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Abstract

Background: Adjuvant radiotherapy is the standard of care after breast-conserving surgery for primary breast
cancer, despite a majority of patients being over- or under-treated. In contrast to adjuvant endocrine therapy and
chemotherapy, no diagnostic tests are in clinical use that can stratify patients for adjuvant radiotherapy. This study
presents the development and validation of a targeted gene expression assay to predict the risk of ipsilateral breast
tumor recurrence and response to adjuvant radiotherapy after breast-conserving surgery in primary breast cancer.

Methods: Fresh-frozen primary tumors from 336 patients radically (clear margins) operated on with breast-conserving
surgery with or without radiotherapy were collected. Patients were split into a discovery cohort (N=172) and a
validation cohort (N = 164). Genes predicting ipsilateral breast tumor recurrence in an lllumina HT12 v4 whole
transcriptome analysis were combined with genes identified in the literature (248 genes in total) to develop a
targeted radiosensitivity assay on the Nanostring nCounter platform. Single-sample predictors for ipsilateral breast
tumor recurrence based on a k-top scoring pairs algorithm were trained, stratified for estrogen receptor (ER) status
and radiotherapy. Two previously published profiles, the radiosensitivity signature of Speers et al, and the 10-gene
signature of Eschrich et al, were also included in the targeted panel.

Results: Derived single-sample predictors were prognostic for ipsilateral breast tumor recurrence in radiotherapy-treated
ER+ patients (AUC 067, p=001), ER+ patients without radiotherapy (AUC = 0.89, p = 0.02), and radiotherapy-treated ER-
patients (AUC =0.78, p < 0.001). Among ER+ patients, radiotherapy had an excellent effect on tumors classified as
radiosensitive (p < 0.001), while radiotherapy had no effect on tumors classified as radioresistant (p =0.36) and there was a
high risk of ipsilateral breast tumor recurrence (55% at 10 years). Our single-sample predictors developed in ER+ tumors and
the radiosensitivity signature correlated with proliferation, while single-sample predictors developed in ER- tumors correlated
with immune response. The 10-gene signature negatively correlated with both proliferation and immune response.

Conclusions: Our targeted single-sample predictors were prognostic for ipsilateral breast tumor recurrence and have the
potential to stratify patients for adjuvant radiotherapy. The correlation of models with biology may explain the different
performance in subgroups of breast cancer.
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Background

Precision medicine has been the focus of breast cancer re-
search during recent decades. As breast cancers are de-
tected at an earlier stage, and treatment has improved, the
emphasis to avoid over treatment in addition to
under-treatment has increased [1]. Currently, the majority
of primary breast cancers are treated with breast-conserving
surgery (BCS), and the patient is generally offered adjuvant
treatment. Prognostic and treatment-predictive biomarkers
based on traditional immunohistochemical analysis (IHC),
or more modern molecular techniques such as gene expres-
sion profiling, are presently used to guide the use of adju-
vant endocrine therapy, chemotherapy and anti-human
epidermal growth factor receptor 2 (HER2)-directed therapy
[2]. However, there is no diagnostic procedure to guide
treatment with adjuvant radiotherapy (RT) after BCS,
which is administered to a majority of patients. This is
despite the knowledge that most patients who undergo
BCS will remain recurrence-free without RT for at least
10 years, and around 20% will suffer a recurrence within
10 years despite RT [3]. Traditional clinicopathologic
variables and IHC markers have been unable to identify
patients that could be spared RT [3-5], although studies
are ongoing to find patients with risk of recurrence
low enough to avoid RT (e.g. the LUMINA study,
NCT02653755, and the PRIMETIME study [6]).

Several attempts have been made to create gene
expression-based classifiers to predict response to RT after
BCS, or to estimate the risk of recurrence with or without
RT [7-11]. Most recently, Speers et al. presented the radio-
sensitivity signature (RSS), a 51-gene random forest model
to classify tumors as radioresistant or radiosensitive [12].
Tramm et al. presented a 4-gene classifier predicting the re-
sponse to RT after mastectomy [13]. Torres-Roca et al. pre-
sented the radiosensitivity index (RSI), a linear model based
on the rank of genes in individual samples, which has been
validated in several cancer types, including breast cancer
[8]. The same authors have also advanced the model by
combining RSI with the linear-quadratic model for the
genomic-adjusted radiation dose (GARD) [14]. In addition,
genome instability is considered to sensitize cancer cells to
treatment in general, and a centromere and kinetochore
gene expression score was suggested to predict response to
RT [15]. Taken together, promising results have been pre-
sented, but no profile or marker is yet in clinical use.

