

but also carry a moderate risk of complications. The rates of one or more complications that 

occur either in a hospital or after discharge are estimated to be 7% and 8%, respectively.

Complications include infection, fracture, bleeding, deep vein thrombosis, pulmonary 

embolism, etc. [4]. Complications may undermine implant stability and necessitate a 

revision procedure. Fortunately, the revision burden for both total hip and total knee 

replacement appears to be decreasing in recent years. Data suggests that the revision burdens 

for total hip and knee replacements in 2016 (8.1% and 5.6%, respectively) decreased 

significantly from data collected during the years 2012–2015 (mean = 13.9% and 6.5%, 

respectively) [1].

Similarly, a significant demand for dental implants exists. A National Health and Nutrition 

Examination Survey published in 2015 found that 52% of adults aged 20–64 had lost one or 

more permanent teeth [5]. Dental implants, while largely successful, share similar 

limitations that are faced by THA and TKA. Most notably, postoperative infection of the 

supporting tissue, known as peri-implantitis, can result in progressively worsening bone loss 

and is a leading cause of implant failure with an estimated moderate to severe complications 

of 14.5% [6,7]. A meta-analysis of the available research regarding peri-implantitis 

estimates the overall prevalence to be approximately 18.5% [8].

Due to increasing demand for these implants and the impact of the associated complications, 

resources have been directed into finding solutions that minimize their adverse effects. 

Promising solutions involve the integration of stem cells into the design of synthetic 

implants. These devices, appropriately named biomedical implants, use the principles of 

regenerative medicine to increase osseointegration, resistance to post-operative infection, 

and long-term viability of modern implants. It is the purpose of this chapter to provide an 

overview of the clinical applications of current biomedical implants within the fields of 

dentistry and orthopedic surgery.

2. Biomedical Implants

2.1. Total Joint Arthroplasty

Total joint replacement is one among the most significant developments in the history of 

orthopedics to relieve the pain and restore the mobility and physical activity of the patient. 

Between the year of 2012 and 2015, 426 K procedures have been performed, with an annual 

revision burden of approximately 10% [2]. The prosthetic design and biological factors 

equally contribute to the performance of total joint replacements. Biocompatibility and a 

well-functioning material-tissue interface is the pre-requisite for implant design. A total 

knee replacement consists of a femoral component, the tibial component and a polymer 
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spacer. Similarly, the total hip replacement consists of a stem, neck and an acetabular 

component [9–11]. The materials commonly used for joint replacement includes, metals, 

ceramic and polymers. Metals include surgical grade stainless steel, cobalt chromium 

molybdenum alloys, titanium and titanium alloys. The use of stainless steel implants has 

been dramatically decreased due to adverse tissue reactions. Currently, cobalt chromium 

molybdenum alloys and titanium are generally selected by the implant manufacturers due to 

their better corrosion resistance and biocompatibility. Common ceramic materials used in 

orthopedic implants are aluminum oxide and calcium phosphate [12]. The major drawback 

associated with ceramic materials are their high elastic modulus compared to bone which 

leads to fracture of bone and loosening of ceramic acetabular sockets [13]. However, 

calcium phosphates are a better selection due the high biocompatibility and bio reactivity 

[12]. The most popular polymeric materials used in orthopedics is ultra-high molecular 

weight polyethylene of high density polyethylene, though wear of the polymeric material is 

a major concern which leads to osteolysis and adverse tissue reactions. There have been 

several advancements in the field of orthopedic implants field to resolve the complications 

facing industries today. Modifications including nickel-free stainless steel, surface 

modifications, introduction of metallic implants with lower modulus, etc. are some of them 

[14]. Aseptic loosening is the main cause of implant failure and statistics shows that 

approximately 70% of hip revisions and 44% of knee revisions are due to aseptic loosening. 

Whereas 1–2% failure occurs due to infection, which is considered as an uncommon 

complication. Biomechanical factors such as micromotion plays a major role in aseptic 

loosening. Hence, in addition to the implant material characteristics, biological factors need 

to be considered while accounting for means to improve biomedical implants.

