
132  |  wileyonlinelibrary.com/journal/imr	�  Immunological Reviews. 2018;284:132–147.

1  | INTRODUC TION

The unique character of adaptive immune receptor genes has been ex-
ploited in numerous ways to investigate the human immune system. 
Knowledge of lymphocyte development processes, and inferences 
based on existing paradigms of immune mechanisms, enable us to use 
the unique information embedded in the DNA sequence of the immune 
receptor repertoires to study human immune responses, where previ-
ously such insights could only be gained in animal models. In particular, 
B cell receptors (BCR) offer a wealth of information, being subjected 

to somatic processes of mutation and class switching after activation 
by antigen. Since these receptors can be secreted as antibodies they 
are of interest in many different areas of immunology as well as in the 
pharmaceutical industry where there are already more than 50 thera-
peutic antibodies approved for clinical use with many more in the pipe-
line.1 In addition, the elucidation of BCR specificities facilitates their 
use as single chain fragment variable regions (ScFv) in making Chimeric 
antigen receptors for T cell immunotherapy (CAR-T cells).2

The clonal selection theory of immune responses is predicated 
on the existence of a hugely diverse set of specificities, from which 
the chance of finding a match to the antigen is high. Cells that re-
spond to antigen are expanded in the repertoire, may also be affinity 
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Summary
The human immunoglobulin repertoire is a hugely diverse set of sequences that are 
formed by processes of gene rearrangement, heavy and light chain gene assortment, 
class switching and somatic hypermutation. Early B cell development produces di-
verse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that 
can bind many foreign antigens but which has had self-reactive B cells removed. Later 
antigen-dependent development processes adjust the antigen affinity of the recep-
tor by somatic hypermutation. The effector mechanism of the antibody is also ad-
justed, by switching the class of the antibody from IgM to one of seven other classes 
depending on the required function. There are many instances in human biology 
where positive and negative selection forces can act to shape the immunoglobulin 
repertoire and therefore repertoire analysis can provide useful information on infec-
tion control, vaccination efficacy, autoimmune diseases, and cancer. It can also be 
used to identify antigen-specific sequences that may be of use in therapeutics. The 
juxtaposition of lymphocyte development and numerical evaluation of immune rep-
ertoires has resulted in the growth of a new sub-speciality in immunology where 
immunologists and computer scientists/physicists collaborate to assess immune rep-
ertoires and develop models of immune action.
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matured in the germinal center, and are therefore able to meet the 
challenge in force across many different anatomical sites. Resolution 
of the response after the infection is defeated leaves behind memory 

cells carrying the effective BCRs in order to provide faster and more 
efficient protection, with greater affinity, should the same chal-
lenge be encountered again. The potential diversity of the naïve 

FIGURE 1  (a) Variable (V), Diversity (D) and Joining (J) gene segments are arranged in a non-functional state in the germline. During V(D)
J recombination, a V, a D and a J gene segment (just V and J in the case of light chains) are brought together at random. RSS sequences ensure 
gene segments are recombined in the correct order to form a functional variable region sequence. Blue, orange and purple rectangles represent 
V, D, and J gene segments, respectively, with gray leader regions upstream of the V genes. Turquoise and red triangles represent 12RSS and 
23RSS, respectively. Constant region exons are represented by green rectangles. (b) Functional variable regions are composed of four conserved 
structural framework regions (FR) and three more diverse complementarity determining regions (CDR). The CDR3 regions are the most diverse as 
they span multiple gene segments and contain random nucleotide addition. C) The CDR loops make the most contact with antigen (PDB ID: 1FVC)
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immunoglobulin repertoire has been estimated to be in excess of 1018, 
which is 105 times more than the estimated number of B cells in the 
body.3 The enormous diversity facilitated by V(D)J recombination has 
the disadvantage that some B cells may carry receptors that bind self-
epitopes, leading to autoimmune disease, so we need mechanisms of 
tolerance to remove such cells. B cell receptors which bind self-antigen 
in the bone marrow are selected against via receptor editing (where 
the light chain of the B cell receptor is exchanged for a different light 
chain in an attempt to avoid self-reactivity) or cell death. B cell recep-
tors which do not bind self-antigen proliferate and are released into 
the peripheral blood. Autoimmune disease may occur when central 
tolerance fails to remove autoreactive B cells before they leave the 
bone marrow. Several autoimmune diseases are associated with de-
fective central tolerance mechanisms, for example, systemic lupus er-
ythematosus (SLE),4 rheumatoid arthritis (RA)5, and type 1 diabetes.6 
Autoimmune disease can also be a result of failed peripheral toler-
ance mechanisms, where self-reactivity is acquired outside the bone 
marrow and needs to be removed. The affinity maturation process of 
adapting to immunological challenge may, in itself, create autoreactive 
specificities which require removal from the repertoire.7 In our own 
work, we have exploited the unique nature of immunoglobulin gene 
generation and maturation to investigate B cell dissemination and de-
velopment in humans, especially with regard to how B cell protection 
diminishes, and autoimmune risk increases, with age.8 Along this jour-
ney, we find that repertoire analysis methods also provide information 
about intrinsic processes of immunoglobulin diversity generation that 
may be of benefit in therapeutic antibody design and discovery.

2  | GENER ATION OF B CELL DIVERSIT Y

Immunoglobulin genes are initially formed by gene rearrangement 
processes during B cell development in the bone marrow. Upon an-
tigen activation they undergo further diversification by processes of 
somatic hypermutation and class switching in the periphery.