There are several reasons why gene expression pro-
files have not been introduced in clinical routine.
First, the clinical value and cost-effectiveness has not
been proven, as reported profiles lack extensive inde-
pendent validation, and to date, no prospective trial
or studies from existing randomized clinical trials
have been presented, except in the mastectomy set-
ting [13]. Second, few of the current profiles have
been tested on technical platforms able to handle
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samples with low-quality RNA, such as RNA ex-
tracted from formalin-fixed paraffin-embedded (FFPE)
tissue, which would greatly improve the clinical util-
ity. Third, it has been hard to validate profiles across
platforms, although attempts have been made by e.g.
scaling (RSS) or rank-based models (RSI). Finally,
breast cancer is a heterogeneous disease, and the re-
sponse to RT and the pathways associated with radio-
resistance may be different in different subgroups.
Indeed, this was shown when Torres-Roca et al. presented
the follow-up study of RSI in estrogen receptor positive
(ER+) and estrogen receptor negative (ER-) breast cancer,
and only could validate previous findings in ER- tumors
[16]. Interestingly, RSI was recently further shown to
correlate with immune response genes, which may partly
explain the subgroup-specific performance, as the
immune response is more important for prognosis in
ER- breast cancer [17, 18].

In this study, we aimed to address these issues and
created a targeted radiosensitivity gene expression assay
using the Nanostring nCounter platform, which is suit-
able for low quality RNA samples. Based on the targeted
assay, we created single-sample predictors (SSPs) using a
k-top scoring pairs (k-TSP) algorithm [19]. The SSPs
were validated to be prognostic for ipsilateral breast
tumor recurrence (IBTR) in samples of low RNA quality
from a study cohort, and further validated in public data.
The SSPs also showed potential to stratify patients for
RT. In addition, the panel included the genes described
for RSS and a surrogate score for RSI (referred to as the
10-gene signature, 10-GS). The previously reported
signatures were prognostic for IBTR, and partially
predictive of RT, but their performance was dependent
on ER status. Finally, we showed that the biology behind
the different models and predictors may explain this
difference.

Methods

Patients and samples

Patients with invasive breast cancer radically operated on
(clear margins) with BCS in three of six healthcare regions
in Sweden (South, Uppsala-Orebro and Stockholm)
between 1983 and 2009, and with fresh-frozen tissue avail-
able, were included (N =336). Patients were excluded if
they had multifocal cancer (defined as >20 mm between
tumors), neoadjuvant treatment or prior malignancy
(excluding basal-cell carcinoma of the skin, in-situ cervical
cancer and other curatively treated cancer at least 5 years
prior to the breast cancer). First, all patients with a later
IBTR were selected as cases (N = 144). Next, controls were
selected as patients without any recurrence for at least the
same time as the time to IBTR for the matched case, and
were matched for RT and ER status (N =192). Median
follow-up time was 13.1 years in patients without IBTR
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(controls), and median time to IBTR was 4.4 years in pa-
tients with IBTR (cases). Systemic adjuvant treatment was
not part of the inclusion criteria and was administered ac-
cording to regional treatment programs at the time. The
study was approved by the Ethics committee of Lund Uni-
versity (2010-127).

RNA extraction

RNA was extracted from approximately 30 mg of
fresh-frozen tissue using commercially available extraction
kits, either the Qiagen AllPrep kit, or the Qiagen RNEasy
lipid tissue kit, according to the manufacturer’s instructions
(Qiagen, Hilden, Germany). Cancer content was confirmed
microscopically and samples without cancer cells were
excluded. Integrity and amount of RNA was measured;
samples from one of the three biobank centers had RNA of
lower quality, which most likely can be explained by
degradation during the transportation process (Additional
file 1: Figure S3). We chose to use the higher-quality
samples from two centers as a discovery cohort (N =172),
and the lower-quality samples from one center as a valid-
ation cohort (N=164) (Fig. 1 and Table 1). For more
details, see Additional file 2.

Gene expression analysis in the discovery cohort

The discovery cohort (N =172) was analyzed using Illumina
HT12 v4 microarrays ([llumina, San Diego, CA, USA). The
input amount was 575 ng of total RNA and RNA was
hybridized on three plates. Samples were processed in a ran-
domized order and the data have been deposited in Gene
Expression Omnibus (GEO) [GEO:GSE103746].

Data analysis in the discovery cohort

All data analyses were performed using R [20] (explicitly
outlined in Additional file 2). Briefly, the Illumina HT12
v4 array data was normal-exponential background cor-
rected, quantile-normalized and log2-transformed with
an offset of 16 added to avoid negative values using the
limma package [21], as previously suggested [22]. The
data were batch-effect corrected for hybridization plate
and biobank center using the sva package [23]. Probes
were filtered based on quality and a variance filter was
applied to limit the number of probes to 5000. Tumors
were stratified for ER and RT status creating four groups
(ER+RT+, ER+RT-, ER-RT+, ER-RT-). A random forest
model with double-loop cross-validation and recursive
feature elimination based on the caret R package [24]
was used to rank the importance of candidate genes, and
select the number of genes to analyze further.

