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Abstract: Photoacoustic imaging enables the imaging of soft biological tissue with combined
optical contrast and ultrasound resolution. One of the targets of interest is tissue vasculature.
However, the photoacoustic images may not directly provide the information on, for example,
vasculature structure. Therefore, the images are improved by reducing noise and artefacts,
and processed for better visualisation of the target of interest. In this work, we present a new
segmentation method of photoacoustic images that also straightforwardly produces assessments
of its reliability. The segmentation depends on parameters which have a natural tendency to
increase the reliability as the parameter values monotonically change. The reliability is assessed
by counting classifications of image voxels with different parameter values. The resulting
segmentation with reliability offers new ways and tools to analyse photoacoustic images and
new possibilities for utilising them as anatomical priors in further computations. Our MATLAB
implementation of the method is available as an open-source software package [P. Raumonen,
Matlab, 2018].
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1. Introduction

Photoacoustic tomography (PAT) is an imaging modality based on the photoacoustic effect that is
generated through the absorption of an externally introduced light pulse. The method combines
optical contrast provided by distinctive absorption spectra by different chromophores with high
spatial resolution of ultrasound. The chromophores of interest are, for example, haemoglobin,
melanin and various contrast agents. In soft biological tissue, the ultrasonic waves carry this
optical information to the surface of tissue with minimal scattering, thus retaining accurate spatial
information as well. PAT can be used to provide images of soft biological tissues with high
spatial resolution. It has successfully been applied to the visualisation of different structures in
biological tissues, such as human blood vessels, microvasculature of tumours, and the cerebral
cortex in small animals. For more information about PAT, see e.g. the reviews [1–8] and the
references therein.

In the inverse problem of PAT, the initial pressure distribution caused the by the light absorption
is estimated from the pressure waves measured on the surface of the tissue. Various methods for
the solution of this problem have been developed including analytical inversion methods such as
backprojection algorithms [9–11] and eigenfunction expansion [12,13], time-reversal [14–18],
regularized least squares [19–26] and Bayesian approach [27,28]. If the object is fully surrounded
by detectors on a closed surface, the inverse problems of PAT is not ill-posed and can provide
good quality reconstructions of the whole three dimensional (3D) volume. However, in practice,
such an experimental setting cannot typically be constructed and one is restricted to perform
the measurements from limited directions. It has been shown that, in limited-view measurement
geometries, the target regions that are enclosed by the detection surface can be reconstructed
accurately [29]. Those inclusions within the object, that are not enclosed by the detection
surface, suffer from distortions apart from those inclusion boundaries whose normals intersect
the detection surface [29].

In order to provide meaningful information of the target of interest, the estimated initial pressure
may be further processed using methods of image processing for example by reducing limited-
view artefacts and noise, correcting image intensity by light attenuation model, segmenting tissue
types or exogenous absorbers etc. Furthermore, in quantitative PAT, one takes the estimated initial
pressure as data and aims at reconstructing the distributions of the light absorbing molecules [30].
This is an ill-posed problem which is severely affected by the solution method of the acoustic
inverse problem and the noise and artefacts in the reconstructed initial pressure [31].
Image segmentation has been utilised in PAT for example in finding the skin surface [32],

finding regions with different speed of sound [33], determining vessel separations to guide
surgeries [34] and simplifying the reconstruction geometry for quantitative PAT in a simple
phantom measurement setup [35, 36]. In addition, an automatic segmentation designed to
distinguish blood vessels called vessel filtering [37] has been applied for photoacoustic images
in [38]. The method has been further improved by skeletonization algorithm developed for vessel
architectural analysis [39]. The distortions in the photoacoustic images and noise make filtering
and segmentation process challenging, and thus further development of automated methods for
segmentation are required.

Conventional filtering and segmentation methods produce either a single processed and filtered
image or a single segmentation of the image into vessels and other parts. However, there can be
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considerable problems with these approaches. For example, the results are generated by some
kind of optimisation of the input parameters or even by a priori fixed parameters which results in
a classification where every point is either vessel or non-vessel. Thus, some voxels are easily
classified totally wrong as there are no middle ground or gradation. On the other hand, if the image
is not classified into two classes but only improved and filtered for visual study, the intensities
after the processing are not directly indicative of presence of vessels. Furthermore, the results
may be sensitive to small changes in the parameter values controlling the segmentation and this
sensitivity is quite rarely explicitly estimated or acknowledged. There are also the questions how
appropriate the selected optimisation criteria are and what would happen if they were changed.
Another and related problem is that we usually do not have any quantitative (or even qualitative)
measure how reliable the segmentation result is, locally or globally.
In this paper, vessel segmentation is approached in a probabilistic framework. We use a