2.1 | Gene rearrangement

B cell diversity is achieved initially by rearrangement of Variable 
(V), Diversity (D) and Joining (J) immunoglobulin genes; VDJ for 
heavy chains and VJ for light chains (Figure 1a). The mechanism for 
gene rearrangements involves the use of recombination activating 
genes (RAG1 and RAG2) which recognize recombination signal se-
quences flanking the V, D, and J genes.9,10 There are three different 
loci for the genes involved in VDJ recombination: on Chromosome 
14 for the heavy chain genes IGHV IGHD IGHJ, on chromosome 2 
for the IGKV and IGKJ kappa light chain genes and chromosome 22 
for the IGLV and IGLJ lambda light chain genes.11 Each BCR com-
prises two identical heavy chains and two identical light chains, and 
the sites of the BCR most in contact with antigen are known as 
complementarity determining regions (CDRs). In the Fragment vari-
able (Fv) part of the BCR, encoded by V(D)J regions, there are three 
CDRs interspersed between four framework regions (Figure 1b and 

c). CDRs 1 and 2 are encoded within the IGHV/IGKV/IGLV genes 
and therefore the variability in CDR1 and 2 in the repertoire is 
correlated with IGV gene usage. The CDR3 regions are the most 
variable, as they are encoded by the regions of the immunoglobulin 
where the different gene segments join together. Since light chain 
rearrangement involves only V and J regions, the CDR-L3 is less 
diverse than the CDR-H3, where the heavy chain region involves 
two different joining sites, between IGHV-IGHD and between 
IGHD-IGHJ as well as the IGHD genes. Diversity at these joining 
sites is increased in the CDR3 regions because the processes of 
gene rearrangement are imprecise, exonucleases may remove nu-
cleotides and nucleotides are randomly added in the process by the 
enzyme Terminal deoxynucleotidyl Transferase (TdT). Only B cells 
will have a rearranged immunoglobulin gene and this has been quite 
an advantage working with limited availability of human tissue, as 
cell purification prior to any PCR is not necessary. Indeed, Ig gene 
analysis has been used to establish the presence of B cells in a tis-
sue, for example, the presence of B cells in the human thymus.12

2.2 | Hypermutation

Unlike T cells, B cells can further diversify during an active immune 
response by somatic hypermutation,13 a process which requires acti-
vation induced cytidine deaminase (AID)14 and additional help, such 
as from T follicular helper cell interactions.15 Somatic hypermuta-
tion takes place predominantly in the germinal center of follicles, 
where a Darwinian process of expansion, mutation and selection 
occurs, known as affinity maturation.16,17 Cells acquire just one or 
two Ig variable region mutations in between rounds of selection18 
and maturing cells exit the process as memory or plasma cells.19 
Hence, when looking at the immunoglobulin gene rearrangements 
in a sample, the presence of mutations, in comparison to germline 
sequences, makes it evident that the cell has been activated by an-
tigen. Thus, we could show for the first time that even though the B 
cells of the splenic marginal zone were not class switched, retaining 
IgM functionality, they were still antigen-experienced cells as their 
Ig genes were mutated.20 In chronic lymphocytic leukemia (CLL) the 
extent of mutation was investigated to try and understand the eti-
ology of the disease and it was found that there were two differ-
ent classes of CLL with prognostic significance, those with mutated 
immunoglobulin genes and those carrying germline immunoglobulin 
genes.21 The extent of hypermutation may reflect the ongoing acti-
vation of a B cell clone and, in agreement with this, we have found 
that the mucosal barrier environment, where there is constant im-
mune challenge, holds B cells and plasma cells with highly mutated 
Ig genes compared to systemic tissues.22-24 The extent of hypermu-
tation has also been used to infer the likely activation pathway of a 
repertoire, with the assumption being that a T-dependent response 
would always produce B cells carrying more highly mutated Ig genes 
than a T-independent response. There is some evidence for this since 
patients with CD40L deficiency, whose B cells are unable to receive 
traditional T cell help, have fewer mutations in their class switched 
repertoire than controls.25 Therefore, a study of the human immune 
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response to Dengue infection, which showed a hypomutated rep-
ertoire, lead to a model of Dengue immune response involving the 
T-independent repertoire as well as the T-dependent response.26

The question of whether an antibody has undergone antigen 
selection as part of its development has been asked in the context 
of studies on vaccine development, infectious disease, lymphomas 
and leukemias and autoimmune diseases. The initial hypothesis was 
that statistical comparison of replacement and silent mutation dis-
tribution across the IGHV gene would differ in an antigen-selected 
gene compared to the mutation expected if it were completely ran-
dom with no selection pressure. Such that an antigen-selected gene 
would have more replacements than silent mutations in the CDRs 
which encode the antibody binding site, and conversely more silent 
than replacement mutations in the framework region of the antibody 
that is needed for antibody structural integrity.27 Calculations then 
had to be modified to account for our discovery that even in the ab-
sence of selection, in out-of-frame gene rearrangements there were 
more mutations in CDRs than framework regions.28 With the later 
determination of mutational hotspots,29,30 that are the result of AID 
targeting and other DNA repair biases,31,32 incorporation of target-
ing data into more complex algorithms enable improved prediction of 
whether a repertoire of antibodies has been selected or not.33 Other 
nuances, such as positional effects with respect to transcription ini-
tiation sites,34 intrinsic codon bias toward those more susceptible to 
amino acid change in CDRs35 or individual codon mapping across the 
repertoire,36 can also be taken into consideration. Analysis of hyper-
mutation in the context of gene families, where the evolution of a B 
cell clone can be mapped by a phylogenetic study of hypermutation, 
can provide further insights and inferences to understand B cell bi-
ology (see Section 4.3 below).

2.3 | Class switching

The function of an antibody can be varied by changing its Fc 
(Fragment constant) region, while retaining the specificities encoded 
and matured in the V(D)J arrangements of the Fv region, so when 
taking inference from a study of repertoires, in order to understand 
the biology of an immune response, it is important to know what kind 
of receptor is being studied. Naïve B cells have IgM and IgD on their 
surface and they may develop into plasma cells secreting IgM or they 
may undergo class switching to a different isotype. Secreted IgM 
may not have been through affinity maturation, but the avidity of the 
molecule may be quite high due to the ability of IgM to form penta-
meric molecules with 10 binding sites. Pentameric IgM can therefore 
form an ideal shape for complement activation and also facilitate the 
formation of antigen-antibody immune complexes to be better rec-
ognized by other components of the immune system. The large size 
of pentameric IgM means that it cannot readily pass into tissues so 
its function is limited in scope. IgG molecules are single molecules 
and can cross epithelial barriers into tissues, or across the placenta. 
In the human, IgG1 and IgG3 have high affinities for Fc receptors on 
accessory cells so it can mediate antibody-dependent cell cytotoxic-
ity (ADCC) and help activate the immune system, these subclasses 

are also good at complement activation. On the other hand, IgG2 
and IgG4 are essentially blocking antibodies since they have very low 
affinity for Fc receptors and no complement activation. It is worth 
noting that the mouse classes are not equivalent—IgG3, IgG2b, IgG2c 
having ADCC capability and IgG1 is the blocking subclass. Another 
difference between human and mouse is in IgA, where humans have 
two subclasses and mice only one. IgA is a mucosal antibody and can 
be secreted across barriers in the gut, breast, lungs, GU tract to block 
pathogens at mucosal surfaces. The major differences between IgA1 
and IgA2 lies in the presence of the drastically extended hinge region 
of IgA1, thought to improve antigen recognition by increasing affinity 
with antigen epitopes that are spatially distant, but making it vulner-
able to proteases.37-39 The IgE antibody has received an increasing 
amount of attention because of its role in hypersensivity responses 
and allergy in the developed world, although initially thought to have 
evolved to target parasites (eg, helminths and parasitic arthropods) 
that are too large to be phagocytosed.40-42