Creation of a targeted radiosensitivity gene panel

Genes included in the targeted panel were selected based
on the discriminating performance of cases versus con-
trols in the discovery cohort (N=155). We further
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added the genes included in the previously published
signatures RSI (N'=10), RSS (N =51) and the genes de-
scribed by Tramm et al. (N=7) [8, 12, 13]. We also
added genes associated with risk of IBTR, radioresis-
tance or breast cancer biology identified in the literature,
e.g. hormone and growth factor receptors (ESRI, PGR),
human epidermal growth factor receptor 2 (ERBB2),
proliferation genes (MKI67 and AURKA), and genes re-
lated to hypoxia, apoptosis and DNA repair (N =15)
[25-30]. Housekeeping genes were added for purposes
of normalization (N = 13). In total, 248 genes were selected
for the targeted gene expression panel (Fig. 1). For details
see Additional file 2, and Additional file 3: Table S1.

Gene expression analysis with the targeted
radiosensitivity panel

Both the discovery cohort (N =172) and validation cohort
(N=164) were analyzed in a randomized order with a
custom-designed Nanostring nCounter panel (Nanostring
Technologies, Seattle, WA, USA). The Nanostring probes
were created with standard chemistry XT-formulation and
designed and produced by the manufacturer (Nanostring).
Analysis-ready probes were analyzed using the Prepstation
and Digital analyzer (Nanostring), according to the manu-
facturer’s instructions. Gene expression data have been
deposited to GEO [GEO:GSE10374]. For more details, see
Additional file 2.

Public datasets

Two public datasets were analyzed [11, 31]. The dataset
of Servant et al. was based on anlysis using the Illumina
HT12 v3 in a cohort of 343 patients who underwent
BCS and were treated with RT. The dataset of van de
Vijver et al. included 295 patients who underwent either
BCS or modified radical mastectomy. RT was given
when indicated, and gene expression was analyzed by a
25,000-gene oligonucleotide dual-channel array.

Data analysis in the targeted radiosensitivity panel

The data were quality-filtered resulting in 7 probes and
29 samples removed (4 from the discovery cohort and
25 from the validation cohort) and normalized for posi-
tive control probes and housekeeping genes (Fig. 1).
SSPs to classify samples as high risk or low risk of IBTR
were trained in the discovery cohort in each of the four
groups (ER + RT+, ER + RT-, ER-RT+ and ER-RT-) using
the switchbox R package [19]. The SSPs were based on a
k-TSP algorithm that compares the relative expression
of genes within a sample and creates rules in the form
gene A >gene B. The default settings of the switchbox
package were used, which selects the optimal number of
gene pairs by cross-validation in the discovery cohort,
[32] and uses the majority vote as cut point without any
weighting of the pairs. The model was allowed to use all
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Patients with fresh frozen tumors included
n=336

Discovery cohort
n=172

Validation cohort
n=164

Analysis with lllumina HT12 v4
Select top genes stratified for ER and RT

Selection of gene panel
lllumina discovery analysis (155 genes)
Radiosensitivity index (10 genes)
Radiosensitivity signature (51 genes)
Genes from Tramm et al. (7 genes)
Other genes from litterature (15 genes)
House-keeping genes (13 genes)

Targeted radiosensitivity Nanostring gene expression assay (248 genes)

Analysis of both discover and validation cohort (n=336)

Did not pass quality control n=29

Discovery cohort n=4
Validation cohort n=25

Discovery cohort
n=168

Validation cohort
n=139

Development of
Singe Sample Predictors (SSPs)

Validation of SSPs

Validation in public datasets

Validation of the Radiosensitivity signature (RSS)
Validation for the Radiosensitivity index (RSI)