classification procedure whose parameters have the property (at least approximately) that when
the parameter values are monotonically changed (e.g. decreased), new additional image voxels
are classified as vessels but with less reliability. Instead of trying to optimise the parameters of
the classification procedure, we repeat the procedure many times by uniformly sweeping over the
parameter space of the procedure. Then we count the classifications (vessel, non-vessel) for every
voxels and this count then gives the reliability estimation for each voxel. Thus, the result of the
segmentation process is an image where the intensity is replaced with confidence or reliability
value of how likely the voxel is from a vessel.

The classification procedure has four main steps: 1) smoothing and filtering the data, 2)
clustering, 3) vessel-segmentation of the clusters, and 4) filling gaps in the segmented data.
The procedure utilises volumetric data (point clouds) which allows for efficient processing
and visualisation of the data. Similar approach has been previously utilised in segmenting tree
branches from lidar data [40].

The content of the paper is as follows. In Section 2, we present an overview and details of the
classification procedure and how to apply it for reliability estimation. In Section 3, we present the
material we are using for testing and validating the method. Both numerical simulations with
synthetic data and real experimental photoacoustic images are used to evaluate the performance
of the method. In Section 4, we use the synthetic data for sensitivity analysis. Then, in Section 5,
we apply the method to real photoacoustic images and do performance estimation with visual
inspection. Finally, in Section 6, we discus the results and future possibilities and present some
conclusions.

2. Segmentation method

2.1. Overview of the method

The method for segmentation of vessel structures with reliability consists of a classification
procedure that is repeated using a large number of input parameters which determine the
probability of each voxel of a given image to be classified as a vessel. The parameters of the
procedure are such that when we use extreme values on one end of the spectrum, the voxels
classified as vessels have very high reliability. When the parameter values approach the other
end of the spectrum, new additional voxels are classified as vessels but with less reliability. The
classification procedure has four main steps: 1) smoothing and filtering the data, 2) clustering,
3) segmentation of the clusters into vessels, and 4) filling gaps in the vessel-segmented data. A
flowchart of the methodology is shown in Fig. 1.

In the first step, 1) smoothing and filtering the data, smoothing is performed by the convolution
of the image with a small ball-supported kernel. Then, a simple threshold-filtering is applied to
the smoothed data. We call this neighbourhood smoothing and filtering. Notice, that with high
thresholds for filtering the voxels are classified as vessels with high reliability, and decreasing the
threshold increases the number of voxels classified as vessel but with less reliability.
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Fig. 1. A flowchart of the segmentation methodology.

In the second step, 2) clustering, the data is segmented into connected vessel structures or
networks based on region growing. The clustering has a given minimum intensity value as a
starting point of a cluster and a given minimum relative intensity value of the neighbouring
points to be included in the cluster. Note, that a large starting intensity and a large neighbour
intensity leads the voxels to be classified as vessel with a high reliability, and decreasing these
values increases the number of voxels classified as vessel but with less reliability.

In the third step, 3) segmentation of the clusters into vessels, each vessel network is segmented
into smaller segmentswithout bifurcations. In otherwords, the segments correspond approximately
to individual vessels. This step has no parameters that are varied in the classification procedure.
In the fourth step, 4) filling gaps in the vessel-segmented data, potential tips (breaks) of the

segmented vessels are determined and some gaps between these tips are filled. In the approach,
two vessel tips from different clusters are combined if the gap between them is shorter than a
given maximum length and if the angle between the tip directions is less than a given maximum
angle. Similarly to the filtering and clustering thresholds, if we have a small length and a small
angle we can close a gap with higher reliability and if we increase the length and the angle we
can close additional gaps but with less reliability.

