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Abstract Despite the well-recognized importance of immunoglobulin therapy individual-
ization during the treatment of chronic inflammatory demyelinating polyneuropathy (CIDP),
the pathway to best achieve optimization is unknown. There are many pharmacokinetic
and immunobiologic variables that can potentially influence the appropriateness of any indi-
vidual therapy. Although identification of specific autoantibodies and their targets has only
been accomplished in a minority of patients with CIDP already the diagnostic and treatment
implications of specific autoantibody detection are being realized. Individual variability in IgG
pharmacokinetic properties including IgG catabolic rates and distribution, as well as the IgG
level necessary for disease control also require consideration during the optimization pro-
cess. For optimization to be successful there must be a measure of treatment response
that has a clinically meaningful interpretation. There are currently available well-defined and
validated clinical assessment tools and outcome measures that are well suited for this pur
pose. While there remains much to learn on how best to manipulate immunopathology
and immunoglobulin pharmacokinetics in the most favorable way, there currently exists an
understanding of these principles to a degree sufficient to begin to develop rational and
evidence-based treatment optimization strategies.
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Introduction

Intravenous immunoglobulin (IVIG), plasmaphere-
sis (PE), and corticosteroids (CS) are first line CIDP
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treatment options (Joint Task Force of the EFNS and
the PNS, 2010). Existing trials have focused on the effi-
cacy of immunotherapy in groups of patients with CIDP
(Hughes et al., 2008), with less emphasis placed on
understanding the variability of treatment responses
in individual patients (Pestronk et al., 1988, Donaghy
etal., 1994, Attarian et al., 2011, Eftimov et al., 2014,
Léger, 2014). What does the existing literature tell
us about the immunobiologic and immunoglobulin
pharmacokinetic determinants of treatment response,
and how might we manipulate these in our favor?
This review discusses how our increasing knowledge
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of specific autoantibodies and individual variations in
IgG metabolism can be utilized with disease-specific
clinical outcome assessments to individually tailor
therapy.

The concept of optimizing immunotherapy for indi-
vidual patients with inflammatory neuropathies is not
new. For IVIG in CIDR current guidelines recommend
using the lowest effective maintenance dose and sug-
gest that stable patients undergo periodic dose reduc-
tion or interval lengthening trials to establish the need
for ongoing therapy (Joint Task Force of the EFNS and
the PNS, 2010). The observation that in one clinical
trial 44% of patients treated with placebo in addition
to previous medications were able to reduce mean
weekly doses of CS or IVIG by greater than 20%
(RMC Trial Group, 2009) and in another trial 40% of
placebo-treated patients did not relapse even though
an IVIG dependency test was required prior to random-
ization (van Schaik et al., 2018) indicates that overtreat-
ment is common and not well addressed in clinical
practice. The importance of treatment individualization
as highlighted in current guidelines and supported by
the findings in prior clinical trials is indisputable. What
is less certain, however, is the best strategy by which
to achieve that goal. There is much to be learned on
how to escalate or de-escalate IVIG therapy in such
a way that maximizes clinical efficacy and minimizes
over-exposure and cost.

One important determinant of IVIG optimization is
how best to manage and measure wear-off. Wear-off is
the cyclic or periodic occurrence of clinical deterioration
at an interval following an IVIG infusion. It is unknown
if reducing wear-off prevents permanent damage or if
some degree of end of cycle deterioration is tolerated
without accumulating disability. From a pathobiologic
perspective, wear-off implies that disability, at least to
some extent, cannot be solely attributed to inflamma-
tory damage and destruction of myelin or axon itself.
There is a growing appreciation that dysfunction at the
nodes of Ranvier plays an early pathologic role in some
patients (Pollard and Armati, 2011, Berger et al., 2013,
Querol etal.,, 2017) and that rapid clinical improve-
ment following IVIG or PE may be driven by reversible
nodal or paranodal immune-mediated dysfunction (Pol-
lard and Armati, 2011, Berger et al., 2013). Electrophys-
iologically, reversible conduction block and decreased
compound muscle action potential amplitudes have
been demonstrated within the context of autoantibod-
ies that bind to nodal and paranodal proteins or ganglio-
side complexes (Harschnitz et al., 2014, Notturno et al.,
2014, Delmont et al., 2017). These observations imply
that although IVIG may temporarily reduce the effects
of autoantibodies, as the concentration of therapeu-
tic 1IgG dwindles the pathogenic process re-emerges
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which in turn leads to the clinical occurrence of wear-off
(Berger et al., 2013, Rojavin et al., 2016).