Class switching can be regulated by multiple factors and path-
ways, both T-dependent and T-independent. As is the case for so-
matic hypermutation, class switching requires AID, and is most 
often associated with the germinal center where interaction with 
T cells via CD40 is critical for the process. Experiments in T cell 
deficient and CD40 deficient mice have illustrated that germinal 
center-independent class switching can also occur, providing the 
correct stimuli are present. Signaling via Toll Like receptors (TLRs) 
can complement signaling through the BCR to activate both the 
non-canonical and canonical NFkB pathways and initiate class 
switching.43 Similarly, binding of APRIL or BAFF, produced by ac-
cessory cells such as neutrophils,44 innate lymphoid cells45 or fi-
broblasts,46,47 to TACI on the B cell surface will activate the NFkB 
pathway via MyD88 to cause expression of AID and class switch-
ing.48 Expression of AID can also be increased by estrogen acting via 
the HoxC4 AICDA gene activator.49

The isotype that a B cell will switch to is affected by the environ-
ment and signals that the cell receives. In a T-dependent response 
the cytokines produced by T-helper cells have a critical effect on 
class switching; IL4 encourages switching to IgG1 and IgE, IL5 and 
TGFβ encourage switching to IgA, IFNγ encourages IgG3 and IL10 
encourages IgG1 and IgG3. There are many other factors which 
influence the type of class switching. An analysis of the constant 
region class switch sites in the DNA sequence has revealed many 
examples of steroid hormone receptor binding sites. Vitamin A helps 
class switching to IgA and away from IgE, and Vitamin D has also 
been shown to regulate IgE production.50 The discovery of poten-
tial nuclear receptor binding sites in the regions of DNA that control 
class switching raises the possibility that class switching could be 
directly controlled by vitamins and hormones.51 Metabolites such as 
prostaglandins can also have an effect, PGE2 acting via STAT6 en-
hances IL4-mediated class switching to IgE52 and can increase IgG1 
class switch via cAMP.53

The class of an antibody is determined by the constant region 
gene that follows the VDJ variable region on the immunoglobulin 
heavy chain gene. In humans, the genetic order of constant region 
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genes in the genome on Chromosome 14 is μ, δ, γ3, γ1, α1, γ2, γ4, 
ε, and α2. Multiple consecutive switches between different classes 
and subtypes may occur. Both class switching and somatic hyper-
mutation are related, both occurring after activation by antigen and 
requiring AID, therefore class switched antibodies will exhibit hy-
permutated Ig genes. Since mutations accumulate gradually during a 
response, the temporal events in the life of an activated B cell clone 
can be ordered by using the level of somatic hypermutation as a mo-
lecular clock. Thus, the prevalence and order of class switching can 
be estimated by analyzing lineages in high throughput Ig repertoire 
data.54,55 The dominant class switching pathway (approximately 
85%) is from IgM/D to IgG1 or IgA1 and switching to the down-
stream classes is usually achieved by sequential events, for example, 
from IgG1 to IgG2 or IgA1 to IgA2. The “time”, in terms of hypermu-
tation accumulation from one class switched gene to a further down-
stream one, is less than the “time” taken for IgM/D switching in the 
first place. More closely related cells are more likely to switch to the 
same class than more distant ones, in vitro as well as in vivo, possibly 
as a result of an imprinted state being passed on to progenitors.54

3  | REPERTOIRE ANALYSIS APPROACHES

Techniques that amplify and sequence the repertoire have been col-
lectively referred to as Rep-Seq.56 The initiating step in B cell rep-
ertoire studies was the identification of a full suite of PCR primers 
that could amplify all expressed heavy chain variable regions in a 
consensus PCR.57 Early Ig repertoire analysis used PCR primers that 

bound in the Variable and Joining regions of the rearranged Ig genes 
to prepare the amplicon libraries for sequencing. While this had the 
advantage of being a robust method it did not produce data on the 
antibody class unless the cells had been sorted using surface mark-
ers prior to library generation. It also potentially biased the measure-
ments of J region usage and was open to the risk of V region bias due 
to faulty primers by virtue of the fact that the V region primers were 
a mix of family-specific primers. While these early sequencing tech-
nologies were invaluable for the discovery of new cell populations, 
they often relied on expensive and time-consuming cloning that did 
not capture the full repertoire; due to the single channel capabilities 
of Sanger Sequencing.20,22,29,58

Advances in Rep-Seq in terms of primer design, coupled with 
next-generation sequencing, enabled the full repertoire to be ex-
plored with the only drawbacks being difficulty amplifying rare heavy 
chains, PCR and sequencing bias, and amplification of IgG which is 
consistently less efficient than other heavy and light chains. A fur-
ther step forward came with the use of template switch enzymes 
and 5′ RACE, as has been frequently used in T cell biology.59-65 The 
5′ RACE method has an advantage over consensus immunoglobu-
lin PCR because it only requires priming in the constant region and 
adds a primer landing site in the 5′ with the addition of a template 
switch oligo (TSO). The TSO anchors to the non-template strand 
during reverse transcription by means of oligo(rG) allowing the en-
zyme to switch templates onto the TSO from the immunoglobulin 
mRNA.63,66-68 The 5′ RACE technique therefore reduces PCR bias 
but may result in less efficient transcript capture and reduced reper-
toire diversity over other amplification methods. Another advantage 

Illumina (300 bp 
paired end)

Pacific biosciences RSII (per 
SMART cell)

454 (GS-FLX 
Titanium)

Maximum read 
length

2 × 300 bp >60 000 bp (10 000 bp 
average)

700-800 bp

Reads per run 44-50 million 
(Minimum)

55 000a per SMART cell ~1 million

Output 13.2-15 Gb per run 1-2 Gb per day 0.7 Gb

Bioinformatics 
analysis

Some assembly 
required

Simple Simple

Ig Class Generally limited to 
class only

Subclass possible Subclass possible

QC issues 2 μg of amplicons required

Time of run ~65 h ~6 h per SMRT cell ~24 h

Costb US$1400 US$400 per cell US$6000

Qualityc Q20-Q30 Q50 Q30

aThe newer, but less available, Sequel by Pacific Biosciences is capable of producing ~330 000 reads 
but at nearly double the cost per cell.
bCosts have been based on a single website (allseq) to avoid provider differences and is based on 
running at cost. NB the PacBio RSII will take up to 16 SMART chips per run and therefore scales with 
cells used.
cQuality scores are based on the base calling accuracy of a run. A Q20 has a probability of calling 1 
incorrect base in 100 (99% accuracy), Q30 = 1 incorrect base in 1000 (99.9% accuracy), Q40 = 1 in-
correct base in 10 000 (99.99% accuracy) ect.