2.2. Neighbourhood smoothing and filtering

A photoacoustic image has noise that makes the data discontinuous. To smooth the data and
filter out less reliable background values we present a very simple smoothing and filtering
method. The idea is to average the intensity values over a small ball-like neighbourhood to get
smoother data. The neighbourhood average also indicates in direct and simple way if the voxel is
part of a structure: voxels that are part of a structure are more likely to have a higher average
neighbourhood intensity than ’noisy voxels’ or ’background voxels’. This smoothed data, where
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Fig. 2. Comparison of smoothed data with different filtering thresholds. The threshold is
decreased from left to right and the rightmost image is the original non-smoothed and
unfiltered data. The images are maximum-intensity projections.
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Fig. 3. Selecting the values for the filtering threshold. The blue curve shows the proportion
of the voxels passing the filtering as a function of the intensity values. The red curve is the
estimated derivative of the blue curve. The magenta lines show how to determine the limit
threshold values by the given derivative values of -1 and -0.15. The cyan lines show the
uniformly distributed proportion values and define the filtering threshold intensities.

the intensity of each voxel is replaced with the average intensity of its neighbourhood voxels, can
then be filtered simply by a given threshold: if the intensity of a voxel is lower than the threshold
value, then its value is set to zero. An example of images with different filtering thresholds can be
seen in Fig. 2. The details of the utilised photoacoustic image are described later in Section 3.1.

The smoothing (averaging) can be implemented as a convolution of 3D-arrays where the data
array is convolved with a small binary array whose non-zero elements are all ones and form a
ball-like support. In this work, we used 3 voxels as the diameter of the ball. Note that the size of
the ball could be another parameter to be varied in the reliability estimation. Although, it did not
play a significant role in our simulations, the parameter may have more value in other cases, e.g.
if the diameters of the vessels are large in terms of voxels.
The threshold used in the filtering of the smoothed data is one of the parameters to be varied

in the reliability assessment of the proposed segmentation method. We select a set of parameter
values for the threshold that corresponds to an interesting range for the segmentation. For a given
smoothing, we can compute the relative proportion of voxels passing the filtering with different
threshold values (Fig. 3 shows a typical result). As it can be seen, the curve of proportion passing
the filtering behaves similar to 1/x-function: there is a rapid decrease in the proportion with small
thresholds, but with larger thresholds, the decrease is very slow. This suggest that the threshold
values used for the filtering could be selected quantitatively. In this work, we use the following
approach based on the derivative values of the proportion curve: the lower threshold bound is set
to the intensity value where the derivative of the proportions curve is approximately −1 and the
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Fig. 4. Clustering point cloud based on intensity. There are four clusters shown with different
colours. The dark blue points scattered around are the points not assigned to any cluster
because of too low intensity values.

upper threshold bound is set to the intensity value where the derivative is approximately −0.15.
This choice covers the most of the ’bend’ of the proportions curve which can be regarded as the
interval of most interest. Then, we select these thresholds and some numbers between the bounds
so that the corresponding proportions are uniformly distributed.
It should be noted that the intensity of the photoacoustic image may vary depending on the

distance to the ultrasound sensor, especially if one is examining large imaging volumes using
a limited-view set-up. In those cases, one may need to apply a spatially varying threshold to
distinguish all the features in the images or apply an intensity correction based on light attenuation
model to the image before filtering.

2.3. Clustering

After the filtering, most of the voxels of the image are zero, and therefore it makes sense to
represent the non-zero data as a point cloud (subset of R3), where the coordinates of the points
are their array indices and the intensity value is assigned to each point. Point clouds are also
better for visualisation and they inherit the neighbourhood structure from the 3D-array. See an
example of a point cloud in Fig. 4.
Next we separate likely vessel structures from the point cloud as clusters. We use simple

intensity-based region growing to form the clusters with the idea that a point that has relatively
high intensity and is connected to a high-intensity point is likely from the same cluster. The
starting point of the first cluster is the point with the highest intensity, and the possible following
starting point is always the highest intensity point not yet assigned to any cluster. Then a neighbour
point is added to a growing cluster if its intensity is high enough compared to the intensity of the
starting point. The minimum acceptable size of the cluster can be controlled and in this paper it
is fixed to 20 points. Usually a resulting cluster is a connected network of many small and large
vessels as seen in Fig. 4.

The clustering procedure contains two parameter that are varied in the reliability assessment: the
minimum acceptable intensity for a starting point and the minimum relative intensity (compared
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The blue curve shows the proportion of the points below the given intensity value. The red
dots on the curve correspond to the user given uniformly distributed proportion values, here
[30 50 70 90]%, and define the minimum intensities.

to the minimum acceptable intensity) of an acceptable neighbour. We propose that the minimum
acceptable intensities for a starting point are determined by a user given uniformly distributed
proportions. That is, a given proportion value, say 90 %, defines the intensity value below
which 90 % of the non-zero intensities are. Fig. 5 shows an example of this parameter value
determination. The values of the the minimum relative intensity of the acceptable neighbour are
uniformly distributed and given by the user.