In this review, we discuss how increasing knowl-
edge of specific autoantibodies and individual vari-
ations in IgG metabolism, together with frequent
quantitative strength and disability measurements,
might be used to develop rational individualized treat-
ment approaches. Although the term “immunoglobu-
lin” when used herein refers to immunoglobulin admin-
istration intravenously (IVIG) or subcutaneously (SCIG),
given the wealth of IVIG clinical data relative to SCIG,
our focus is on optimization of IVIG during the treat-
ment of CIDP,

Immunology of CIDP: Will Knowledge
of Antibodies Change Treatment?

The diagnosis of CIDP relies on the combination
of characteristic symptoms and signs, together with
abnormalities on nerve conduction studies indicative
of peripheral nerve demyelination or conduction block
(Joint Task Force of the EFNS and the PNS, 2010).
Albuminocytologic dissociation in cerebrospinal fluid,
nerve enlargement or enhancement by magnetic res-
onance imaging (MRI), and characteristic histopatho-
logic changes on nerve biopsy can add confidence
in cases in which the electrophysiologic abnormalities
are equivocal, but are not themselves diagnostic. The
observation that almost half of the US patients that
carry a diagnosis of CIDP are misdiagnosed (Allen and
Lewis, 2015, Allen et al., 2018) underscores the chal-
lenges encountered in defining a disorder without a
reliable biologic marker. In a tissue-specific autoim-
mune disease like CIDP an improved understanding
of the characteristics of pathogenic antibodies and
their target antigens has the capacity to not only
improve CIDP diagnostic accuracy but may be criti-
cal when determining disease-specific immunotherapy
approaches.

In order to understand how specific autoantibod-
ies influence immunoglobulin treatment it is useful
to understand what is known about IgG’s mechanism
of action. IgG therapy is thought to act by reduc-
ing the amounts and/or effector functions of patho-
logic autoantibodies (Berger et al., 2013). Mechanisms
dependent on competition between therapeutic (nor
mal) and pathogenic IgG include saturating neonatal
Fc receptors (FcRn), anti-idiotype neutralization, inhi-
bition of complement deposition, and possibly feed-
back inhibition of B-cell antibody production (Kuitwaard
et al., 2009; Berger et al., 2013, Schwab and Nimmer
jahn, 2013; Espéli et al., 2016). Each of these mecha-
nisms has the potential for manipulation, which may be
influenced by the specific autoantibody. For example,
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Table 1. Properties of major serum immunoglobulin classes and subclasses.
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Complement classical Binding Binding to
Ig type % of serum IgG Half-life (days) activation pathway to FcRn myeloid FcRs
IgA (0.60-3.50)* 4-6 - - (FcaRs)
IgM (0.40-2.30)* 5-6 ++++ - -
IgG1 67-75% 23-28 +++ ++++ +++
IgG2 22-25% 23-28 + ++ ++
IgG3 7-10% 5-10 +++ ++ +++
IgG4 3-5% 23-28 - +++ +

IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; FcaR, IgA Fc receptor; FcR, receptors specific for the Fc region of

immunoglobulins; FcRn, neonatal Fc receptor.

