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Abstract

Conservation of large carnivores, such as the African lion, requires preservation of exten-

sive core habitat areas, linkages between them, and mitigation of human-wildlife conflict.

However, there are few rigorous examples of efforts that prioritized conservation actions for

all three of these critical components. We used an empirically optimized resistance surface

to calculate resistant kernel and factorial least cost path predictions of population connectiv-

ity and conflict risk for lions across the Kavango-Zambezi Transfrontier Conservation Area

(KAZA) and surrounding landscape. We mapped and ranked the relative importance of (1)

lion dispersal areas outside National Parks, (2) corridors between the key areas, and (3)

areas of highest human-lion conflict risk. Spatial prioritization of conservation actions is criti-

cal given extensive land use redesignations that are reducing the extent and increasing the

fragmentation of lion populations. While our example focuses on lions in southern Africa, it

provides a general approach for rigorous, empirically based comprehensive conservation

planning based on spatial prioritization.

Introduction

Africa’s human population is expected to increase threefold by the end of this century [1], with

highest population growth near protected areas [2]. Rising human and livestock populations

increase demand for resources, driving conversion of land currently protected for wildlife to

uses, such as agriculture or mining, that are perceived to be more economically profitable or

politically expedient [3, 4]. Accelerating declines of carnivores as a result of human-carnivore

conflict and habitat loss are likely [5].

In the case of the African Lion (Panthera leo), human-wildlife conflict and habitat loss are

the primary drivers of recent declines, with lion populations within protected areas becoming
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increasingly isolated [6]. Bjorklund [7] found that a minimum of 50–100 prides, linked by dis-

persal, is required to maintain long-term genetic diversity. Very few remaining populations

contain this number of prides [6]) and some populations already have reduced genetic diver-

sity, which has been shown to decrease reproductive performance [8] and increase susceptibil-

ity to disease [9]. Many existing protected areas are too small to support large populations and

are therefore unlikely to be viable in the long term. Dispersal between remnant populations is

therefore critical in maintaining long-term genetic health and providing demographic rescue

of regional lion populations [10] and inbreeding depression [8,9]. In response to growing con-

servation concern, similar to those introduced above for lions, the creation or protection of

dispersal corridors has emerged as a popular strategy to improve population connectivity and

enhance viability [11, 12, 13].

The Kavango-Zambezi Transfrontier Conservation Area, KAZA (~520,000 km2), in south-

ern Africa is of immense conservation importance for lions as it contains 13 ‘Lion Conserva-

tion Units’ [14], including the Okavango-Hwange population, one of Africa’s 10 remaining

lion ‘strongholds’ [15]. In this paper, we present a comprehensive approach to prioritizing lion

conservation actions based on spatial optimization with empirical connectivity models. We

assess the importance and vulnerability of the key dispersal areas (defined as areas outside

national parks and game reserves with high dispersal value for lions and therefore the overall

integrity of lion range) and movement corridors between them, and identify areas of high

human-lion conflict risk across the KAZA landscape.

Materials and methods

The project involved the use of data on lion movements obtained from GPS collars. All lion

handling, collaring and research was approved under stringent protocols and approvals

granted by the University of Oxford, and all lion handling was done by a professional and cer-

tified wildlife veterinarian.

Resistance surface

We used a resistance surface that was empirically optimized for the study extent using Global

Positioning System data collected from male natal dispersers (Fig 1; for a full description of the

study extent and resistance surface modelling, see[16]. Briefly, Elliot et al. [16] used a multi-

scale, path-selection function to predict landscape resistance based on movement data for

adult female, adult male and dispersing juvenile male lions. Given that juvenile dispersal is dis-

proportionately important in population connectivity we use the resistance surface produced

by [16] for dispersing juvenile males in this analysis. This surface was produced with a 500m

pixel size, and predicted that juvenile males selected movement paths preferentially in pro-

tected areas and avoided communal lands, proximity to towns, areas with high human popula-

tion density, and large roads.