TABLE  1 Comparison of next 
generation sequencing methods
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of 5′ RACE is the further inclusion of unique molecular identifiers 
(UMIs), random strings of nucleotides that could be added to a 
primer making each primer sequence unique, allowing bioinformat-
ics resolution of the PCR bias problem (see below). Bioinformatic 
tools for the reconstruction of the repertoire from mRNA-seq data 
are now also becoming available.69

The ability to distinguish between subclasses would not, how-
ever, be possible without major advances in high throughput 
sequencing. Of the early next-gen platforms 454 was typically fa-
vored70-73 over early Illumina or SOLiD in antibody analysis because 
of capacity to produce longer reads that could also allow class/sub-
class determination. Methods using paired end Illumina sequencing 
have advanced, however, allowing the capture of longer reads and 
sequencing of the full variable region and subclass isotyping with 

certain 2x 300 bp paired end sequencing methods.74 While Illumina 
offers unprecedented read counts, reconstructing libraries of anti-
body sequences, which can be in excess of 900 bp if determining 
subclass, becomes a bioinformatics conundrum, although there are 
now a large range of tools to facilitate this.75-78 Paired end data can 
also be limited in ability to distinguish some somatic variants.79 As 
such, the Pacific Biosciences (PacBio) RSII system which offers reads 
lengths of 10 000 bp on average has become increasingly attractive 
for specialized applications80 despite its comparatively poor reads 
per run and high cost (see Table 1). The use of barcodes, a string 
of known nucleotides added to individual samples by using multiple 
specifically produced primers, allows simple multiplexing on higher 
cost sequencing platforms but is currently still expensive. We expect 
that advances in the PacBio read numbers will continue to improve, 

F IGURE  2  Ig gene repertoire variation between individuals, classes of antibody, and IGHV gene families. (a) Individual variability in a 
human vaccine response. Average clonality of selected IGHV genes in the repertoire of 12 individuals (each is color coded) at day 7 after 
challenge with influenza and pneumococcal vaccines.156 Average clonality is the number of sequences divided by the number of clonal 
families for each individual genes. Average clonality of 1 indicates lack of clonal expansion. (b) PCA analysis of CDR3 physicochemical 
properties, as defined by kidera factors, showing the difference between Ig genes of IgG1 vs IgG2 subclasses. Data from Martin et al73 
(c) Segregation of IGHV family genes by CDR-H3 physicochemical properties. Minkowsky distance clustering by Brepertoire146 on IgM 
sequences from B cells in early development in 12 different individuals.76 Each sample is a separate individual. IGHV genes color coded: 
Yellow; IGHV2, Red;IGHV1, Green; IGHV3, Blue; IGHV4, Violet; IGHV5, Gray; IGHV6
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as has been the case with the release of the Sequel platform offer-
ing a ten-fold increase in read per run over the RSII, while Illumina 
technology will remain unparalleled in terms of reads per run, but is 
plateauing on read length improvements. The use of one platform 
over another in the short term will therefore largely depend on what 
is required by the researcher (see Table 1).

With these advances in Rep-Seq, long read sequencing technol-
ogies and with 3′ PCR primers sufficiently far down the constant 
region, the distinction between subclasses has enabled a full in-
vestigation of antibody class in the repertoires. This is important, 
as we have shown that the repertoire can vary quite substantially 
by class of antibody. While IgG1 and IgG3 seem to share repertoire 
characteristics, IgM cells and IgG2 can vary substantially, particu-
larly in younger adults.81 In older adults, the selection events shap-
ing the repertoire seem to change.8 In human, the main variations 
in IGHV gene usage seem to be in the relative use of IGHV1 and 
IGHV3 family genes,81 although CDR3 character can also distin-
guish between populations (Figure 2b). The reasons for this are not 
clear; one possible hypothesis is that there is a peripheral toler-
ance mechanism preventing expansion of potentially dangerous Ig 
genes, ie, genes with potential to do self-harm. Potentially harmful 
Ig genes still exist in the repertoire, as there is a trade-off between 
tolerance safety and having sufficient capability to detect diverse 
pathogens. The cells carrying these genes are not allowed to expand 
without licencing by help from other cells. So that in the classical T-
dependent B cell response, producing IgG1 and IgG3 antibodies, the 
potentially harmful genes can survive, and in a T-independent B cell 
response, producing IgM memory and IgG2 antibodies, they cannot, 
thus skewing the repertoire. In this example we suggest that IGHV1 
family genes have more potential for harm than IGHV3 genes, thus 
explaining the increased IGHV1 gene use in IgG1 antibodies and de-
creased use in IgM memory or IgG2 responses. Perhaps not surpris-
ingly, B cells at different stages of their developmental pathway can 
also have different repertoires. We have shown differences in the 

periphery between transitional cells (IgD+IgM+CD27−), naïve cells 
(IgD+IgM+CD27−), IgM memory cells (IgD+IgM+CD27+), classical 
switched memory cells (CD27+IgD−) and CD27− switched memory 
cells (IgD−CD27−)82 and others have extended this to show plasmo-
cyte differences.83 We have also shown repertoire differences as B 
cells progress through bone marrow development and central toler-
ance.84 These studies all serve to reinforce the view that repertoire 
studies should be conducted on sorted cells, be class and subclass-
specific and the subjects should be age matched as well as possible.