2.2. Dental Implants

More than 5 million dental implants are performed every year and it is expected to increase 

12–15 % in the coming years [15]. Approximately 5–11% of dental implants fail within 10–

15 years and must be removed [16–21]. Major factors associated with dental implant failure 

are categorized as biological or mechanical factors, such as peri-implantitis (peri-implant 

inflammation leading to bone loss); degradation of structural materials and connections; 

implant design; bone density; surgical and prosthetic complications; as well as patient-

specific conditions [21,22]. However, the etiology of peri-implantitis remains unclear, as 

well as how the risk factors interact, leading to implant failures [16,23]. Dental implant 

systems consist of three parts: the implant fixture, which is a metallic threaded cylinder that 

will be surgically placed into the jawbone; an abutment, a temporary structure that covers 

the top of the implant and stays until healing occurs and a crown, permanent tooth, on the 

top of the implant, which performs the function of the normal tooth. Titanium and its alloys 

are considered as the gold standard for the fabrication of endosseous dental implants, 

although there are various other materials such as gold, stainless steel, cobalt chromium, etc. 

that have been used.

Irrespective of the implant-abutment connection type [24], there will be a micro gap formed 

between the components in which oral fluids, glycoproteins, and microorganisms will 

penetrate [25–27] and form a biofilm. This biofilm will eventually act like a lubricant and 

reduce the mechanical integrity of the joint [27–29]. Further, micromotion associated with 
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chewing can lead to friction and wear of the implant-abutment surfaces [30]. 

Osteointegration is an important requirement for the functioning of dental implants. There 

are several factors that dictates bone formation around the implant including the material, 

implant design, biomechanical factors, surface charge, surface chemistry and surface 

topography. Even though, implant design factors play an important role in their overall 

success, clinical reports also demonstrated a patient health condition and the quality of the 

bone make a significant impact on the healing process. The quality of the periodontal bone is 

the major limiting factor for the success of the dental implant.

2.3. Spinal Fusion

Arthrodesis, the surgical fixation of a joint to promote bone fusion, is widely considered as 

the gold standard treatment option for intervertebral disc degeneration in the cervical, 

thoracic and lumbar spine [31–33]. The surgery can be performed in a variety of ways 

including both anterior and posterior approaches. In either case, current techniques involve 

removal of the intervertebral disc, replacement with an interbody cage and the placement of 

supporting plates and screws. The success of the procedure depends largely upon 

osteoconduction (the ability of bone to grow through the implant) osteoinduction (the 

stimulation of pluripotent cells to develop into osteoblasts) and osteointegration (the ability 

of an implant to interface with living bone) [34,35]. In addition, the implant must be able to 

withstand biomechanical forces. Therefore, it is imperative that the implant is fitted and 

place properly in order to avoid unnecessary mechanical stress [36]. Traditionally, an 

autologous bone graft taken from the iliac crest is used due to its remarkable capacity in all 

three areas. Furthermore, the use of the host’s own tissue greatly reduces the risk of 

infection and immunoreactions. However, these benefits come at the cost of a longer 

procedure length and the risk of complications associated with harvesting the graft. 

Documented complications include infection, fracture, donor site pain, poor cosmetic 

outcomes, etc. [37]. These risks increase if the patient requires a multiple level fusion 

procedure that necessitates a larger area of donor bone to be harvested. Due to these 

limitations, alternative biomaterials to replace bone grafting have become the focus moving 

forward. Biomaterials are chosen based on biocompatibility, surface features and rigidity 

[34]. Optimization of these characteristics has led to combination approaches that 

incorporate osteoinductive capabilities of stem cells and growth factors with bio-inert 

scaffolds.