*For IgA and IgM, serum concentration in g/l is given. For IgG subclasses, % of total IgG is given. Normal total IgG concentrations are

7.25-12.50 g/l in most laboratories.

autoantibody Fc domain structure is defined by class
(I9G, IgM, or IgA) and subclass (IgG1-4). If this struc-
ture was known for any particular autoantibody, it might
help predict the likelihood that FcRn blocking or sat-
urating agents will be effective. Knowing the differ-
ent Fc domain structures and the effector mecha-
nisms they recruit (Table 1) may also help determine
which immunotherapy is most likely to be effective in
any given disease subset. There is much to learn on
how specific autoantibodies influence immunoglobu-
lin treatment in any specific patient. Given the obser
vations that some patients with CIDP carry on for
years with cyclic IVIG treatment-related fluctuations,
one underlying principal of IVIG therapy is that it com-
petes with but does not fundamentally alter autoanti-
body production or function (Dacci et al., 2010; Pollard
and Armati, 2011, Kokubun et al., 2013; Debs et al.,
2017).

There are scenarios in which autoantibody recog-
nition may already directly influence individualization
of immunotherapy. Anti-neurofascin 155 (NF155) anti-
bodies have been detected in 3.3%-7.1% of patients
with chronic inflammatory polyneuropathies (Ng et al.,
2012, Querol et al., 2014; Querol and llla, 2015, Devaux
etal., 2016) and between 2.4% and 75% of patients
have been found to have anti-contactin 1 (CNTNT)
antibodies (Querol et al., 2013; Yan et al., 2014, Miura
et al., 2015). NF155 and CNTN1 are localized to the
paranodal region and both antibodies are of the IgG4
isotype. One emerging feature in patients that harbor
these antibodies is a reportedly poor response to IVIG
but more favorable responses to CS and B-cell deple-
tion therapy. One potential explanation for why IVIG
may be less effective in these subsets of CIDP patients
is that the IgG4 isotype does not efficiently activate
complement and has a low affinity for Fc receptors
on effector cells (Labasque etal., 2014; Vidarsson
etal., 2014). Although these anecdotal treatment
observations currently based on only small case series
need confirmation in larger groups of patients, detec-
tion of NF155 and CNTN1 autoantibodies might shift
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treatment paradigms for autoantibody-defined subsets
of patients in consideration of their specific pathophys-
iology. Future treatment strategies may take earlier
advantage of CS and anti-B-cell therapies such as
rituximab, with a deemphasized role of IVIG (Huijbers
etal., 2015; Halder etal., 2016). Yet-to-be identified
autoantibodies and target antigens might provide
similar insight into other groups of CIDP patients.
Furthermore, knowledge of the specificity and affinity
of autoantibodies and recognition of the target antigen
will likely facilitate utilization of new and improved
therapies. Agents in clinical development include
FcRn blockers (Zuercher et al., 2016, Kiessling et al.,
2017), complement inhibitors (Fitzpatrick et al., 2011),
antigen-specific adsorbents/binding site blockers (Her
rendorff et al., 2017), and blockers of pro-inflammatory
Fc receptors (Schwab and Nimmerjahn, 2013).

IgG Metabolism and its Impact
on Individualized Therapy

When considering strategies for optimization of
immunoglobulin therapy, an understanding of the indi-
vidual variations in the distribution and metabolism
of therapeutic IgG may be equal in importance to
the characteristics of pathological autoantibodies. The
speed with which serum IgG levels rise depends on
the method of IgG delivery. When immunoglobulin
is administered intravascularly, serum IgG levels peak
immediately (Fig. 1) and then drop by about 50% over
2-4 days as IgG is distributed into the total extra-
cellular fluid volume (Bonilla, 2008). In contrast to IV
administration, following subcutaneous immunoglobu-
lin administration, serum IgG levels rise more slowly,
peaking at 48-72h (Fig. 2) (Berger, 2004; Bonilla,
2008). Regardless of the route of delivery, once IgG
reaches the intravascular space, catabolism proceeds
as a first-order process with a half-life of 21-30days
(Bonilla, 2008). The relatively slow catabolism of IgG,
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Figure 1. (A) Schematic model for distribution and metabolism of IgG illustrating a “two compartment model.” Note that newly
synthesized IgG as well as subcutaneously administered IgG (SCIG) are initially in the extravascular compartment and then
move into the intravascular compartment by diffusion and lymphatic circulation. (B) Pharmacokinetics of serum IgG after a dose
of IVIG. IVIG, intravenous immunoglobulin; SCIG, subcutaneous immunoglobulin (Bonilla, 2008). Copyright 2008. Reprinted