The most recent advances in Rep-Seq have come with the use 
of single cell technologies which allow the full antibody structure, 
both the heavy and light chain from a single cell, to be uncovered. 
These technologies often also have the capacity to produce single 
cell transcriptomic data (scRNA-seq), the estimated prices for some 
of the more popular methods are included in Table 2 and see also 
Ziegenhain et al85 for a more comprehensive list on scRNA-seq. The 
first of these technologies to be applied extensively used FACS or 
a microfluidic devise to deposit single cells into a well allowing for 
Ig specific RT-PCR of a single cell86-90; the major drawback being 
low throughput. These techniques have, however, rapidly been 
succeeded with microfluidic technologies which have massively in-
creased throughput, allowing thousands of heavy and light chains 
to be bound together and sequenced as a single entity. Microfluidic 
equipment for this “DropSeq” method has been bespoke in a num-
ber of labs, although there is now a commercially available system 
from Dolomite Bio suitable for this application. These single-cell 
microfluidic methods rely on a PCR that is simple in concept, join-
ing the heavy and light chain transcripts by over-lap extension, but 
difficult in practice given the large number of primers in a single ap-
proximately 65 pico-liter emulsion droplet.79,80,91 The joining of both 
the heavy and the light chain resulting in an amplicon that may be 
in excess of 1000 bp has made it a prime candidate for long read 
sequencing technologies. As yet, however, this technology has not 
been adapted to allow isotyping of subclasses.79,80 Bioinformatic 

TABLE  2 The costs of running some of the more prominent single-cell technologies. Note that prices are estimates and may vary as a 
result of different suppliers, exchange rates and prices scalable on quantity purchased. None of these costs include sequencing, see Table 1

scRNA-Seq Paired heavy-light chain

Drop-Seq 10x genomicsc Smart-seq Overlap-extension 10x Genomicsc

Equipment cost US$50 000-
65 000b

US$75 000 N/Aa US$55 000b US$75 000

Per run cost US$500-700 US$1288 US$1000 US$400-500 US$1288

Cells per run ~10 000 100-100 000 96-384 100 000-150 000 100-100 000

Estimated time to 
process a run (h)

24-48 24-48 48-72 24-48 24-48

Capture efficiency 5-10% 65% 100% >90% 65%

aAlthough Smart-seq does not require any specialized equipment it does require the ability to sort cells into 96 or 384 well plates.
bThis cost is based on an ‘off the shelf’ model although methods exist for self-assembly. For Drop-Seq and Ig pairing by overlap extension we have used 
Dolomite Bio as our reference. In this case as well, buying the equipment for one method will reduce the equipment purchase price for the other as 
parts are interchangeable.
cThe 10X system uses the same machine for both methods. Note that the system will also perform both scSeq and paired heavy light chain from the 
same sample for US$65 more and TCR on top of that at an additional US$65.
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methods that use scRNA-seq data may also be used to reconstruct 
the joint heavy/light chain repertoire coupled with the full transcrip-
tome.92,93 In 2017 10x Genomics produced chemistry kits for their 
Chromium machine which are capable of producing barcoded librar-
ies for sequencing that can be separately enriched for BCR or TCR 
data. To date, however, we have not seen any publications that have 
implemented this. We believe that these new joint heavy-light chain 
technologies will form the basis of repertoire analysis in the future, 
as was the case with class and subclass isotyping, because of the ad-
ditional structural and full variable region data that can be attained.

4  | CLONALIT Y ANALYSIS

Given the available genes, and the probabilities of nucleotide ex-
cision/addition, the CDR-H3 region of heavy chain gene rear-
rangements is highly diverse, producing unique sequences at each 
rearrangement event. There are some rare instances, where the 
CDR-H3 is very small such that the probabilities weigh in favor of 
seeing the same CDR-H3 in two different rearrangement events,94 
but in general the CDR-H3 can be used as a fingerprint for a particu-
lar B cell and its progeny and one would not expect to see two differ-
ent B cells with the same CDR-H3 in a small sample unless they were 
related. Clustering immunoglobulin sequences into “clones” allows 
studies of B cell relationships between different samples and can 
facilitate the study of repertoire both as a whole, and also looking 
at the background diversity without the effects of clonal expansion.

4.1 | Dissemination

Matching IGH genes with the same CDR-H3 in different areas of tis-
sue can be used to show the dissemination of effector cells between 
different sites and we first used this in microdissected areas of tissue 
to illustrate that lamina propria plasma cells are highly mutated and 
originate in Peyer’s patches of the gut.22,95 With high throughput 
sequencing technologies, it has been possible to undertake such dis-
semination analysis on a much larger scale and to show that there 
is a certain amount of compartmentalization between mucosal vs 
systemic tissues in the distribution of B cells.96 Analysis of clonal-
ity on a large scale requires considerable computational resource, 
and there have been various methods employed over the years. The 
data need to be analyzed at the nucleotide level to give sufficient 
discriminatory power and to cope with the complications brought 
about by hypermutation and sequencing error. These complica-
tions also frustrate a definitive clustering of Ig gene sequences into 
“clones” so all experiments should be comparative using exactly the 
same methods. We have used a levenstein distance, as opposed to 
a hamming distance, to build hierarchical clustering dendrograms in 
order to reduce error introduced by sequence indel errors.84 This is 
important where HTS sequencing platforms are prone to homopoly-
mer tract errors as CDR-H3 regions often have larger homopolymer 
tracts. We use an empirically determined cut off value to split the 
sequences into clonal groups which errs on the side of inclusivity. 

Since hypermutation levels will always confound this analysis it is im-
possible to get 100% specificity and sensitivity in the clonal alloca-
tion, but it is easier to split an incorrectly clustered clone upon closer 
inspection than it is to know about potential missing sequences. 
A recent paper concluded that single linkage hierarchical cluster-
ing with Hamming distance has high performance, with specificity, 
sensitivity, and positive predictive value all over 99% in their test 
data.97 More complex clustering algorithms can be employed, such 
as multi-hidden Markov models98 which can give different results to 
hierarchical clustering methods. Therefore, it is important to check 
the clustering methods employed if one wants to compare results 
from different studies. To this end, recent and ongoing work by the 
Adaptive Immune Receptor Repertoire (AIRR) consortium to set in-
ternational standards for data sharing and tools repositories will en-
able more comparison of data from multiple sources in the future.99