Fig. 1 Project overview. Samples were split into a discovery cohort and a validation cohort. The discovery cohort was analyzed with the lllumina
HT12 v4 whole transcriptome microarray. Top discriminating genes for ipsilateral breast tumor recurrence were combined with genes from the
literature and previous signatures for a radiosensitivity gene panel. A targeted assay was developed, and both the discovery cohort and the
validation cohort were analyzed. Single-sample predictors were developed in the discovery cohort and validated in the validation cohort and in
public datasets. Finally, the previously published signatures were tested in all our data. ER, estrogen receptor; RT, adjuvant radiotherapy

genes in the panel and minimum number of pairs to try
for training was set to 100 pairs, as gene expression pro-
files have been shown to be more robust using higher
number of genes [33]. This means that at least 200 genes
were included in each SSP, and thus a combination of
previously published genes and novel genes from our
discovery analysis. The full set of genes and pairwise
combination is presented in Additional file 4: Table S3.
The locked models were then tested in the validation
cohort and Kaplan-Meier curves, Cox regression models,

and log-rank p-values were calculated using the survival
R package [34], and receiver operating characteristics
(ROC) analysis was performed using the pROC R pack-
age [35]. Endpoint was IBTR. RSS and a surrogate score
for RSI (referred to as 10-GS) were calculated as de-
scribed in the original publications [8, 12]. Proliferation
scores were calculated as the geometric mean of expres-
sion values for MKI67 and AURKA. Immune scores were
calculated as the geometric mean of genes annotated as
part of the immune response (IRFI, IGKC, STATI,
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Table 1 Patient and tumor characteristics
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Table 1 Patient and tumor characteristics (Continued)

Discovery Validation Discovery Validation
cohort cohort cohort cohort
Total number of patients 172 164 No 108 (65%) 46 (35%)
Analyzed with lllumina HT12 v4 172 0 missing 0 1
Analyzed with targeted nCounter 172 164 Follow-up time
panel Median time (range) to IBTR in 37 (07-187) 44 (01-225)
Included in the final analysis 168 139 cases, years
Radically operated on (clear Median follow-up time (range) in 13.2 (3.0-19.6) 126 (1.7-26.0)

margins)
Yes

No

Extensive intraductal component (EIC)

Yes
No
Missing

Ipsilateral breast tumor recurrence
(IBTR)

Yes
No
Tumor size mm, median (mMin-max)
Lymph node status
Node negative
Node positive
Missing
Estrogen receptor (ER) status
Positive
Negative
Histological grade
1
2
3
Missing
Subtype
Luminal A
Luminal B
Basal-like

Human epidermal growth factor
receptor 2 (HER2)-enriched

Radiotherapy

Yes

No
Chemotherapy

Yes

No

missing
Endocrine therapy

Yes

168 (100%)
0

109
50

68
100
18 (3-45)

125 (78%)
35 (22%)
8

119 (71%)
49 (29%)

16 (17%)
46 (50%)
30 (33%)
76

116 (69%)
52 (31%)

34 (20%)
133 (80%)

1

60 (35%)

139 (100%)
0

90
42

62
77
17 (3-35)

108 (78%)
29 (22%)
2

118 (85%)
21 (15%)

12 (19%)
24 (39%)
26 (42%)
77

60 (43%)
29 (21%)
12 (9%)

38 27%)

119 (86%)
20 (14%)

31 (23%)
105 (77%)

3

91 (65%)

controls, years

OSMR, CCLI19, RelA, IRF8, FGR, TNFRSFIB, C3) in the
online gene ontology tool PANTHER [36]. Correlation
between the raw scores for the different models, and
correlation with proliferation and immune scores were
tested with Pearson correlation and linear modeling,
with p-values calculated with a test for zero slope. For
more details, see Additional files.

Results

Selection of genes and creation of a targeted
radiosensitivity assay

The Illumina HT12 v4 microarray whole transcriptome
gene expression data from the discovery cohort was ana-
lyzed stratified for ER status and RT, creating four
groups (ER+RT+, ER+RT-, ER-RT+, ER-RT-). ROC
analysis showed that optimal performance of the random
forest models was achieved after including around 50
genes per model, with the AUC ranging from 0.67 to
0.85 depending on group, except for the ER-RT+
subgroup, where no signal was found (Additional file 5:
Figure S1A and B). Based on their importance in these
models, we selected 155 genes for further development
of a targeted assay. To investigate the biology repre-
sented by the selected genes, hierarchical clustering was
performed and correlated with known gene clusters
(Additional file 2 and Additional file 6: Figure S2). Genes
selected in the ER+ groups included genes correlated
with proliferation, and genes selected in the ER- groups
included genes correlated with immune response.
However, for some clusters no correlation was found,
and the genes may thus represent biological pathways
more specific for radiosensitivity.

We added genes from three previously described
radioresistance gene expression profiles in breast cancer
to the 155 genes selected in the discovery analysis: these
were the 10 genes forming the RSI, the 51 genes in-
cluded in the RSS, and the 7 genes described by Tramm
et al. [8, 12, 13]. We further added genes identified in
the literature (Additional file 3: Table S1). Among these
were genes associated with apoptosis (BCL2) [25],
DNA-repair (BRCAI, BRCA2 and survivin/BIRCS) [26,
27], the MET-HGF pair [28], hypoxia (HIFI and HIF2)
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[29] and WRAPS3 [30]. We also added genes important
for breast cancer biology or subtyping (ER, PGR, ERBB2,
MKI67, AURKA and FOXCI). Finally, we added 13
housekeeping genes previously used by Nanostring in
their targeted gene expression assays (Additional file 3:
Table S1). In total, 248 genes were selected for the devel-
opment of a targeted assay.