3. Regenerative Medicine

Regenerative medicine is an emerging field of medical science that deals with the functional 

restoration of specific tissues and/or organs of the patients suffering from trauma or other 

chronic diseases. The frontline of the regenerative medicine strategy is stem cells, which 

pave the foundation for all the tissues, organs and organ systems in our body. There are four 

different types of stem cells, i.e., unipotent, multipotent, pluripotent and toptipotent. The 

only totipotent stem cells in the human body are the Zygote, which gives rise to a complete 

organism. Based on the regenerative application, the stem cells can be categorized into 

embryonic stem cells (ESCs), tissue-specific progenitor stem cells (TSPSCs), mesenchymal 

stem cells (MSCs), umbilical cord stem cells (UCSCs), bone marrow stem cells (BMSCs), 
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and induced pluripotent stem cells (iPSCs). Human ESCs (pluripotent) were isolated by 

Thomson in 1998 (38). Their pluripotency is governed by functional dynamics of the Oct4, 

SOX2, NANOG and other transcription factors (39). These ESCs can be differentiated into 

any type of cells representing three germ layers of the body and represents a promising 

source of regenerative medicine for tissue regeneration and therapy. However, ethical 

concerns limit the application of this field. TSPSCs were well studied and developed for 

organoid culture, which further continued by the use of MSCs as the next-generation 

organoid culture system along with UCSCs, BMSCs. Figure 1 describes a schematic 

representation of the stem cell lineage of bone marrow mesenchymal stem cells into 

different mesodermal cell types.

The field of iPSCs was a novel strategy that emerged in 2006, by Takahashi and Yamanaka 

who generated ESCs like cells through the genetic incorporation of factors such as Sox2, 

Oct3/4, K1f4 and c-Myc into skin fibroblasts [40]. The generation of iPSCs opened up a new 

window for a potential therapeutic strategy towards age-related macular degeneration, 

Alzheimer’s disease and other neurodegenerative disorders [41–43]. It was speculated that 

by 2020, there would be a wide array of tissues, organoids, and organs from adult stem cells, 

with the potential of transplantation for various diseases [44]. In addition, stem cell therapies 

will provide considerable benefits to patients suffering from injuries. The advancement in 

the field of regenerative medicine also involved in the benefit of the biomedical implantation 

field for the betterment of implant performance. Some of the strategies already developed in 

this context will be described in the next section.

4. Regenerative Medicine Strategies in Biomedical Implants

4.1. Orthopedic and Dental Implants

4.1.1 Platelet Rich Plasma and Platelet-rich Fibrin—Platelet-rich plasma is defined 

as a volume of plasma that has a platelet count above the baseline [46]. Even though the 

term PRP means the combination of platelets and plasma, they are actually seen as various 

forms such as pure PRP, leukocyte-rich PRP, pure platelet-rich fibrin and leukocyte and 

platelet-rich fibrin [47–50]. Although the most visible function of platelets is coagulation, 

they are a rich source of growth factors, immune system messengers, enzymes and other 

bioactive components important for tissue healing and repair. The growth factors present in 

PRP includes: platelet-derived growth factor, transforming growth factor-beta, insulin-like 

growth factor, epidermal growth factor, fibroblast growth factor-2, and connective tissue 

growth factor. In addition to that cytokine, histamines, fibrinogen, fibronectin, serotonin, 

complement C5a, von willebrand factor, etc. are also present in a rich concentration. Hence, 

they have been increasingly used for a various applications such as augmentation of wound 

hemostasis, wound sealing and wound healing. Recently, the use of PRP was observed in 

arthroplasty settings. In joint arthroplasty, PRP is used in a more superficial way, ie, either 

injecting into the surgical area or spraying around the wound before closure of the wound 

[46]. However, the research information of the use of PRP in THA, TKA, total shoulder 

arthroplasty (TSA) and total ankle arthroplasty (TAA) is limited because of the lack of 

proper control. Other important information, such as the composition of the PRP and the 

processing condition are also unavailable in the literature, which leads to inconclusive 
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information. However, there are reports about the decreasing post-operative pain after PRP 

use [46].