with permission from Elsevier.
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Figure 2. Role of FcRn in determining survival of IgG in the circulation. Left panel: under normal conditions, IgG from the serum
binds to FcRn and goes through an endosomal pathway which avoids lysosomal catabolism. The IgG is thus returned intact
to the circulation. Right panel: If the serum IgG level is raised by exogenous IgG, FcRn becomes saturated and much of the
IgG goes through the default endosomal pathway which results in lysosomal catabolism. Because of the high proportion
of exogenous normal IgG, endogenous pathogenic IgG is preferentially degraded (Yu and Lennon, 1999). Copyright 1999
Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

as compared to other plasma proteins, is due to a sat-
urable endothelial cell receptor, FcRn, which protects
endocytosed IgG from lysosomal degradation (Fig. 2).

The principle of first-order kinetics is one fun-
damental concept that requires consideration when
attempting to optimize immunoglobulin therapy.
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First-order kinetics means that the higher the serum
IgG level, the faster it will be catabolized (Fig. 3) (Wald-
mann and Strober, 1969). As illustrated in the figure,
if the 1gG concentration is raised from 8 g/l to 30¢/I
the half-life drops from 28 to 11 days. High-dose IVIG
infusions can raise serum IgG concentrations to peaks
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Figure 3. High concentrations of 1gG (ie, greater than 20 g/l)
lead to rapid catabolism and shorter survival in the circula-
tion (half-life). At an IgG concentration of 30 g/l (30 mg/ml as
shown here) for example, shortly after an IVIG infusion the
half-life would be 11 days (red dashed line). In contrast, at a
normal serum IgG concentration (8 g/l) the half-life is 28 days
(Waldmann and Strober, 1969). Copyright 2016 Karger Pub-
lishers, Basel, Switzerland. Reprinted with permission.

of 30-504g/! or higher (Reinhart and Berchtold, 1992;
Dalakas, 1994). In contrast, the peak serum concen-
tration achieved with SCIG is on average only 61% of
the peak achieved with IV infusions of the same dose
(Berger etal., 2011). Whereas IVIG bolus infusions
may result in trough-to-peak serum IgG differences
greater than 100% of the overall mean, frequent
SCIG administration may result in peak-trough differ-
ences of only about 5% of the overall mean (Berger,
2004, Bonilla, 2008; Berger et al., 2011). Regardless
of whether the route of admistration is by IV or SC,
with more frequent administration of fractional doses,
the peaks and troughs will approach each other and
ultimately near “steady-state” concentrations will
be reached (Berger, 2004, Buclin etal., 2009). The
impact that these findings have on immunoglubulin
optimization becomes apperent when considering that
in Guillian—Barre Syndrome (Kuitwaard et al., 2009)
and perhaps CIDP (Debs et al., 2017) there appears to
be a serum IgG level which must be reached in order
to achieve a desirable clinical outcome. These findings
indicate that high and stable trough levels may have
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particular importance in immunoglobulin optimization
such that a satisfactory minimum IgG level is achieved
while avoiding the accelerated catabolism that comes
with high immunoglobulin peak levels. A clinical study
exploring IgG levels and clinical efficacy in patients
subjected to frequent low dose vs. less frequent
higher dose IVIG is currently underway (Kuitwaard,
personal communication, 2017).