Training and validation of single-sample predictors with
the targeted assay

Both the discovery cohort and the validation cohort were
analyzed with the targeted Nanostring assay. SSPs were
trained in the discovery cohort separately for the four
groups created when stratifying for ER status and RT sta-
tus (ER+RT+, ER+RT-, ER-RT+ and ER-RT-). The
locked models were then applied in the validation cohort.
The validation AUC was 0.67 for the SSP in ER + RT+
samples, 0.89 for the SSP in ER + RT- samples, and 0.78
for SSP in ER-RT+ samples. The ER-RT- group could not
be analyzed due to too few samples (N =3). The SSPs
were significantly associated with IBTR in survival analysis
(log-rank p=0.01, p=0.02 and p<0.001, respectively)
(Fig. 2a). Next, we tested the SSPs in two public datasets
and mapped the genes to the respective platforms.
Three genes were missing in the Servant et al. data-
set, and 34 genes were missing in the van de Vijver
dataset, and thus we used the SSPs without these
gene pairs. All patients in the Servant et al. dataset
were treated with RT and we could thus only test the ER +
RT+ and ER-RT+ SSPs. Both SSPs were significantly predict-
ive of IBTR (log-rank p <0.001 and p =0.001, respectively)
with corresponding AUC values of 0.62 and 0.74 (Fig. 2b).
The van de Vijver dataset also included a majority of
RT-treated patients, and we therefore again tested the ER +
RT+ and ER-RT+ SSPs. The ER + RT+ SSP was significantly
predictive of IBTR (p = 0.003, AUC 0.69) but not the ER-RT
+ SSP (p =0.56, AUC 0.50) (Fig. 2c).

Potential clinical application

The first set of analyses focused on prognostic predic-
tors, either in RT+ patients where our SSPs may be
regarded as radioresistance classifiers, or in RT- patients,
in which the SSPs may be seen as a method for finding
patients without the need for RT. However, the aim was
to derive a classifier that can stratify patients into three
groups: (1) those that could be spared RT, (2) those that
benefit from and should be given RT and (3) those that
are intrinsically radioresistant, and where other treat-
ments strategies should be considered besides RT, e.g.
mastectomy or more aggressive adjuvant systemic
treatment. One strategy to stratify patients into the three
treatment groups could be to apply our SSPs consecutively,
such that we first determine which patients should be
spared RT with a SSP developed in RT- patients. Patients
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predicted to have low risk of IBTR would be in the
“No-RT” group. For the patients predicted as high risk of
IBTR, the SSP developed in RT+ patients, and thus poten-
tially testing radioresistance, could next be applied. Patients
predicted as having low risk of IBTR when given RT would
be in the “Give-RT” group, while patients predicted as
having high risk of IBTR even with RT would be in the
“More-treatment” group. To test this conceptual idea, we
applied our SSPs consecutively in our validation cohort
separately for ER+ and ER- tumors. For ER+ tumors, the
No-RT group had no benefit from RT (p =0.43), but did
not have a low risk of developing IBTR (25% at 10 years)
(Fig. 3a). The effect of RT was excellent in the Give-RT
group (p<0.001), while RT had no effect in the
More-treatment group (p = 0.36), and the group had a sub-
stantially higher risk of IBTR than the No-RT group (55%
at 10 years) (Fig. 3a). In a Cox model of the ER+ tumors in-
cluding the variable of “Give RT vs No RT” and “Give more
treatment”, RT and the interaction term between the
prediction and RT, the interaction term was significant
(HRjjteraction = 0.12 95% CI 0.03-0.54, Pjceraction = 0-001),
further strengthening the treatment predictive potential
(Additional file 7: Table S4). Among patients with ER- tu-
mors, only two were RT-untreated, and we could thus only
investigate the prognostic effect in this group. Those that
were predicted as More treatment had a significantly higher
rate of IBTR than the patients in the No-RT and Give-RT
groups (p < 0.001) (Fig. 3b).