4.1.2. Smart Biomaterial-tissue Interface—The development of a smart biomaterial-

tissue interface to modulate cellular response is another less explored area. The drug-eluting 

implant is already established for the controlled release of the drug, in order to reduce the 

pain and infection. However, this strategy has a very good application for generating a smart 

material-tissue interface, where a controlled in situ cell delivery and regeneration, cell 

transplantation therapy or release of biological cues for the activation of stem cells to early 

differentiation and secretion of a bone matrix can be achievable. Unlike tissue-engineered 

scaffolds, where the cell-seeded matrix can regenerate a bone matrix, biomedical metal 

implants cannot carry cells for a prolonged duration. However, the application of dynamic 

cell-based devices or interfaces can be adopted to develop a reservoir of cells or 

biomolecules whenever needed [51,52]. Another important problem associated with metal 

implants are the corrosion of the implant and subsequent release of metal ions and particles 

to the surrounding leading to inflammation and osteolysis. Stimuli-sensitive hydrogels, 

which respond to the inflammation to release proteins or molecule to block the pro-

inflammatory proteins and thereby reduce the signaling of inflammation can eventually 

prevent the progression of inflammation. It was established that trafficking mesenchymal 

stem cells to the peri-implant sites would enhance the regenerative process. Hence, several 

researchers have been involved in injecting MSC pool to the injured site.

4.1.3. Stem Cell Therapy—Recent advancements in regenerative medicine has opened 

up a new therapeutic strategy for osteoarthritis. The inability of articular cartilage to self-

repair requires an additional option to improve chondrogenesis. The delivery of 

mesenchymal stem cells will be a good attempt to overcome the challenge [53–55].

Adult stem cells, such as bone marrow-derived mesenchymal stem cells, adipose-derived 

stem cells and synovium-derived stem cells have the potential to generate cartilage in the 

presence of specific growth factors such as TGF-b and BMPs. The stem cell therapy for 

arthritis treatment is a new concept pioneered by advanced regenerative medicine. The 

strategy utilizes the body’s natural ability to heal the degenerated joint by transplanting new 

stem cells and other factors. According to this strategy, invasive surgery can be avoided. 

However, the method may not be efficient to those who already at the end stage of 

osteoarthritis and hip replacement will be the only option to maintain the physical activity. 

However, a combined effort of stem cell therapy with that of joint replacement will open a 

new solution to reduce the time of bone integration effectively. One of the major challenges 

associated with stem cell therapy is the presence of a high level of pro-inflammatory 

cytokines, which may interfere with the stem cell functionality towards chondrogenic 

differentiation [55],[56]. Reports suggest that the presence of pro-inflammatory cytokines 

affects the mature tissue engineered constructs as well and leads to degradation [55,57]. 

Recently, Brunger et al. developed engineered stem cells for autonomously regulated closed 

looped delivery of anti-inflammatory cytokines in response to pro-inflammatory cytokines 

[58]. The study used genome editing with CRISPR/Cas9 system to create stem cells that 

generates anti-inflammatory factors in an autoregulated manner. This development is a 
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breakthrough in regenerative medicine, which has a high potential for the efficient recovery 

of orthopedic patients with total joint replacements [58].

Another approach is to use bone marrow mesenchymal stem cell associated metal implants. 

Zhao et al., 2014 reported a successful method for the treatment of young patients with 

osteonecrosis of the femoral head. In this study, a vascularized iliac bone graft was 

implanted along with a tantalum rod and assessed on an average of 65–70 months compared 

to a control. There was a promising outcome in end-stage ONFH patients with a 

vascularized iliac graft. The study suggested that the involvement of a vascularized fibular 

graft on the articular surface helped the primary callus formation, which has osteoinductive 

and osteoconductive factors [59].

A stem cell strategy has been widely used in dentistry [60]. As discussed previously, one of 

the limitations associated with the initial placement of the dental implant is the availability 

of adequate bone volume to maintain biomechanical loading. In several cases, the loss of 

alveolar bone will lead to poor bonding of dental implants on site. Even though autogenous 

bone grafting was considered as a gold standard, the availability of graft and donor site 

morbidity may limit their success. However, stem cells have the potential to regenerate bone 

using a tissue-engineered scaffold with specific growth factors. Several studies have reported 

the successful application of this strategy in dental implantation as it significantly improved 

bone formation and presented adequate weight and height of the bone for implant placement 

[61–66]. Figure 2 depicts the overall regenerative medicine strategies applicable for the 

biomedical field.