Source points for connectivity modeling

The connectivity modeling approaches used in this study (resistant kernel and factorial least

cost path) are based on predicting movement from a set of source points that reflect the distri-

bution and density of the underlying population. Source points were established by intersecting

the protected area extent with a map of estimated site carrying capacity for lions based on cli-

matic correlates of prey biomass [17]. Specifically, we down sampled the predicted density

based on carrying capacity to reflect the low densities of lions outside of protected areas and

also adjusted in areas where we had first-hand knowledge that the lion population differed from

the prediction [17] (e.g., Angola). We converted these densities to source points for connectivity
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modeling following a three-step process. First, we rescaled the density layer such that it reflected

the probability of a lion occurring in each 500m pixel. Second, we took the product of the

rescaled density layer and a raster layer of uniform random values between 0 and 1. Third, we

selected all values of the product that were positive as source points, producing a selection of

source points that matches the density predicted by the density surface.

Resistant kernel and factorial least cost path modeling

The resistance map provides resistance values for all locations in the study extent, in the form

of the cost of crossing each pixel relative to the least-cost condition [16]. We used UNICOR

[18] to calculate cumulative resistant kernel and factorial least cost path maps. We specified a

dispersal threshold of 1,000,000 cost units for the resistant kernel analysis [19]. We calculated

the factorial least cost path network without a dispersal threshold (as in [19, 20]) to provide a

broad scale assessment of the regional pattern of potential linkage.

Fig 1. Study area orientation map. Top left shows study area extent within the African continent; bottom left shows study area extent within southern Africa, with inset

of land-uses in the study area.

https://doi.org/10.1371/journal.pone.0196213.g001
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The factorial least cost path analysis calculates the least cost paths among all combinations

of source points and sums them to create a path density map reflecting the relative strength of

linkage across the network. The resistant kernel model calculates the expected movement of

dispersing lions in each pixel, given the dispersal ability of the species and the resistance of the

landscape [21, 22]. The cumulative resistant kernel density can be interpreted as the probabil-

ity of a dispersing lion traversing that pixel, given the location of the source points and the

resistance of the landscape.

Identifying key lion dispersal areas and linkage corridors

We defined key dispersal areas as contiguous patches of cumulative resistant kernel values

greater than the 25th percentile of the cumulative kernel surface. These reflect areas of moder-

ate to high predicted movement rates. Our goal was to evaluate the importance of key lion

areas (‘dispersal areas’) that were outside National Parks and Game Reserves, so we selected

the cumulative kernel surface values outside of these strictly protected areas for analysis of the

number and relative importance of these dispersal areas. Likewise, we selected linkage corri-

dors that were greater than the 25th percentile of the distribution of values in the factorial least

cost path surface, and outside the network of National Parks/Game Reserves and dispersal

areas, as identified above.

Mapping relative conflict risk

We reasoned that areas with rapid change in cumulative kernel value (i.e. rapid changes from

high to low expected dispersal rates) are potential hotspots where high lion movement inter-

sects high conflict risk. We predicted conflict risk zones by calculating the standard deviation

of the cumulative kernel surface within a 10km focal radius for all areas outside of National

Parks/Game Reserves, and selected values above the 25th percentile for further analysis. Essen-

tially, this index calculates the spatial variation in local cumulative kernel value, identifying

areas with high change that we would expect to represent areas with high relative conflict risk.

Evaluating the relative importance of predicted key lion dispersal areas,

linkage corridors and conflict hotspots

We used several criteria to evaluate the importance of predicted dispersal areas, linkage corri-

dors, and conflict hotspots. For dispersal areas, we identified three main characteristics that

contribute to their importance to regional lion populations: (1) The size of the area, since lion

populations require large areas; (2) The summed kernel value, reflecting the total predicted

movement of dispersing lions in that region of the landscape; (3) The degree to which a key

dispersal area was connected to other areas, because dispersal areas that are nodes connecting

the regional populations are likely more important than peripheral populations (Fig 2A). We

therefore produced a measure of dispersal area importance based on number of National

Parks/Game Reserves it connected. We produced a composite score by averaging the ranks

produced by these three measures.