Analysis of previously published profiles in our data

The RSS described by Speers et al. was applied to our
entire dataset created with the targeted assay (N =307),
as described in the original publication. There was
an overall association with IBTR in the full dataset
(log-rank p=0.001, AUC of 0.59). When it was
applied as stratified for ER and RT, it remained sig-
nificant only in the ER + RT+ group (p =0.001, AUC
0.58) (Fig. 4a). The 10-GS, based on the genes in-
cluded in the RSI, was applied to the targeted data-
set as described in the original publications, with the
change that the cut point was set to the median
value, as we have enriched for patients with later
IBTR in this dataset. Overall it did not predict the
development of IBTR (log-rank p=0.20, AUC 0.51).
However, stratified for ER and RT, it performed well
in the ER-RT+ group (log-rank p < 0.001, AUC 0.70) (Fig. 4b).
Further, high risk/radioresistance, as predicted by 10-GS, was
significantly associated with fewer instances of IBIR in the
ER + RT- group (log-rank p = 0.02, AUC 0.70 when changing
the direction of analysis) (Fig. 4b).

We also tested the treatment predictive effect of
RSS and 10-GS, i.e. the effect of RT in those pre-
dicted to be radioresistant or radiosensitive, respect-
ively. Neither of the RSS groups had an effect of RT
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recurrence (IBTR) and the SSPs were evaluated by survival analysis using the Kaplan-Meier method and log-rank test, and receiver operating
characteristics (ROC) analysis with area under the curve (AUC) as a measurement of performance

(p=0.71 and p=0.93, respectively) (Fig. 4c). For the
10-GS, on the other hand, RT had no effect on the sam-
ples predicted to be radioresistant (p = 0.23), while there
was an effect of RT in the samples predicted to be radio-
sensitive (p=0.06) (Fig. 4c). A Cox regression model
including RT, 10-GS and the interaction term between RT
and 10-GS showed that the interaction term was

significantly predictive of IBTR (pinteraction = 0-03), suggest-
ing a treatment predictive effect of the 10-GS.

Comparison of models and association with underlying
biology

To investigate similarities and differences between our
newly developed SSPs and the previously published
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models, we tested correlation between the raw scores
and the models (Fig. 5a-c). Overall, our SSPs were
weakly positively correlated with RSS but not with
10-GS.

Cancer cell proliferation is a major biological prognos-
tic determinant in ER+ breast cancer (also largely separ-
ating the luminal A from the luminal B subtype), while
the immune response has been shown to be important
for the prognosis in highly proliferating and ER- breast
cancer [18]. To investigate the biology behind the
models, we tested correlation between the raw model
scores and proliferation and immune response, calcu-
lated as the geometric mean of the expression of genes

associated with proliferation and immune response, re-
spectively (details in Additional file 2). Overall, our SSPs
were weakly correlated with proliferation, but not immune
response (Fig. 5d and g). RSS was also weakly correlated
with proliferation and weakly negatively correlated with im-
mune response (Fig. 5e and h). 10-GS, on the other hand,
was more strongly negatively correlated with both prolifera-
tion and immune response (Fig. 5f and i). Further, stratified
for ER and RT, the SSPs developed in ER+ tumors corre-
lated with proliferation and weakly with immune response.
Conversely, the SSPs developed in ER- tumors negatively
correlated with immune response, but did not correlate
with proliferation (Additional file 8: Figure S4).
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Discussion

In this study, we developed and validated single-sample
predictors (SSPs) that were prognostic for IBTR using a
targeted gene expression panel applicable to samples of
lower RNA quality. We presented a conceptual idea of
applying the SSPs to stratify patients into treatment
groups with promising potential. Two previously pub-
lished radiosensitivity signatures [8, 12] were also tested
in our data, and their performance was found to be ER

status dependent, which may be explained by the biology

behind the different models.

The treatment of primary breast cancer is highly indi-
vidualized, and tests are available to guide the use of ad-
juvant endocrine therapy, chemotherapy and anti-HER2
treatment [37, 38]. However, no test is available to guide
the use of adjuvant RT, which remains an urgent unmet
clinical need. Several attempts have been made towards
this aim, but no test has been introduced in clinical use.
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The reasons are mainly due to lack of follow-up studies
and validation, the inability to handle samples of lower
RNA quality, which is typical under clinical conditions
with FFPE samples, and the models being cohort
dependent. We here present a novel approach that aims
to overcome these problems, and move individualized
RT closer to clinical use. First, we build on previous bio-
logical knowledge by including genes that have been pre-
viously described in the literature to be associated with
radioresistance, in addition to our newly discovered set
of genes. Our final SSP models consist of genes from
these different sources, and are highly prognostic for
IBTR, both in our validation data and in independent
public data. In addition, the targeted assay includes genes
from two previously described radiosensitivity signatures,
giving us an opportunity to validate a surrogate score for
these two profiles, which indeed validated our data for
prognostication in certain subgroups. Importantly, the
10-GS is also treatment predictive for RT. Second, most
clinical samples are handled and stored as FFPE tissue,
and an assay able to process RNA extracted from FFPE
samples would greatly facilitate its use in the clinical rou-
tine. Here, we have used the Nanostring nCounter plat-
form for our targeted assay, which has shown good
performance in FFPE samples and is FDA approved for
such use with the ProSigna assay [39], and we validated
our targeted radiosensitivity panel in samples of lower
RNA quality. Although not yet directly tested in FFPE
samples, our samples of lower RNA quality are similar to
RNA extracted from FFPE samples in terms of the RNA
integrity number (RIN) value and fragment length (data
not shown). Third, we used a machine learning algo-
rithm, (k-TSP), which relies only on the relative ex-
pression of genes within a sample, which should in
theory make it both platform and cohort independent.
Indeed, we validated the SSPs in data from samples
that were partly degraded and in fresh-frozen tumor
cohorts, without any scaling or other measure to
make the data comparable.