4.1.4 Tissue-engineered Cell Sheet—Stem cell therapy usually requires isolation of 

mesenchymal stem cells from various sources in vitro, which is a tedious procedure. 

Recently, new tissue engineering approaches have developed to use cell sheets for bone 

regeneration. In this technique, enzymatic digestion and isolation of the cells is not required. 

In addition, cell-cell contact will be intact in the cell sheet which provides a better 

environment for the regeneration of bone. Several studies have been performed to observe 

the applicability of this methodology for bone integration [67–70]. In the case of orthopedic 

implants, several approaches have been adopted to modify the surface of implants, such as 

physical, chemical and biochemical approaches. Most of these methods show significant 

improvements in osteointegration. However, at times, when pre-existing bone has weak 

osteogenic capacity and vasculature, obtaining osteointegration with surface modification 

alone is difficult. Though tissue-engineering approaches to develop bone grafts can be 

adopted to heal small bone defects, the strategy can be attempted to improve bone 

integration around orthopedic implants as well. Zhou et al developed a MSC-implant 

complex in vitro using partially mineralized cell sheets. After 4 weeks of in vitro culture 

under osteogenic medium, ECM deposition was observed under SEM. Further, in vivo 

evaluation confirmed an increase in bone formation as well as enhanced expression of 

VEGF to improve vascularization [68]. The advantage of this method is to use patient-

specific cells to prepare an MSC-implant with their own MSC sheets to improve 

osteointegration. A lot more research has to be done in this area to utilize this method for 

actual clinical applications. Le et al. developed a bio-implant ensheathed in multi-layered 

cell sheets [71]. They co-cultured immortalized human cementoblasts and human 
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cementifying fibroma cells. In addition, GFP (Green Fluorescent Protein) tagged human 

umbilical vein endothelial cells and epithelial cells were also employed to generate multi-

layered cell sheets. The results of the study clearly demonstrated the involvement of each 

cell type in a fixture of the implant with newly formed calcified tissue on the surface of the 

fixture. In addition, the presence of oxytalan fibers was evident on the bi-layered and tri-

layered cell sheets similar to periodontal tissue. This study provides us clear evidence for the 

involvement of regenerative medicine strategies in biomedical implantation (Figure 3).

4.2. Spinal Fusion

Throughout the history of spinal fusion procedures, it was widely accepted that autologous 

bone grafts harvested from the iliac crest was the “gold standard” disc replacement due to its 

osteoconductive, osteointegrative and osteogenic properties [34,72,73]. However, research 

has shown that bone graft harvesting is associated with an increased morbidity rates, 

numerous complications and increased surgical time. Moreover, a systematic review of 

outcomes associated with procedures that commonly use bone harvesting suggests the 

overall morbidity rate to be 19.37% (37). Due to these limitations, biocompatible materials 

such as titanium have become more popular. However, titanium, while having similar 

efficacy as autologous bone grafts, has limitations due to its mechanical properties as well as 

its radiopacity [74]. Therefore, research has been directed toward alternative biomaterials 

and bioactive substances such as polyester scaffolds, growth factors and stem cells in order 

to decrease the rate of nonunions and other complications.

Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor β (TGF-

β) superfamily, are growth factors implicated in postnatal osteogenesis as well as normal 

growth in utero [75,76]. BMPs act through a multitude of pathways that involve the 

regulation of hormones and the stimulation of mesenchymal stem cells to differentiate into 

osteoprogenitor cells [75–77]. Since their first discovery in 1965 by Marshall Urist, BMPs 

have been modified to maximize their clinical applications in orthopedic surgery [78]. 