2.4. Vessel-segmentation of the clusters

The clusters usually correspond to a connected network of many different size vessels where
smaller vessels branches off from bigger vessels. In order to locate the tips of the vessels so that
possible gaps/breaks in the vessel structure can be filled, we next segment the clusters into vessels.
For this vessel-segmentation we use the method presented in [40] which was first developed
for branch-segmentation of LiDAR point clouds from trees. The idea of the method is to use
small connected subsets (’sets’) of the point cloud and use their neighbour-relation for locating
bifurcation points in the vessel structure: Starting from some collection of sets (’base’), we
select a collection of sets consisting of few layers of neighbouring sets (’section’) and check
the connectedness of this section. We proceed iteratively by moving the section one layer of
neighbours forward and at each step check the connectivity of the section. If there is a bifurcation,
then the section becomes disconnected at some point and all or all but one of the components
of the section start a new vessel and in most cases the biggest component continues the current
segment. We segment each cluster twice: first segmentation with bigger subsets and with heuristic
base determines the base of the second and final segmentation which is processed with smaller
subsets to achieve more accurate segmentation.

First, we partition the clusters into small connected subsets, whose diameter varies between 3
and 6 units for the first segmentation and between 1.5 and 3 units for the second segmentation,
using random Voronoi tessellations (Fig. 6 shows an example of the tessellation). The tessellation
method is presented in [40] and it also defines naturally possible neighbours for every set. Next,
we select for each cluster the base for the first segmentation: We select the set that has the
least number of neighbours as the base because it is likely from a vessel tip. Then we start the
vessel-segmentation from these bases and use the following rule when there is a bifurcation
point: always continue the current segment with the section component that has the most sets.
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Fig. 6. Segmentation of the clusters based on tessellations. Left: Tessellation of the clusters
into connected subsets. Right: Vessel-segmentation.

The vessel tips of the first segmentation provide a reliable way to select the bases for the second
segmentation: We select the widest tip to be the base and we estimate the widths by the number
of the sets in the three set-layers forming the tip. For the second segmentation we use the different
rule when there is a bifurcation point: continue the current segment with the section component
that has the most sets and has at least 1.5 times the number of sets compared to the second largest
section component. Fig. 6 shows an example of the final vessel-segmentation.

2.5. Closing gaps in the data

The segments obtained from the vessel-segmentation are connected regions of relatively high
intensity points. However, due to limitations of sensor configurations, there can be gaps in the
segmentations or other limited-view artefacts. For example, parts of some vessels, that are behind
other vessels when seen from sensors, may not be visible in photoacoustic images. The next step
in the classification procedure is to find likely gaps and close them by adding new points.
First, we select all the vessel tips from the vessel-segmentation and estimate their direction.

The next step is to find suitable tip pairs from different clusters to be connected by filling the gap
between them. The idea is to use pairs whose tips are close to each other and whose directions
are almost parallel. The closer and the more parallel the pairs are, the more confident we can be
that they should be connected. The gap between a suitable pair is closed by joining the points in
the tips with lines and then points on those lines define a small set of new unique vessel points
with integer coordinates.

We have two parameters that control the search of tip pairs and whose values are varied for the
reliability assessment: the maximum distance between pairs and the maximum angle between the
direction lines of the pairs. For the reliability assessment, the user defines uniformly distributed
set of distance and angle values. If a gap is closed by with the smallest distance and angle values,
it is also closed by all the other distance and angle values, and thus gets counted more times and
is estimated to be more reliably closed than gaps with larger distances or angles.

2.6. Reliability assessment

The classification procedure explained above gives the voxels that are classified as vessels. The
procedure has five parameters that control the outcome, and thus changing the values of these
parameters may result in different classifications. Instead of trying to find the optimal values
for these parameters, we define quite broad ranges of values for each parameter and then apply
the classification procedure with every possible combination of the parameter values. Then, we
count the relative frequency of vessel classification for every voxel and this relative frequency is
our quantified reliability for vessel classification.
The five parameters and their potential values used for iterative classification are:

• Fil = Threshold intensity for filtering. Determined from the user given boundary derivative
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values of the proportions of voxels passing the filtering. Using derivative values of
approximately -1 and -0.05 could result in thresholds such as [0.07 , 0.09 , 0.12 , 0.27].