4.2 | Clonal expansion

A key factor in assessing the immune response is to identify the ex-
tent of in vivo clonal expansion as the B cells with receptors specific 
to the challenge are positively selected. This can give us information 
as to whether the response is focussed, with a few very large ex-
pansions, or broad, with many smaller expansions. It can tell us the 
health of the baseline repertoire in terms of diversity, such as seeing 
more clonal expansions in the absence of challenge, or less timely 
contraction of the repertoire after challenge, in older people.100

An important caveat to note with all clonality analysis of HTS 
data is that the results can easily be skewed by the methods em-
ployed. Firstly, the creation of libraries of genes is done by poly-
merase chain reaction (PCR) amplification and so over-sequencing 
of the library will skew the results to reflect PCR expansion rather 
than in vivo expansion of the Ig genes. Some of the earlier HTS data 
was produced in this way.101 This can be overcome using methods 
that incorporate UMIs at the reverse transcription step so that only 
one copy of each mRNA molecule is counted.102 This method could 
also be used to align copies of the same sequence to identify and 
remove sequencing errors in high read methods. In lower read meth-
ods, typically 60 000 sequences per experiment for PacBio long 
reads, for example, we have found that overcounting of sequences 
is not a problem (data not shown). This would only be the case if the 
input quantity of mRNA was sufficient and, since maintaining mRNA 
quality is one of the highest risks in these experiments, we would ad-
vocate the use of UMIs for all future data sets. In addition, the use of 
mRNA as a starting point has its own issues in that not every cell will 
have exactly the same number of mRNA molecules, so an assump-
tion that one Ig gene sequence represents one cell in vivo is incor-
rect. For most B cells there is correlation with the number of Ig gene 
sequences and cells, but plasma cells have 100 times more mRNA for 
Ig genes than other B cells. Sequencing of genomic DNA would ne-
gate this issue, but then UMIs could not be added by RACE methods. 
More importantly, we would not be able to find information on the 
class of antibody under investigation. It is our recommendation that 
Ig gene repertoires be prepared from mRNA isolated from presorted 
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B cells, adding UMIs and, using 3′ PCR primers in the constant region 
that allow later discrimination between antibody subclasses.

Given the technological capability of producing monoclonal an-
tibodies for therapeutics there are many instances where we would 
like to know the sequence(s) for the antibody/antibodies responding 
to a particular challenge. It has been assumed that a B cell clone that 
is most expanded in response to challenge would be the most use-
ful in protecting the host from the challenge. Indeed, there are sev-
eral reports where the predominant clones in a response have been 
shown to bind the antigen.103 In mice these experiments have been 
particularly successful.104 However, the assumption of largest clone 
providing best protection may be too simple, and many different im-
munoglobulin genes can respond to a single challenge. Human stud-
ies have the additional challenge that only a sampled snapshot of the 
repertoire can be examined. One of the earliest reports of heavy/
light chain repertoire in human tetanus vaccine response illustrated 
the breadth of responding genes across the repertoire.86 While dif-
ferent people can share similarities of repertoire, there are aspects 
of an individual repertoire that are unique to that person105 and 
they may not always expand the same Ig genes in response to chal-
lenge. Figure 2a shows the broad nature of an expansion response, 
differing between individuals, for the same vaccine challenge. A di-
verse response is beneficial, a comparison of Avian flu survivors vs 
non-survivors found one of the chief differences was the diversity 
of the B cell repertoire, where increased diversity correlated with 
survival.106 Repeated sampling of the repertoire over time can be 
helpful in identifying potentially protective antibodies107 and con-
vergence of repertoires between different people toward similar Ig 
genotypes has been shown, for example, in response to influenza,108 
meningococcal109, and Dengue110 vaccines. However, finding a con-
vergent signature for equivalent challenging antigen preparations 
may not always be possible, even when temporal data for the re-
sponse is available.107 Comparison of predicted sequences from the 
whole repertoire with sequences obtained after sorting B cells la-
beled with the specific antigen can help to develop models for in 
silico prediction of antigen-specific sequences in a repertoire.111 We 
do need to bear in mind that a sampling of blood B cells for sequence 
repertoire is not the same as sampling the antibodies produced in 
response to challenge.112 The latter are produced by plasma cells in 
the bone marrow and the former are more diverse. In addition, we 
cannot always assume that a large clonal expansion of IgG would 
indicate best protection. Other classes of antibody have been shown 
to be important, such as IgM in Ebola,113 which may be less focussed 
in their clonal expansion response. In our laboratory, preliminary 
experiments using ribosome display to capture antigen-specific 
sequences do find sequences that we see in the whole repertoire, 
but not in the largest clonal expansions and often are isotypes other 
than IgG.

4.3 | Clonal evolution

Examination of clustered data on an individual clone level can 
provide information about the evolution of a B cell clone as the 

Ig genes acquire mutations in the immune response. It is impor-
tant to know whether an ongoing expansion of cells is just that, 
expanding exactly the same immunoglobulin gene, or whether 
there is also ongoing mutation involved—which would imply the 
involvement of a more complex germinal center reaction and af-
finity maturation. Determining the relative position of cells from 
different phenotypical subsets within a lineage tree may also be 
able to provide information as to the order of lineage relationships. 
We have used manually curated lineage trees to show changes in 
germinal center selection with age, relationships between differ-
ent types of memory B cells and ongoing diversification in MALT 
lymphoma.24,29,114 Transferring these more in-depth analyses to 
high throughput methods is dependent on the accuracy of se-
quence information, and there is a sense of reluctance in the field 
to take clear biological inferences from what may not be the most 
precise data. HTS methods that incorporate UMIs and that pro-
vide multiple reads of the same unique sequence may be able to 
provide data which would overcome this reluctance and it may 
even be possible to correct sequencing data without the aid of 
UIDs with the appropriate algorithm such as IgReC.78 In addition, 
there are computational methods available for the construction 
of lineage trees.115,116 We also need to recognize that allelic vari-
ants may exist in the population that may not be represented in 
germline gene databases and therefore some “mutations” from 
germline may be miscalled. These could potentially skew hyper-
mutation data from different patients and there are now methods 
for predicting germline genes by inference from high throughput 
data which can help overcome this issue.117-120