Approved by the FDA in 2002 for anterior lumbar interbody fusion, the INFUSE bone graft 

delivers rhBMP-2 through an absorbable collagen sponge that is placed in the intervertebral 

space [79,80]. This eliminates the need for an additional surgery for bone harvesting and its 

associated complications. Many studies have suggested that rhBMP-2 discs outcompeted 

autologous bone grafts and reported fusion rates to be as high as 100% [81]. Eager to 

eliminate the risk and morbidity associated with autologous bone grafting, the widespread 

usage of rhBMP-2 began as did off label usage [77,79,80]. Years later, studies began to 

report severe complications in both the cervical and lumbar spine associated with rhBMP-2, 

most likely related to the very high concentrations used. This prompted the FDA to place a 

warning on the use of rhBMP-2 for cervical fusions. Complications in the cervical neck 

included increased risk of death, severe dysphagia, and compromising of the airway [79]. As 

a result, research focused on changing the delivery mechanism of rhBMP-2 so that the 

dosage and tissue exposure can be finely tuned. Extensive research has provided a plethora 

of delivery strategies including metallic implants, injectable hydrogels, polymer scaffolds, 

ceramic cages as well as combination products [82–86]. Due to the vast amount of available 

materials, these studies are ongoing and each year many more products come to light. The 
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overall goal of these studies is to create an efficient, reproducible, and effective substitute for 

current gold standard disc replacements so that their complications can be avoided.

Similar to the work that is previously described, mesenchymal stromal cells, have been 

extensively studied for potential applications in vertebral fusion. MSCs are capable of 

releasing osteogenic compounds that recruit neighboring cells and induce the formation of 

bone. Results even suggest that these BMPs released from implanted MSCs may be more 

effective than direct delivery of rhBMP-2 via scaffolding. Therefore, the bulk of research 

regarding their application in spinal fusion revolves around finding an acceptable carrier that 

allows adequate exposure and differentiation that is required for fusion. A vast diversity of 

materials have been studied including metal cages, ceramics, synthetic polymers, hydrogels, 

nano scaffolds, etc. [73,87–91]; all with varying results. The results of these studies are 

highly variable depending on the scaffold and the controls they are measured against. 

Currently, there does not seem to be one single-handed winner for either the delivery 

mechanism or tissue from which MSCs are derived.

5. Conclusion

The chapter summarizes some recent advancements in the biomedical implant area by 

incorporating regenerative medicine strategies. Both metallic implants and the tissue 

engineering research field face challenges when reaching orthopedic applications in terms of 

bio-integration and mechanical properties respectively. Combining the advantages of both 

fields will assist in overcoming the challenges and clinical limitations, which has already 

been shown significant positive results by recent studies.
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Figure 1. 
The mesengenic process was first envisioned in the late 1980s as a pathway for marrow 

mesenchymal stem cells (MSCs) to differentiate into a number of mesodermal cell types that 

could contribute to the fabrication of bone, cartilage, and muscle. It is now clear that MSCs 

can be isolated from many tissues because they are derived from perivascular cells and 

pericytes [45]. Used with permission from Elsevier.
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Figure 2. 
Schematic diagram represents different regenerative medicine strategies with potential 

applications in the biomedical implant field.
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Figure 3. 
a) Schematic representation of the bio-implant procedure. The main purpose of this study is 

periodontium regeneration around the implant fixture. (b) A combination of cell sheets used 

in this study. Various types of cell sheets (panel a) are described. (c) Maxillary first molar 

and HA-coated dental implant fixture. (d) Micro CT image of 8 weeks after transplantation 

of the HA-coated fixture shows the alveolar bone compactly healed around the fixture. (e) 

3D reconstruction of the micro CT results at 8 weeks after transplantation of the HA-coated 

fixture. (f) HE-stained image at 8 weeks after transplantation of the HA-coated fixture 

showing osseointegration between the alveolar bone and the fixture. Black dashed line 

shows the margin of the removed implant fixture. (g) RT-PCR results of immortalized 

human cells (cropped gel image). The ihCEMs expressed ALP, BSP and CEMP-1 [71].
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