We used two measures to evaluate the importance of predicted linkage corridors (Fig 2B). (1)

We extracted the maximum value of the factorial least cost path surface for each linkage corridor

segment. This reflects corridor strength (sensu [23]) in terms of the number of pairwise linkages

between source points predicted to traverse that corridor segment. (2) We weighted linkage corri-

dor strength as a function of corridor redundancy. Specifically, a corridor between two dispersal

areas that have no other linkage between them is more important than a corridor linking another

two dispersal areas that are also linked by other corridors. We calculated corridor redundancy for

each corridor by calculating the proportion of total connectivity (as measured by the sum of

Lion core areas, corridors, conflict hotspots
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maximum corridor strength measures across all linkages between the two dispersal areas joined

by the focal corridor) that is provided by the focal corridor. We produced a composite linkage

Fig 2. Schematic of ranking. Steps to produce composite ranks for (a) core areas, (b) corridors, and (c) conflict hotspots.

https://doi.org/10.1371/journal.pone.0196213.g002
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that is the product of these two measures of corridor importance. Linkage corridors that are indi-

vidually strong and have low redundancy are weighted highest, while those that have low strength

and multiple alternative corridor routes are weighted lowest in importance.

Finally, we produced two measures of the importance of predicted conflict hotspots (Fig

2C): (1) We measured conflict hotspot strength based on the sum of the kernel standard devia-

tion surface within each identified patch of predicted high conflict risk. This measure weights

areas based on total conflict risk and is highly dependent on the area of the predicted conflict

hotspot; (2) We calculated the mean value of the kernel standard deviation surface within each

predicted conflict hotspot patch. This measure identifies areas of highest potential conflict

risk, regardless of size. For management purposes, both of these measures are informative, and

we combined them with equal weight; (3) We multiplied the conflict hotspot combined value

by 0.75 if it was traversed by a fence since conflict hotspot patches that coincide with the loca-

tion of a wildlife fence likely have reduced conflict risk since the fence partly separates people

and cattle from lions, and also because the fence itself, as a resistant feature in the resistance

model, contributes to the high values of the kernel standard deviation surface.

Results

Location and importance of key dispersal areas

We identified nine key dispersal areas, which differed dramatically in predicted strength (Figs 3A

and 4). Based on the scree-plot of relative importance ranking (Fig 3A) we selected four key dis-

persal areas to emphasize. Dispersal area 1, ranked as by far the most important, surrounds and

connects Chobe, Nxai Pan, Moremi, Hwange, and Makgadikgadi Pans protected areas. The second

most important dispersal area connected the protected areas of Chete, Chizarira, Chirisa, Charara,

Mana Pools, Chewore, Doma in Zimbabwe and Lower Zambezi in Zambia. This dispersal area

had a composite importance score of 50.6% of the highest ranked dispersal area. The third ranked

dispersal area surrounded Kafue National Park in Zambia. The composite importance measure for

this predicted dispersal area was 23.7% of the highest ranked dispersal area. The fourth ranked dis-

persal area surrounded the Central Kalahari Game Reserve, particularly concentrated on the west-

ern boundary, with a composite score of 21.6% of the highest ranked dispersal area.

Location and importance of predicted linkage corridors

We predicted 27 linkage corridors between the nine key dispersal areas (Fig 5), which differed

greatly in strength and relative importance. Based on the scree plot of composite ranking (Fig

3B) we selected three linkage corridors to emphasize. The highest ranked corridor was located

between the southwestern corner of the central (highest ranking) dispersal area and the dis-

persal area surrounding the Central Kalahari Game Reserve, proximally linking Makgadikgadi

Pans National Park and Central Kalahari Game Reserve. The second highest ranked corridor

was located between the northeastern corner of the central dispersal area and the southwestern

corner of the second highest ranked dispersal area, proximally linking Hwange and Chizarira

National Parks. This corridor had a relative composite value of 88.8% of the highest ranked

corridor. The third highest ranked corridor was near and parallel to the first, between the

Makgadikgadi Pans and Central Kalahari protected areas, and had a composite value of 58.4%

of the highest ranked corridor.

Location and importance of predicted conflict hotspots

The highest ranked predicted conflict hotspot area runs along the northern edge of the central

dispersal area from Mudumu National Park in the west to Zambezi National Park in the east,

Lion core areas, corridors, conflict hotspots
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with an area of particularly intense predicted conflict within the Chobe Enclave north of

Chobe National Park (Figs 6 and 3C). The second highest ranked conflict risk zone is along

the eastern edge of the central dispersal area, running along the eastern boundary of Hwange

National Park. This conflict hotspot had a composite score of 75.8% of the highest ranked con-

flict hotspot. The third highest ranked conflict hotspot was also adjacent to Hwange National

Park in the central dispersal area, running along the northern boundary of the park, with a rel-

ative conflict risk value of 68.7% of the highest ranked conflict risk hotspot.