• Sta = The minimum intensity for starting points of clusters. Determined from the user given
proportions that specify the proportion of points below the starting intensity. Reasonable
values for the proportions could be e.g. [90 , 70 , 50 , 30]%, which could result in minimum
intensities such as [0.60 , 0.45 , 0.38 , 0.32]

• Nei =Relative intensity of the acceptable neighbour for neighbourhood growing. Reasonable
values could be e.g. [0.6 , 0.5 , 0.4 , 0.3].

• Dis = The maximum distance between the vessel tips that can be combined. Reasonable
values could be e.g. [5 , 10 , 15 , 20] voxels.

• Ang = The maximum angle between directions of the vessel tips that can be combined.
Reasonable values could be e.g. [20 , 30 , 40 , 50] degrees.

There are many things to observe here. First, with this selection of parameter values there are
54 or 625 different parameter combinations that are used for classification procedure. However,
this does not mean that e.g. the smoothing and filtering must be done 625 times but only 4 times
and each smoothed and filtered data is then clustered and vessel-segmented 16 times since these
steps are done in series. Furthermore, the gap filling for the vessel-segmented data can be done
only once and the classification count is updated based on the distances and angles. Second, the
values of these parameters could be selected differently, and in fact we will make a sensitivity
analysis for the choice of the values in Section 4.2. Third, there could be additional parameters in
our procedure such as the diameter of the ball used in the smoothing (now fixed to three voxels)
or the minimum acceptable component size for the clustering (now fixed to 20 voxels). However,
adding parameters, particularly ones that are not very important, only increases the computation
time without necessarily giving much interesting or useful information. Fourth, the number of
values each parameter has may affect the solution, i.e. the quantified reliability. This is basically
about weighting different aspects of the classification, e.g. filtering over the clustering. However,
this is closely related to parameter sensitivity and parameter selection in general. In this paper we
keep the number of values for each parameter the same, i.e. equal weights, and do not study this
aspect of parameter selection any further. Finally, the reliability assessment procedure based on
iterative classification is not limited to the four-step classification procedure proposed in this
work but it can be applied to other segmentation procedures, particularly if their parameters have
approximately monotonic tendency in the reliability. We have implemented the segmentation
method in MATLAB following the details described in the above subsections and it is available
as an open-source software package [Code 1, [41]].

3. Materials

3.1. Real data

Two 3D photoacoustic images were used to test the vessel segmentation with reliability procedure.
The images were obtained from phantom and in vivo photoacoustic experiments performed with
a photoacoustic measurement system of the Photoacoustic Imaging Group of University College
London with a planar Fabry-Pérot sensor head [42]. The phantom experiment was performed
with a tissue mimicking phantom design to present a network of blood vessels [42]. It comprised
an arrangement of polymer tubes filled with blood which were immersed in a turbid liquid. The in
vivo data set represents skin vasculature and subcutaneous anatomy near the right flank of a nude
mouse [43]. For more information on the experiments and the photoacoustic imaging system,
see e.g. [42, 43]. The photoacoustic images were reconstructed from the measured experimental
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Fig. 7. Two 3D-photoacoustic images from phantom (top row) and in vivo (bottom row)
experiments. Images from left to right are maximum intensity projections into x-, y- and
z-directions.

data using a time-reversal method implemented with the k-Wave MATLAB toolbox [44]. The
maximum intensity projections of the photoacoustic images are shown in Fig. 7.

3.2. Synthetic data

The synthetic datawas generated from the photoacoustic images obtainedwith the real experiments.
The synthetic photoacoustic images were generated to perform assessments of the method and
quantitative comparisons with known true values. The parameter sensitivity was tested and
complete quantitative assessment was performed with these synthetic photoacoustic images.

We generated six different synthetic images, three images from the phantom experiment which
we will refer as phantom geometries 1, 2, and 3 and three images from the in vivo vasculature
experiment which we will refer as in vivo geometries 1, 2 and 3, as follows. First, we applied
modified version of our segmentation procedure with a small set of parameters. Instead of using
the our neighbourhood smoothing and filtering, we used the vessel filtering by Oruganti et al. [38]
where the Gaussians had [0.5 , 1.0 , 1.5 , 2.0 , 2.5 , 3.0] voxels for standard deviation and then
applied threshold filtering with 0.05, 0.1 and 0.15 as the thresholds. After the vessel filtering, we
applied the last three steps of our classification procedure with the following parameters: Sta =
0.2, Nei = 0.3, Dis = 25 voxels and Ang = 30 degrees. The resulting segmentations were then
turned into binary models of vessel geometries by changing every non-zero voxel into one and
this binary model formed our vessel geometry. The prevalence or the relative portion of the vessel
points are 1.21 %, 0.80 % and 0.59 % in the phantom geometries 1, 2 and 3 and 2.21 %, 1.31 %
and 0.93 % in the in vivo geometries 1, 2 and 3. The synthetic vessel geometries are shown in Fig.
8.
After the geometries were generated, we simulated photoacoustic measurements and recon-