Further, the aim of a radiosensitivity predictor in early
breast cancer is to stratify patients and offer treatment
only to patients in whom RT had a clinically significant
effect. However, patients that do not benefit from RT
after BCS may either be those that have the least aggres-
sive tumors, and remain recurrence-free even without
RT (requiring de-escalation of treatment), or those with
the most aggressive and radioresistant tumors (requiring
escalation of treatment). This may complicate the ana-
lysis, since those two groups of tumors most likely are
not similar in their transcriptomic profiles. The strength
of this study is therefore that we developed classifiers
that incorporate those two different settings, for not
benefitting from RT in treatment stratification, creating
three groups for treatment stratification. The results were
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highly significant in the validation cohort, although we ac-
knowledge the small sample sizes, and the requirement
for further validation in larger cohort studies or random-
ized trials.

However, although we herein showed reproducible
classifiers for IBTR prognostication and RT treatment
stratification, it must be noted that RT is an effective
treatment, with good cost-effectiveness, and relatively
mild side effects, which increases the threshold for with-
holding RT in patients. High predictive accuracy is re-
quired from any radiosensitivity predictor for it to be
clinically useful. Although promising, the performance
of our proposed SSPs and the previously published pro-
files show that they are not yet ready for clinical use.
Validation in additional cohorts may be a next step, but
further classifier development is likely needed. Indeed,
our SSPs were intentionally trained with default settings
using the majority of genes in the panel as a proof of
concept. There is great potential to further optimize the
model by e.g. reducing the number of gene pairs,
weighting the gene pairs, etc. For a final clinical decision
tool, one alternative may be to include additional param-
eters in the models, i.e. combining gene expression data
with clinicopathologic variables, intrinsic subtype, and
other molecular data into mixed classifiers. Indeed, com-
bining gene expression data with additional information
has already been suggested [16, 40]. However, this data-
set, especially after the validation of a locked profile, is
not sufficient for extensive classifier optimization or
evaluation of other clinicopathologic variables.

One limitation of our study is the case-control sam-
pling, meaning that RT was not administered in a ran-
domized fashion. This limits the analyses that can be
performed, and e.g. the proposed method of using a Cox
model with an interaction term between treatment and
gene expression is not feasible in this dataset [41].
Further, the cohort is enriched for patients with IBTR,
and thus the Kaplan-Meier curves and HR estimates
presented are not representative of the risk of recurrence
in a matched population, and should only be interpreted
as an indicator of how the different models perform in
the specific datasets. The problem of treatment given in
a non-randomized fashion is not unique to our dataset,
but is a general problem in the development of a RT
predictive gene expression signature. The publicly avail-
able datasets analyzed here were also non-randomized
for RT, and the dataset presented by van de Vijver in-
cluded patients who underwent both modified radical
mastectomy and BCS, while the dataset by Servant et al.
contained only patients who underwent BCS. Also, in
the publicly available datasets the proportion of patients
given RT differs. In the dataset of Servant et al., all pa-
tients were given RT, while this was not the case in the
van de Vijver et al. cohort. This may explain the
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observed differences between the datasets when we vali-
dated our SSPs. Further, systemic adjuvant treatment
was allowed in our study and was not specified in the in-
clusion criteria, which may introduce bias and make in-
terpretation of the classifier performance difficult in
relation to another cohort. Indeed, there are differences
in the proportion of chemotherapy and endocrine
therapy given in the discovery and validation cohorts
(Table 1, Additional file 9: Table S2). However, to correct
for this, we performed multivariate Cox regression
adjusting for tumor characteristics (subtype, size and
positive lymph nodes) and treatment (endocrine therapy
and chemotherapy) for both the prognostic SSPs, and the
consecutive use of SSPs to stratify patients for treatment,
which did not alter the main findings (Additional file 2).