Beyond the normal physiological characteristics of
IgG catabolism that may be manipulated to achieve
treatment optimization, there are also patient to
patient differences that influence optimization. Differ-
ent patients vary in the expression and function of
FcRn, which can also be affected by cytokines such
as tumor necrosis factor (Liu etal., 2007). The vari-
ability in FcRn is one explanation for why the half-life
of the catabolic phase has a fairly broad distribution
of 21-30days. The reasons for this variability are
currently unknown. Genetic polymorphisms in the
FcRn receptor structural gene have been studied in
only relatively few patients, but have not yet been
shown to correlate with serum IgG levels or the
response to IVIG (Fokkink etal., 2016; Vlam etal.,
2014).

Wear-Off with IVIG and What it Means
in Clinical Practice

As might be predicted based upon patient to
patient immunoglobulin  pharmacokinetic hetero-
geneity and immunopathogenic diversity, treatment
responses to IVIG can be variable between patients
and even in the same patient at different stages of
disease. One challenge that arises during IVIG treat-
ment optimization is how best to manage wear-off
and other treatment-related fluctuations, a rather
dramatic example of which is shown in Fig. 4. In
clinical practice the extent of wear-off can be highly
variable. In order to continuously maintain strength
and disability, one study found that 60% of subjects
needed IVIG at intervals <14 days (Kuitwaard et al.,
2013). Several other studies (Table 2) have shown that
many patients do better when the IVIG dosing interval
is less than the expected half-life of IgG (Broyles et al.,
2013; Rajabally et al., 2013). Clinical experience tells
us that other patients do not have clinically meaning-
ful treatment-related fluctuations and may maintain
stability with less frequent IVIG dosing at 4 to 6-week
intervals. If different IgG levels are required to counter
different autoantibodies and IgG pharmacokinetic vari-
ability influences speed of IgG catabolism in different
patients then it becomes clear that dose and interval
of immunoglobulin therapy should be individualized
and one important determinant of optimization is
quantification of treatment-related fluctuations.
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Figure 4. \Wear-off in one patient with CIDP Self-recorded daily measurement of maximum time that left upper limb can be held
outstretched (patient seated with shoulder 90° flexed and elbow extended). This non-standard outcome measure was chosen
by the patient as the most practical measure of disability in his left upper limb. IVIG was given at 1.86 g/kg every two weeks (1).
The troughs (minimum time outstretched) around the day of each IVIG treatment show that his shoulder strength weakened
as IVIG wore off. The rising baseline shows gradually increasing strength over several months indicating cumulative benefit
following increased treatment frequency from 1.86 g/kg/2.5 weeks to 1.86 g/kg/2 weeks at the start of the measurement period
(Hadden, personal communication, 2017).

Table 2. IgG doses and intervals.

Patients (%)

Mean interval receiving IgG at
Reference Patients (n) Mean Ig dose (g/kg) (weeks) interval <14 days
Lunn et al., 2016 CIDP 39 1.4 4.3 17
MMN 24
Kuitwaard et al., 2013 CIDP 25 0.43 2.4 60
Rajabally et al., 2006* CIDP 15 0.69% 6.9 13
Broyles et al., 2013 CIDP 31 0.87 4.0 25

CIDP, chronic inflammatory demyelinating polyneuropathy; IgG, immunoglobulin G; MMN, multifocal motor neuropathy; SEM, standard error
of the mean.

Note that common criteria for defining endpoints and/or selecting maintenance doses were not employed across the different studies.
*Final or lowest dose per course.