The earliest analyses of antibody lineage trees employed graph 
theory to extract metrics with respect to the shape of the trees and 
analyze how these correlated with biological parameters.24,121-124 
Later methods are reviewed elsewhere.125 The shapes of the lin-
eage trees give important information about the history of the B 
cell clone, for example the extent of selection acting on a B cell 
clone can be reflected in the shape.121,126 A preponderance of 
trees with long trunks in a population would indicate that many 
clones started from pre-mutated (memory) B cells as compared to 
lineages which branch close to the origin, which would be more 
likely to have started as a naïve B cell. In mutation analysis for the 
purposes of inferring information about selection and mutational 
targeting, hypermutation events should not be counted by count-
ing every mutation on every sequence—but rather in the context 
of lineage trees so that each mutational event is only counted 
once. One crude way of doing this is to randomly pick one se-
quence per clone for analysis. More sophisticated methods ana-
lyze each mutation as it occurs in the lineage of the antibody. This 
captures all the mutational diversity within the clone and would 
also be more accurate with respect to positional effects, since 
each mutation position would be considered in the context of the 
flanking sequences at the time the mutation occurred rather than 
the germline sequence. The most recent tools for lineage analy-
sis use modern statistical molecular evolution methods on nucleic 
acid sequences,36 or on amino acid sequences.127
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5  | GENE USE ANALYSIS

Comparison of the frequency of use of different immunoglobulin genes 
between different samples is a useful biomarker for biological skew-
ing of the lymphocyte repertoire. Some individual genes have been 
identified as being associated with human disease. IGHV5-51 is associ-
ated with Celiac disease.128 IGHV4-34 has often been associated with 
autoimmune disease and chronic lymphocytic leukemia.129-131 IGHV4-
34 has been shown to bind citrullinated protein antigen in rheumatoid 
arthritis,130 but it also has a unique framework 1 region that can bind 
to human red blood cell antigens I and i when in its germline form,132 
these antigens can therefore be considered to be superantigens. It is 
one of few antibodies that has an N-glycosylation site in the germline 
IGHV region, and it has been hypothesized that the potential autoreac-
tive binding potentials can be modified by changing glycosylation in a 
germinal center reaction.133 Another superantigen is Staphalococcus 
protein A, which can bind regions in framework 3 of IGHV3 family 
genes,134 while some IGHV3 genes have been associated with disease, 
such as IGHV3-21 in CLL,135 individual IGHV3 gene expansions are less 
commonly found. IGHV1 genes have consistently been implicated in 
disease, with IGHV1-69 featuring prominently in CLL in the western 
world. There may be geographical/ethnic variation, with IGHV2-5 and 
IGHV1-2 also featuring in CLL in India,136 and lower levels of IGHV1-69 
in Japan,137 but in Europe up to 30% of CLL are of IGHV1-69-carrying 
cell origin.138 IGHV1 genes are also very important in protection against 
viral infections, IGHV1-69 genes having been associated with influenza, 
hepatitis B and hepatitis c, HIV.139-141 The IGHV1-46 gene has been 
shown to bind both rotavirus antigen VP6 and autoantigen desmoglein 
in pemphigus disease.142 So, it seems that the trade-off between risk 
of autoimmunity vs protection from viral infection is particularly finely 
balanced for IGHV1 genes. In spite of these examples, in well over a 
decade of studies on human repertoire in health and disease, it is some-
what surprising that there have been so few IGHV gene associations 
made with antigen specificities. This may be due to confounding by 
interindividual variation. It is difficult to say what a normal unselected 
repertoire would be, since bone marrow samples are difficult to ob-
tain and cell separation methods not adequate to distinguish the initial 
light chain rearrangements from the results of receptor editing. There 
are some excellent attempts at modeling the potential baseline,3 but 
more data to test these models would be required for them to become 
of general use. Looking for individual genes may not be the only bio-
marker of relevance, and modern bioinformatics with B cell repertoire 
sequencing has been used in the last few years to identify different 
biomarkers associated with diseases such as multiple sclerosis.143 One 
area we believe to be of particular significance is the CDR3 properties 
of the sequences and the structural information of the antibody when 
it is available.

6  | CDR3 CHAR AC TERISTIC S

The question of which part of the antibody is the most important 
for antigen binding is an interesting one. As mentioned above, the 

CDR3 region is the most variable part of the antibody by virtue of 
the contributions from the different genes at the junction and the 
imprecise nature of the gene rearrangement process. Mice restricted 
to a single Variable region gene have shown that they are capable of 
eliciting high affinity responses to various protein and hapten chal-
lenges, which is evidence to support the idea that CDRH3 is the most 
important sequence conferring specificity of the antibody.144 They 
did find that their arbitrarily chosen V region did not support bind-
ing to T-independent polysaccharide antigens, so there is reason to 
believe that CDR1 and 2, and perhaps other aspects of the sequence 
are also important for certain classes of antigen. Other evidence 
suggests that V gene use makes a significant difference to antigen 
recognition. Contact residues may not always be part of the CDR145 
and the same CDRH3 on different heavy/light chain backgrounds 
can take on different structures.146 As a result of the complexities 
of protein folding behavior, selection of mutations for affinity may 
not be directly related to contact residues.147 We looked for any bi-
ases in CDR3 properties between different IGHV family genes in our 
data. While most IGHV genes did not appear to affect the CDR3, use 
of IGHV2 family genes showed a skewing in CDR3 properties com-
pared to the rest of the repertoire, indicating IGHV2 has an effect 
on CDR3 structure that in turn affects antigen binding sufficiently to 
affect repertoire selection (Figure 2c). That said, IGHV2 family genes 
are a very small fraction of the repertoire as a whole, so while it 
is worth bearing in mind when interpreting CDR3 repertoire infor-
mation it would only be of concern if the IGHV2 component were 
altered for any reason.

Much work on the effects of changing CDR3 sequence on anti-
body specificity has been done in mice148 and only since the advent 
of spectratyping and high throughput sequencing have we done 
any serious analysis of human CDR-H3. One of the most consistent 
changes in repertoire we see is the change in CDR-H3 length in B 
cell development. During an immune response to vaccine the whole 
blood repertoire shifts toward a smaller CDR-H3, across IgG, IgA 
and IgM, at the peak of the plasmablast response before returning 
to baseline by day 28.149 During early B cell development of IgM, be-
tween preB cells to Naïve B cells, there is also a significant decrease 
in CDR-H3 size.84,150 The size of CDR3 is determined partially by 
IGH gene use, and partially by factors involved in gene rearrange-
ment at the junctions—particularly the activity of Terminal deoxy-
nucleotidyl transferase (TdT) adding random nucleotides to the 
junction. There may be interindividual variation in TdT activity since, 
in young adults, the distribution of CDR3 size at baseline and day 28 
is similar within the individual, but different between individuals.151 
Similarly, the level of N nucleotide addition in early B cell develop-
ment is consistent between heavy, kappa and lambda chains within 
individuals, but differs between individuals.152 Given the apparent 
importance of CDR3 size to an antibody response82,149 and to central 
tolerance84,150 these interindividual differences may warrant closer 
inspection in studies on immune disease, vaccination and infection 
as they may be biomarkers of response or autoimmunity.