Discussion

Habitat loss and fragmentation, coupled with severe human-wildlife conflict, have reduced

lion populations to less than 10% of their historic range. It is widely recognized that conserva-

tion of lions, and other large carnivores, requires a combined strategy incorporating the pres-

ervation of extensive core habitat areas, linkages between them, and mitigation of human-

wildlife conflict. However, there have been few rigorous examples of efforts that have spatially

prioritized conservation actions for all three of these critical components. As human popula-

tions continue to grow [1], so too does demand for land, which is likely to exacerbate the two

most pertinent threats facing lions, habitat loss and human-lion conflict [6]. It is therefore

imperative that policy makers prioritize conservation actions based on the available scientific

evidence. Our paper presents a comprehensive strategy for lion conservation across the

Kavango-Zambezi Transfrontier Conservation Area in southern Africa, which combines a val-

idated empirical connectivity model with spatial prioritization of core areas, corridors and

conflict risk hotspots, to motivate directed and immediate conservation for this region. This is

particularly critical at the present moment given rapidly increasing human populations leading

to extensive land use redesignations that are reducing the extent and increasing the fragmenta-

tion of the lion population.

We identified nine key dispersal areas, 27 linkage corridors and 27 potential human-lion

conflict hotspots outside National Parks in the KAZA Transfrontier Conservation Area and its

surrounding landscape. Our results suggest that it is critical to ensure that Dispersal Areas 1, 2

and 3 continue to be managed for wildlife in their entirety. With four strategically placed corri-

dors (Corridors 1, 2, 4 and 6; Figs 4 and 5), the five most important Dispersal Areas can be

linked, and we urge that these be designated and enhanced, perhaps by establishing funneling

fences to direct dispersers into them [24]. Finally, the four areas most at risk of human-lion

conflict (Fig 6) require conservation action, either in the form of strategically placed fences, or

mitigation measures, or both. In summary, our results suggest that the most effective means of

maintaining the long-term viability of lions in this region is to maintain the current Protected

Area network, protect the most important Dispersal Areas, protect and enhance Corridors 1,

2, 4, 5 and 6, and implement conflict mitigation measures in the areas most at risk.

While habitat loss and fragmentation are major drivers of lion declines, so too is human-

lion conflict [6], and therefore human-lion conflict must be addressed in connectivity plan-

ning. Our analysis highlighted the area within the Chobe Enclave as being most at risk of con-

flict, while the Tsholotsho area, to the south-east of Hwange National Park was ranked second.

The third area most at risk of conflict is located to the north-east of Hwange National Park,

while the fourth is east of the Central Kalahari Game Reserve. All these areas are known con-

flict hotspots [25], and according to our least cost path analysis, offer little or no connectivity

to other areas. We therefore suggest one of two courses of action to minimize human-lion

Fig 3. Relative importance rankings. (a) key lion dispersal areas, (b) lion linkage corridors, (c) human-lion conflict

risk in the Kavango-Zambezi Transfrontier Conservation Area and surrounding landscape. Numbers refer to labels in

Figs 4, 5 and 6.

https://doi.org/10.1371/journal.pone.0196213.g003
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Fig 4. Dispersal areas. Ranked values of composite lion dispersal area importance within the Kavango-Zambezi Transfrontier Conservation Area and surrounding

landscape.

https://doi.org/10.1371/journal.pone.0196213.g004
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conflicts in these hot spots. First, strategically placed fences could be erected to limit move-

ment of lions into these specific areas, a measure which is unlikely to reduce connectivity in

Fig 5. Corridors. Ranking of relative lion linkage corridor importance within the Kavango-Zambezi Transfrontier Conservation Area and surrounding landscape.

https://doi.org/10.1371/journal.pone.0196213.g005
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Fig 6. Conflict hot-spots. Ranking of relative human-lion conflict hotspot importance within the Kavango-Zambezi Transfrontier Conservation Area and surrounding

landscape.

https://doi.org/10.1371/journal.pone.0196213.g006
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these particular locations [24]. A strong caveat to this solution is that fences must be predator

proof and adequately maintained. The second alternative would be to implement community-

based mitigation initiatives aimed at either reducing the levels of conflict or maximizing the

incentives to protect wildlife. It is likely that the area east of the Central Kalahari Game Reserve

experiences less conflict due to the fence in that area and we advocate that the fence is main-

tained and reinforced to minimize conflicts.