One of the major aims of the Peripheral Neuropa- trial, grip strength was shown to provide objective doc-
thy Outcome Measures Standardization (PeriNomS) umentation of global neurologic status in patients with
study was to better define the metrics used to assess CIDP not just limited to the upper limb or exclusively
and follow patients with inflammatory neuropathies motor function (Vanhoutte et al., 2013). Grip strength
(Draak et al., 2014). The authors emphasized the impor and [-RODS have also been shown to correlate with
tance of measuring disability (i.e., activities and partic- each other (Draak et al., 2016). The observation that
ipation), strength and sensory impairment, and qual- daily grip strength measurements can vary dramatically
ity of life in patients with CIDP The Inflammatory during a single IVIG treatment cycle with some patients
Rasch-built Overall Disability Scale (I-RODS), INCAT dis- showing maximum strength more than 50% higher
ability score, and grip strength measurements using than minimal strength and other patients showing no

the Martin Vigorimeter® (Martin GmbH & Co., Tutlin- significant changes (Hadden, personal communication,
gen, Germany) have emerged as strongly validated and 2017) highlights the potential for grip strength monitor
valuable assessment tools. Grip strength in particu- ing to be a useful adjunct assessment when determin-
lar provides a quantitative, immediately available result ing the IgG dose and interval most appropriate for any
that can be easily performed during physician office vis- individual patient. Further research is needed to better

its (Berger and Allen, 2015). In a randomized controlled understand what magnitude of intracycle grip strength
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and disability fluctuations are acceptable, and what
magnitude should trigger therapy changes to maximize
short-term function and minimize long-term disability.
Such questions are currently being explored in a study
which records daily grip strength and weekly disabil-
ity outcomes over a 6 month period in a cohort of
IVIG-treated CIDP patients (Allen, personal communi-
cation, 2017).

One practical consideration that commonly arises
during IVIG optimization is whether it is preferable to
adjust IVIG dose or interval. There is no best answer
to this question, and ultimately the approach to IVIG
optimization should blend individual patient treatment
responses, tolerability, and convenience of administra-
tion. However, when optimizing IVIG, it is important
to recall that (1) IVIG half-life can vary between 21
and 30days, (2) there is likely a minimum serum IgG
threshold that must be reached in order to achieve
efficacy, and (3) IgG catabolism accelerates with very
high serum IgG levels. With these points in mind, con-
sider three scenarios. In the first, clinically meaning-
ful treatment-related fluctuations are present, neces-
sitating escalated immunoglobulin therapy. Increasing
IVIG dose while keeping the interval constant may
keep the serum IgG level above the necessary thera-
peutic minimum to achieve the desired clinical effect,
but at the cost of accelerated IgG catabolism which
in turn may result in an overall higher total amount
of IgG needed (Gouilleux-Gruart et al., 2013). Alterna-
tively, fractionating the treatment into smaller doses
at shorter intervals may minimize clinical fluctuations
and immunoglobulin exposure as the serum IgG level
reaches a stable steady state with higher trough level
(Berger, 2004, Buclin et al., 2009). In the second sce-
nario, treatment-related fluctuations are unequivocally
present but are minimal without an impact on dis-
ability. In this setting no treatment modification may
be needed, since a minor degree of wear-off may
provide assurance that treatment is needed and not
over-utilized. In the third scenario, no treatment-related
fluctuations are present. In that situation, immunoglob-
ulin de-escalation is encouraged. The optimal strategy
to wean IVIG is unknown. In cases in which one impor-
tant determinant of optimization is maintaining a sta-
ble IgG steady-state trough-level, then periodic IVIG
dose reduction with stable infusion frequency may
be preferable to interval lengthening with stable dos-
ing. Regardless of whether treatment is escalated or
de-escalated, or which optimization approach is taken,
collection of validated outcomes during optimizing is of
critical importance when interpreting the response to
treatment changes.