The physicochemical characteristics of the CDR3 are also im-
portant, not only from the point of view of how they affect protein 



142  |     DUNN-WALTERS et al.

folding, and therefore the shape space of the binding site, but with 
respect to their ability to interact with other molecules. For example, 
folding of the CDR-H3 can be affected significantly by the presence 
of pairs of cysteines, which can form disulphide bonds.147 We found 
that there is some selection against the use of cysteines in central 
tolerance; the percentage of sequences without any cysteines in-
creases from 85% to 91% between preB and naïve B cells. Although 
it is difficult to infer an antibody’s specificity based on its amino acid 
sequence, it has been observed that the CDR-H3 regions of antibod-
ies in the bone marrow are on average longer, and more hydrophobic 
than those in the peripheral blood84,1151,152, indicating that these 
CDR-H3 characteristics are selected against during central toler-
ance. The charge at the binding site is also critical, the prevalence 
of positively charged arginines in the CDR3 has been associated 
with binding to (negatively charged) DNA in some antibodies and 
in SLE153,154 and to phospholipid antigens.155 We have shown that 
the number of arginines, and the other charged amino acids histidine 
and lysine, can vary significantly between different B cell popula-
tions with an overall increase in moving from the naïve to the mem-
ory populations,82 perhaps indicating that charged interactions are 
important for binding to exogenous antigen. The other key property 
of the antibody binding site is hydrophobicity. It has been suggested 
that hydrophobic patches are associated with polyspecificity of bind-
ing and it has been shown that antibodies with hydrophobic patches 
in their CDR3 are prone to aggregation. This can be abrogated, with-
out loss of specificity, by changing amino acids at the edge of the 
CDR3.156 In addition to decreasing hydrophobicity through early B 
cell development,84,150,157 we have seen a decreased hydrophobicity 
in memory cells compared to naïve cells,82 which would be consis-
tent with tolerance selection during an immune response.

There are actually hundreds of different metrics to assess the 
physicochemical properties of a protein or peptide, many of which 
overlap in function. Kidera et al158 determined a set of 10 orthog-
onal factors (KR 1-10) which could capture a broad range of infor-
mation. We have incorporated the calculation of these into our 
BRepertoire tools159 and found that they can be used in PCA analysis 
or Minkowsky distance clustering to distinguish between different 
samples, such as B cells from different developmental stages.84 In 
addition to hydrophobicity and charge, we can see differences in 
other properties. For example, in the comparison between IGHV2 
genes and the rest of the repertoire (Figure 2c) we found signifi-
cant changes in KF2:Side chain size, KF5:Double bend preference, 
KF6:Partial specific volume, and KF7:Flat extended preference.

7  | ANTIBODY STRUC TURE

Given the differences in CDR sequence characteristics between an-
tibodies it is easy to see that the information of real relevance to 
design of effective antibodies lies in the structure encoded by that 
sequence. The major hurdle to date has been that immunoglobulin 
repertoires have either been single chain only, or have been too 
short to have the full sequence of both chains. Assuming that the 

single cell and long read technologies will be able to correct this in 
the near future, then the next challenge will be modeling the pro-
tein structure. The steps involved in modeling are reviewed in detail 
elsewhere,151 and the challenges are mainly with the CDR3 regions 
for which suitable templates are not always available in the protein 
data bank (PDB). We have produced some structures for antibodies 
that are polyreactive, showing that their long CDR-H3 loops appear 
to project out of the antigen binding site, but the longer the CDR-H3 
then the more likely the antibody would have a flexible conformation 
and this work is still in its preliminary stages.160 Others have usefully 
employed modeling techniques to investigate the maturation of anti-
HIV and anti-influenza antibodies.161 The pipeline for our modeling 
to date involves making multiple models initially and picking the best 
one before performing multiple simulations of conformation, using 
tCONCORD to give an ensemble that can be analyzed.160 Although 
this rigorous treatment gives us confidence in the predicted struc-
tures, it is computationally quite expensive and difficult to apply 
in high throughput. A recent paper that used the RosettaAntibody 
3.0 antibody modeling protocol162 estimated that modeling of 2000 
sequences took approximately 570 000 CPU hours163 so clearly 
there are challenges in the development of tools for structural cal-
culations at a scale to match the available repertoire information. Of 
the large number of different tools currently available it seems that 
ABodyBuilder is the speediest, at 30 seconds per structure, which is 
around 567 CPU hours per thousand sequences.151,164,165

In addition to protein folding, the glycosylation status of anti-
bodies is important. Not many immunoglobulin genes have N-linked 
glycosylation sites in their variable regions in germline configura-
tion (IGHV4-34, IGHV1-8, IGHV5-a), but it is possible to gain these 
sites through somatic hypermutation.133 High throughput reper-
toire studies show that some genes are more likely to acquire an 
N-glycosylation sequon than others, for example, IGHV3-23 and 
IGHV6-1133 and sequons are more often found in or near the CDRs 
where they are more likely to affect antigen binding.166 While in 
most instances the lack of glycosylation on selected antibodies 
would indicate that the glycans block or reduce binding, there are 
a few instances of N-glycosylation conferring increased antigen 
specificity.166,167

8  | SUMMARY

There are many areas of biology and medicine where the information 
available from repertoire data can provide valuable insight. With the 
increasing importance of biologics as therapeutics, repertoire stud-
ies also have a valuable place in the discovery and design of antibod-
ies and chimeric antigen receptors. The study of such large numbers 
of sequences, with all the complexities that they entail, has resulted 
in an interdisciplinary field that encompasses immunologists, physi-
cists, computational biologists and mathematical modelers as well 
as providing a substantial collection of methods and tools. The im-
mediate future directions are to encourage order and standards 
with respect to tools and data repositories, while at the same time 
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improving existing biological and computational methods to address 
the challenge of producing accurate paired chain repertoires with 
tractable high scale structural modeling methods.
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