structed photoacoustic images in the simulated geometries using the k-Wave toolbox as follows.
Each voxel was given a side length 0.1 mm. The geometries phantom 1, 2 and 3 consisted of
101, 101 and 262 voxels into x- y- and z-directions, respectively, and the size of the geome-

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 2897 



20

100

40

80

60

100

80

60 80

100

6040

Phantom geometry 1

120

40
20

140

20

160

20

100

40

80

60

100

80

60 80

100

6040

120

Phantom geometry 2

40
20

140

20

160

20

100

40

80

60

100

80

60 80

100

6040

Phantom geometry 3

120

40
20

140

20

160

20

40

250

200
250

150 200

150100
100

50
50

20

40

250

200
250

150 200

150100
100

50
50

20

40

250

200
250

150 200

150100
100

50
50

Fig. 8. Vessel geometries used for production of synthetic photoacoustic images. The colour
of the images denotes the z-coordinate.

try was 10.1 mm × 10.1 mm × 26.2 mm. The in vivo geometries 1, 2 and 3 consisted of 282,
282 and 42 voxels into x- y- and z-directions, respectively, and the size of the geometry was
28.2 mm×28.2 mm×4.2 mm. The vessels were given an initial pressure of 10 and the background
initial pressure was set to zero. The speed of sound was set c = 1500 m/s and the medium
was assumed to acoustically be non-attenuating. The sensors were modelled to locate on each
grid coordinate on the boundary of the geometry. This corresponds to a somewhat idealistic
measurement geometry in which one is able to capture the photoacoustic time series on each side
of the target with a large number of detectors. The propagation of pressure wave was simulated
using a k-space method implemented with the k-Wave toolbox. Normally distributed random
noise with standard deviation corresponding to 1 % of the peak amplitude of the simulated
pressure signal was added to the data to simulate noise in measurement data. Then, the initial
pressure was reconstructed using a time-reversal method implemented with the k-Wave toolbox.
In the reconstruction, the same voxel discretisation was used. This corresponds to an inverse
crime which can lead to unrealistic good reconstructions if one is developing inverse problem
solution methods. However, in this case, the purpose was to produce ’idealistic’ photoacoustic
image that could be used to investigate the performance of the segmentation procedure and using
the same discretisation enabled that.

The simulated photoacoustic images are shown in Fig. 9. In the synthetic photoacoustic images
the relative portion of non-zero intensity points is about 56 % for phantom geometries 1, 2 and
3 and about 65 % for in vivo geometries 1, 2 and 3. Notice that there are tens of times more
non-zero intensity points in the simulated photoacoustic images than there are vessel points in the
synthetic vessel geometries. It should be also noted that a more realistic photoacoustic simulation
would include simulating light propagation and absorption in a heterogeneous target. In this work,
that was not considered with simulations since we had real experimental data to test the proposed
methodology.
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Fig. 9. The synthetic photoacoustic images reconstructed from the vessel geometries shown
in Fig. 8. The images are maximum intensity projections into z-direction.

4. Numerical experiments

4.1. Quantitative analysis

We use the synthetic data presented in Section 3.2 to quantitatively analyse the sensitivity of the
methodology on selected parameter values. We use the following standard measures to quantify
the segmentation success and errors:

• True positive rate (a.k.a. recal or probability of detection), i.e. the number of correctly
classified vessel points divided by the number of vessel points.

• False positive rate (a.k.a. fall-out or probability of false alarm), the number of points
incorrectly classified as vessels divided by the number of non-vessel points.

• True negative rate (a.k.a. specificity), the number of correctly classified non-vessel points
divided by the number of non-vessel points.

• False negative rate (a.k.a. miss rate), the number of points incorrectly classified as
non-vessels divided by the number of vessel points.

• Accuracy, the sum of correctly classified vessel and non-vessel points divided by the
number of all points.