The analyses presented here focus on identifying the most important core areas, the stron-

gest potential corridors that connect them, and the locations of the highest potential conflict

risk. Our recommendation is to (1) protect the most important core areas, (2) establish move-

ment across the most important corridors, and protect them from development and conflict

risk, and (3) implement conflict mitigation measures and strategic fencing to reduce mortality

risk to lions in the identified conflict hot spots. In some cases, it may no longer be possible to

functionally restore some of the movement corridors identified in our analyses. In such cases,

a potential alternative would be to mimic the outcomes that would result if the corridors were

functional, such as translocations of individual lions reciprocally across the gap [26]. Translo-

cations between fenced protected areas has been a successful strategy for maintaining lion

genetic diversity, but where possible we advocate for establishing and protecting functional

corridors, since functional corridors would provide connectivity for a large number of species,

in addition to lions.

It is important for conservation proposals to include consideration of risks, hidden risks,

opportunity costs and cost implementation. The prioritization presented here is based exclu-

sively on ranking locations for conservation based on biological criteria only, and does not

include discussion of societal, political, or economic considerations. As such, it should not be

considered to be a recommendation for specific action, but rather a step in the process of deci-

sion-making. We believe these results will be useful to managers and decision-makers in their

efforts to identify solutions that meet conservation and social objectives simultaneously in a

cost-effective manner. Future research, combining sociology, economics and ecology, should

work on formalizing that process of balancing the conservation and social objectives sur-

rounding lion conservation in southern Africa.

This example, while for lions in southern Africa, provides a general approach for rigorous,

empirically based comprehensive conservation planning based on spatial prioritization. We

propose a method to quantitatively develop a comprehensive strategy for population-level car-

nivore conservation based on combining validated empirical connectivity models with spatial

prioritization of core areas, corridors and conflict risk hotspots. By spatially mapping and

ranking the relative importance of these areas our approach allows managers to identify the

highest priority areas for directed and immediate conservation.

Supporting information

S1 File. Resistance layer used as the base of connectivity modeling reported in this paper.

(RSG)

S2 File. Source points representing locations of individual lions included in connectivity

modeling reported in this paper.

(XY)

S3 File. Cumulative resistant kernel surface that is the product of UNICOR connectivity

modeling on the resistance layer (S1 File) and source points (S1 File).

(ADDEDPATHS)

Lion core areas, corridors, conflict hotspots

PLOS ONE | https://doi.org/10.1371/journal.pone.0196213 July 5, 2018 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196213.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196213.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0196213.s003
https://doi.org/10.1371/journal.pone.0196213


S4 File. Factorial least-cost path network surface that is the product of UNICOR connec-

tivity modeling on the resistance layer (S1 File) and source points (S2 File).

(ADDEDPATHS)

Acknowledgments

We would like to acknowledge the time and effort invested by the three reviewers and the edi-

torial staff. Their comments were very helpful in improving the manuscript.

Author Contributions

Conceptualization: Samuel A. Cushman, Nicholas B. Elliot, Dominik Bauer, Kristina Kesch,

Laila Bahaa-el-din, Michael Flyman, Godfrey Mtare, David W. Macdonald, Andrew J.

Loveridge.

Data curation: Samuel A. Cushman.

Formal analysis: Samuel A. Cushman, Helen Bothwell.

Investigation: Samuel A. Cushman.

Software: Samuel A. Cushman.

Visualization: Samuel A. Cushman.

Writing – original draft: Samuel A. Cushman, Nicholas B. Elliot, Dominik Bauer, Kristina

Kesch, Laila Bahaa-el-din, David W. Macdonald, Andrew J. Loveridge.

Writing – review & editing: Samuel A. Cushman, Nicholas B. Elliot, Dominik Bauer, Kristina

Kesch, Laila Bahaa-el-din, Helen Bothwell, Michael Flyman, Godfrey Mtare, David W.

Macdonald, Andrew J. Loveridge.

References
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