As opposed to the general optimization comments
above that might be applied to patients already on
maintenance therapy, a useful treatment optimization
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Figure 5. One possible treatment algorithm to optimize dose
and dosing interval of immunoglobulin. (Ig=IVIG) (Lunn
et al., 2016). Reprinted with permission.

protocol designed for IVIG-naive patients was devel-
oped by Lunn etal. (2016) (Fig. 5). In this approach
the patient with CIDP is given a loading dose of 2 g/kg
IVIG, which is repeated 6 weeks later if the patient is
not fully normalized. No further IVIG is given unless
deterioration occurs, in which case regularly scheduled
IVIG is started. The time interval from IVIG treatment
to deterioration is used as the individualized interval
for all subsequent IVIG. After two further 2 g/kg load-
ing doses, the dose is reduced by 20% per course.
When relapse or wear-off emerges, that dose is set
as the lowest dose without wear-off. In a cohort of 71
patients (including 39 with CIDP and 24 with MMN)
utilization of this protocol resulted in a mean (+ stan-
dard error) dose of 1.4 + 0.6 g/kg at a mean interval of
4.3 weeks (range 0.5 to 10 weeks) (Lunn et al., 2016).
A similar, but not identical, approach has been pro-
posed by the Department of Neurology Erasmus MC
(Kuitwaard et al., 2017). Neither the Lunn nor the Eras-
mus MC approaches were designed to be dogmatic,
but both highlight important principles that should be
considered in any optimization approach. These princi-
ples include structured tapering protocols to determine
IgG dependency, close clinical monitoring for wear-off,
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Table 3. Considerations for treatment optimization
during treatment of CIDP.

1 Frequent application of outcome measurements, such as
strength impairment with grip strength dynamometry and
disability with I-RODS, can be useful to document treat-
ment response, quantify treatment-related fluctuations,
and guide maintenance therapy.

2 Some degree of “wear-off” may be acceptable and pro-
vide reassurance that continued immunotherapy is nec-
essary.

3 However, if clinically meaningful and unacceptable IVIG
treatment-related fluctuations are present, shortening
treatment intervals (more so than increasing IVIG dose)
is likely to be beneficial.

4 All  patients should undergo periodic structured
immunotherapy taper trials to assess disease activity.
5 CS should be wused only with caution in the

motor-predominant and perhaps Lewis Sumner Syn-
drome atypical CIDP variants. Worsening following CS
exposure has been described in these subsets of patients.
Patients with predominantly IgG4 autoantibodies (against
nodal and/or paranodal antigens) are unlikely to benefit
from IVIG. Treatment with CS or PE should be considered
first line in these individuals, with B-cell depletion therapy
reserved for patients refractory or intolerant to CS.

CIDP, chronic inflammatory demyelinating polyneuropathy; CS, corti-
costeroid; I-RODS, Inflammatory Rasch-built Overall Disability Scale;
IgG4, immunoglobulin G4; IVIG, intravenous immunoglobulin; PE,
plasmapheresis.

and an appreciation for treatment response variability.
The presence or absence of any specific autoantibody
will also provide rational for further refinement of the
optimization approach or immunotherapy of choice.

Conclusion

Presently there is no "best” approach to treat-
ment optimization, and there is much to be considered
when attempting to manipulate immunotherapy and
immunoglobulin pharmacokinetics in the most favor
able way (Table 3). Differences in IgG catabolic rates
and IgG level necessary for disease control are major
determinants that require consideration in every indi-
vidual patient. An evolving understanding of the het-
erogeneity of FcRn expression and function may fur
ther facilitate personalized treatment approaches. Ulti-
mately an improved understanding of the specificity
and affinity of pathogenic autoantibodies in what is
now broadly considered to be idiopathic CIDP com-
bined with what is known about immunoglobulin phar
macokinetics, may provide clinicians the most precise
pathway to optimal therapy selection and the roadmap
to maximize the effects of that therapy. Utilization
of validated outcome measures during routine clini-
cal care is of great importance in order to objectify
the response to treatment, quantify treatment-related
fluctuations, and detect relapse in patients undergoing
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therapy weaning or suspension. As our ability to ratio-
nally design and assess personalized therapeutic reg-
imens improves so too does our capacity to explore
other yet-to-be answered questions, including under
standing the long-term impact of short-term optimiza-
tion and understanding which optimized interventions
are not only the most efficacious but also the most
cost-effective.
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