Because our segmentation comes with the reliability, the above measures can be given as functions
of the minimum reliability level such that the measures are computed for all the voxels with equal
or higher than a given reliability. Moreover, the results can be summarized compactly as graphs
of the functions.
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Table 1. Parameter values used for the sensitivity analysis. Notice that the values given for
Fil and Sta are not the actual intensities but derivative and proportion values that determine
the intensities.
Parameter Range 1 Range 2 Range 3

Fil [-0.8 -0.07] [-0.9 -0.03] [-0.7 -0.05]
Sta [90 70 50 30] [93 70.33 47.67 25] [92 72 52 32]
Nei [0.6 0.5 0.4 0.3] [0.65 0.5 0.35 0.2] [0.65 0.55 0.45 0.35]
Dis [10 15 20 25] [5 13.33 21.66 30] [5 10 15 20]
Ang [20 30 40 50] [15 28.33 41.67 55] [15 25 35 55]

4.2. Sensitivity analysis

A useful segmentation method should be robust, which in our case means that the resulting
classification reliability of voxels should not be too sensitive to the choices of the parameter
values used for the segmentation. In other words, if we change the parameter values a little,
the results should be almost the same. As described in Section 2.6, the parameter values that
can be varied in the segmentation are the threshold intensity for filtering (Fil), the minimum
intensity for a starting point of a region growing (Sta), the relative intensity of the acceptable
neighbour for neighbourhood growing (Nei), the maximum distance between the vessel tips that
can be combined (Dis) and the maximum angle between directions of the vessel tips that can be
combined (Ang). In this section, we use the synthetic data to analyse how sensitive our method is
for changes in these parameters. We use narrower and wider ranges and cover different parts of
the parameter spaces. We use the same number of values for each parameter, i.e. we have the
same weights for each parameter.

First, we analyse all five parameters separately to see which parameters are the most sensitive.
Then, we analyse all the parameters simultaneously to see if the sensitivities add up. Table 1
shows the values used for the separate analyses.

The results for the synthetic photoacoustic data sets, phantom geometry 1 and in vivo geometry
3, evaluated with all parameters are shown in Fig. 10. The results for the other geometries are
very similar. If a parameter is sensitive for the choice of the range, then we should see three
different lines (one for each range) for each colours (metrics). As we can see, Fil is by far the
most sensitive of the parameters but it is not that sensitive either and mostly in the high end of
the reliability (over 75 %). Sta has very small sensitivity in the highest reliabilities (over 90 %).
The other parameters are practically indifferent to the choice of these ranges.

5. Application to photoacoustic images

We applied the segmentation to the real photoacoustic images shown in Fig. 7. We tried five
different ranges for filtering thresholds Fil which are given in Table 2. For the other parameters
we used only the Range 1 from Table 1. The results are shown in Fig. 11.

These examples show how the segmentation method can segment the main vessels close to
100% reliability and clearly highlight them. On the other hand, the smaller and less clear vessels
are segmented distinctly less than 100% reliability but still be clearly highlighted.
These examples show also that the same range of Fil-parameter values do not work for both

cases. For the first case, which is the phantom experiment, the fourth range is perhaps the best as
it does not include too much but still retains most clear vessel points. For the second case, the in
vivo mouse vasculature experiment, the first two ranges (the largest ranges) seems to work best. It
should be noted that these two examples are photoacoustic images from very different targets,
and thus it cannot be expected that the same thresholds would be suitable for both. Thus, this
example can help us to think how the important Fil-parameter values should be selected.
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Fig. 10. Parameter sensitivity analysis for phantom geometry 1 (top two rows) and in vivo
geometry 3 (bottom two rows). The parameters have three ranges, Range 1 (solid lines), Range
2 (dashdot lines) and Range 3 (dashed lines), which are given in Table 1. The parameters
Fil, Sta, Nei, Dis, and Ang are defined in Sec. 2.6. In the horizontal axis "Reliability (%)"
indicates the smallest reliability level, and thus all the voxels with a higher reliability are
included in the calculated measures. In the vertical axis "Level (%)" indicates the different
measures shown in the legend and which are defined in Sec. 4.1. Notice that True Negative
(green line) is hardly visible because it has practically the same level as Accuracy (magenta
line).
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Fig. 11. The real photoacoustic images shown in Fig. 7 segmented with reliability. The
images on the two top rows show segmentations from the phantom experiment and the
images on the two bottom rows show segmentations from the in vivo experiment. The values
above the images are the applied filtering thresholds. The images are maximum reliability
projections into z-direction.
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Table 2. Testing the segmentation method for real photoacoustic. Derivative values used for
determination of the filtering thresholds and the realised thresholds.