We chose to develop different models for ER+ and
ER- breast cancer, as ER status is a major determinant of
breast cancer biology [42]. Indeed, when we analyzed
the previously reported RSS and 10-GS signatures, they
did not perform uniformly for ER+ and ER- disease. To
that end, we investigated the biological basis behind the
models, focusing on proliferation and immune response,
which have been described as the major drivers of breast
cancer biology [18]. As our SSPs developed in ER+
breast cancer were correlated with proliferation, one
might suspect that we found the difference between lu-
minal A and luminal B tumors, which is defined mainly
by proliferation, and that our high-risk tumors were
mainly luminal B tumors. However, the rate of high-risk
and low-risk predictions was similar in the luminal A
and luminal B tumors. Although the performance of the
SSPs were slightly higher in the luminal A tumors, the
difference was not significant. Furthermore, multivariate
modeling including subtype did not alter the findings
(Additional file 2). RSS was also correlated with prolifer-
ation, and it was trained in a cohort with mainly ER+
tumors all treated with RT, which may explain why it
could only be validated in ER+ RT+ patients. More
interestingly, the 10-GS could only be validated in
ER-RT+ patients, and the ER + RT- tumors predicted as
radioresistant actually had a lower risk of IBTR,
which is consistent with the follow-up study by the
original authors [16]. As the 10-GS is negatively cor-
related with proliferation and immune response, as
was also shown recently by the original authors [17],
this means that the tumors predicted as radioresis-
tant were mainly slowly proliferating, and it there-
fore makes sense that ER+ tumors predicted as
radioresistant have a better outcome. Further, the tu-
mors predicted as radioresistant have a lower im-
mune response, which may explain why ER- tumors
predicted as radioresistant have a worse outcome, as
the immune response is more important in highly
proliferating and ER- tumors.
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Conclusion

In conclusion, we developed and validated single-sample
predictors based on a targeted radiosensitivity gene expres-
sion assay using the Nansotring nCounter platform. We
validated our SSPs in samples of lower RNA quality, and in
external data, with promising results in the treatment strati-
fication of patients. Previously published profiles were also
validated in our data, but their performance was highly
dependent on the ER status of tumors. Explanations for the
difference in performance may be found in the biological
basis behind the different classifiers, and should be incorpo-
rated in future studies.
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Additional file 1: Figure S3. Principle component analysis (PCA) plot of
the gene expression data from the targeted panel, with coloring for the
biobank center from which the samples were derived. Center 1 and 3
had samples of higher quality RNA and constituted the discovery cohort.
Center 2 constituted the validation cohort. (PDF 184 kb)

Additional file 2: Supplemental methods, results and discussion. (DOCX 91 kb)

Additional file 3: Table S1. Genes included in the targeted 248-gene
panel. (CSV 38 kb)

Additional file 4: Table S3. Genes in the k-top scoring pairs predictors.
(XLSX 24 kb)

Additional file 5: Figure S1. Selection of top discrimination genes in
the Illumina discovery cohort data. Number of genes in the random
forest models are plotted against performance of classifying cases and
controls, as measured by cross-validated area under the curve (AUC). The
analysis was stratified for estrogen receptor (ER) status and radiotherapy
(RT) treatment, and with added patients from other strata, based on a
biological rationale as described in the text. (ZIP 171 kb)

Additional file 6: Figure S2. Hierarchical clustering of the top
discriminating genes selected in the discovery analysis. Genes are
presented as rows, and samples as columns. Colors of the columns
represent group after stratification for estrogen receptor (ER) status and
radiotherapy (RT), with red representing tumors with later ipsilateral
breast tumor recurrence (IBTR, cases). Colors of the rows shows the
group in which the gene was selected. Each of the main four clusters
were compared with the clusters described by Fredlund et al. and the
cluster with the highest association has been marked. (PDF 1308 kb)

Additional file 7: Table S4. Univariable and multivariable Cox -models
for the ER+ tumors including variables of “Give RT” vs “No RT” and “Give
more treatment”, radiotherapy, and the interaction term between the
prediction variable and RT. (XLSX 8 kb)

Additional file 8: Figure S4. Correlation of SSP scores with proliferation
and immune response. Raw SSP scores are plotted against a proliferation
score and an immune score, respectively. SSP scores are calculated based
on the four different models developed stratified for estrogen receptor
(ER) status and radiotherapy (RT) (ER+RT+, ER+RT-, ER-RT+, ER-RT-). Pear-
son correlation values and p-value from a linear model with test for zero
slope are plotted together with the linear model fit. (PDF 1160 kb)

Additional file 9: Table S2. Patient characteristics per cohort, estrogen
receptor status and radiotherapy status. (XLSX 20 kb)
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