Range Derivative Fil(phantom) Fil(in vivo)
1 [-1.35 -0.03] [.068 .082 .113 .270] [.074 .092 .131 .316]
2 [-1.05 -0.03] [.073 .088 .122 .270] [.082 .102 .144 .316]
3 [-0.75 -0.03] [.081 .099 .135 .270] [.093 .115 .161 .316]
4 [-0.45 -0.03] [.093 .113 .153 .270] [.112 .138 .184 .316]
5 [-0.15 -0.03] [.134 .160 .199 .270] [.172 .200 .241 .316]

6. Discussion and conclusion

The parameter sensitivity analysis with synthetic photoacoustic images showed that the segmen-
tation procedure is robust to the choice of the parameters (range). It was not surprising that the
filtering threshold had the most influence on the reliabilities as it determines how many non-zero
points there are for segmentation into vessels.

For phantom geometries 1, 2, and 3 the true positive rate is lower and it is more dependent on
the reliability. It particularly has lower rates for high-reliability range. That is, only a little over
half of the vessel mimicking voxels were segmented as vessels with very high reliability from the
synthetic photoacoustic images simulated for the phantom experiment. On the other hand, the
true positive rate for in vivo geometries 1, 2 and 3 are generally very high up to mid reliability
range and then decreases down to about 80 − 90 % with the highest reliabilities. This indicates
that most of the real vessel points were segmented with a high reliability from the synthetic
photoacoustic images simulated from the in vivo vasculature experiments.
False positive rate for all geometries was very low with high-reliability and was only a few

percentages for low-reliability range. On the other hand, with high-reliability the false positive
rate approaches zero, indicating that there are not many points that were incorrectly classified as
vessels with high reliability. The true negative rate was close to 100 % with any reliability.

The results from the real photoacoustic experiments show that the method is capable of
segmenting real photoacoustic images with reliability assessment. However, perhaps the widths
and volumes of the vessels were overly estimated, at least for the phantom experiment. This could
be due to noise in photoacoustic data, artefacts due to photoacoustic image inversion that can
cause image artefacts which can be hard to separate from real vessels and the size of the ball
used in the smoothing.
The reliability values obtained as the solution of the vessel segmentation values are more

quantitative and comparable than the original photoacoustic intensity images which contain lot
of noise, artefacts, and adjustments. However, what reliability values constitute "good" or "high"
or "acceptable" values depends on the application and its requirements. In some applications e.g.
75 % reliability might be considered "high" but in another application not until 95 % reliability is
considered "high". In addition, the reliabilities can further be utilised in quantitative PAT as prior
information on tissue structure, and thus will ease the ill-posedness of the estimation problem.
For example in Bayesian framework for quantitative PAT, this anatomic information could be
combined with tissue specific optical properties [31, 45].
The presented segmentation with reliability assessment, based on repeated classification

procedure, is not the definite way to do segmentation with reliability. Neither is the way the
reliability was estimated. We can modify the segmentation process or use some other completely
different approach and we can modify how the reliability is defined. Thus, segmentation with
reliability can be realised in multiple ways and this needs further study.

We only used vessel-segmentation of the clusters as a tool for locating the tips of vessels. But
we could also use the segmentation for further analysis and quantification of the vessel structure
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such as the topology of vessel networks and the geometry of vessels (lengths, diameters and
volumes).

We used synthetic photoacoustic images for accurate quantitative analysis of the results. The
further step in this regard could be to analyse how well the reconstruction was locally instead of
global count of correct and incorrect classifications. This kind of local analysis requires different
metrics that might be application specific. We could also analyse how well gaps in the data were
closed and how to recognise artefacts. However, the gaps and the artefacts in photoacoustic
images are different depending on the measurement procedure, for example number and location
of ultrasound sensors, their frequency response, method used for reconstructing the photoacoustic
images, etc. Thus, the further analysis and the selection of parameter ranges for the segmentation
are most likely dependent on the photoacoustic imaging system.
There might be different types of medical imaging data that needs similar segmentation

processing. Our segmentation process might work, with little modification, for some other data,
for example magnetic resonance imaging (MRI) or computerized tomography (CT). The approach
could be utilised, in addition to monitoring and diagnostics, for example in generating numerical
phantoms similarly as in [46]. Moreover, it should be possible to apply the reliability estimation
for cases where there are more than two classes.
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