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Abstract: The shifting metabolic landscape of aggressive tumors, with fluctuating 
oxygenation conditions and temporal changes in glycolysis and mitochondrial metabolism, is 
a critical phenomenon to study in order to understand negative treatment outcomes. Recently, 
we have demonstrated near-simultaneous optical imaging of mitochondrial membrane 
potential (MMP) and glucose uptake in non-tumor window chambers, using the fluorescent 
probes tetramethylrhodamine ethyl ester (TMRE) and 2-N-(7-nitrobenz-2-oxa-1,3-diazol-4-
yl)amino)-2-deoxyglucose (2-NBDG). Here, we demonstrate a complementary technique to 
perform near-simultaneous in vivo optical spectroscopy of tissue vascular parameters, glucose 
uptake, and MMP in a solid tumor model that is most often used for therapeutic studies. Our 
study demonstrates the potential of optical spectroscopy as an effective tool to quantify the 
vascular and metabolic characteristics of a tumor, which is an important step towards 
understanding the mechanisms underlying cancer progression, metastasis, and resistance to 
therapies. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Interest in tumor metabolism and vasculature continues to grow in the field of cancer 
research. Beyond the extensively studied “Warburg effect” [1], which reflects a tumor’s 
propensity for aerobic glycolysis, mitochondria have recently gained recognition for their 
distinct contribution to tumor oxidative metabolism. In fact, some tumors can switch their 
primary metabolic mode between glycolysis and oxidative phosphorylation to meet increased 
energy demands required for proliferation and metastasis [2–4], as well as adapt to stressors 
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including chemo and molecular therapies [5]. The vascular microenvironment is another 
critical enabler of tumor survival and recurrence [6] since it will influence tumor metabolism. 
Specifically, vascular oxygen saturation (SO2) and hemoglobin concentration ([Hb]) within 
the tumor microenvironment influences metabolism by affecting metabolic substrate 
availability; conversely, metabolic needs affect vascular parameters by dictating substrate 
demand [7]. Taken together, glycolysis, mitochondrial oxidative phosphorylation, and 
vascular parameters all play a key role in understanding how the metabolic characteristics of 
tumors impact therapeutic outcome, and the ability to monitor all of them simultaneously can 
play an important role in cancer pharmacology research. 

A common tool for assessing glycolysis and oxidative phosphorylation is the ubiquitous 
Seahorse Assay, which treats cells in vitro with chemical perturbations to measure two 
functional endpoints: oxygen consumption rate (OCR) and extracellular acidification rate 
(ECAR) [8–13]. The Seahorse instrument is widely used for biomedical research as 
evidenced by over 500 journal articles in 2017 alone [14]. In the cancer research field, the 
Seahorse Assay has been frequently used to investigate metabolic characteristics associated 
with cell proliferation and apoptosis [15], response to therapeutic stress [16], and metabolic 
reprogramming in metastatic breast cancer cells [17], to name just a few examples. However, 
a major limitation of the Seahorse Assay is its utility is restricted to in vitro cell samples, 
preventing both the investigation of metabolism in vivo and the effect of the vasculature 
within the tumor microenvironment on tumor metabolism. Metabolomics, the gold standard 
for measurement of metabolites, can quickly screen a large number of molecules and map 
metabolic networks [18, 19]. Metabolomics has been frequently used to evaluate the effect of 
chemotherapy on metabolite levels [20], understand how the “Warburg effect” promotes 
tumor survival [21], and identify unique metabolites in metastatic tumors [22]. However, 
metabolomics is mainly used for ex vivo tissue samples and only provides a snapshot of the 
tissue’s metabolic state. By using 13C labeled glucose or other metabolites, it is possible to 
acquire metabolic fluxes [23]. However, this requires highly sophisticated technology and 
software for such analyses. There are several techniques currently available for in vivo 
metabolic imaging including Positron Emission Tomography (PET) and magnetic resonance 
imaging (MRI). PET is able to quantify glucose uptake using 18F-FDG [24–29]. PET can also 
image hypoxia using other radio-labeled probes (e.g.18FFMISO) [30], however, both glucose 
uptake and hypoxia cannot be measured simultaneously. Magnetic resonance spectral 
imaging (MR(S)I) can report on mitochondrial metabolism and glycolysis using special 
tracers such as 31P or hyperpolarized 13C labeled compounds [31, 32]. Additionally, vascular 
imaging can be accomplished with a range of magnetic resonance imaging (MRI) techniques 
[33, 34], including blood oxygen level dependent (BOLD) MRI [33, 35], dynamic contrast-
enhanced (DCE) MRI [30, 36], and dynamic susceptibility contrast (DSC) MRI [37]. While 
each of these tools enable organ-level imaging, the endpoints provide relative measurements 
and the endpoints cannot be imaged simultaneously. Ultimately, however, there are tradeoffs 
between the MRI, PET and optical spectroscopy and we believe that the latter will fit well 
within the suite of technologies available for metabolic and vascular assessment of tumors. 

Optical spectroscopy and imaging can leverage endogenous contrast or be coupled with 
appropriate indicators to provide quantitative endpoints related tumor metabolism and its 
associated vasculature in vivo [38–44]. Two endogenous fluorophores in tissue, reduced 
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) [43, 45] 
provide insights into the reduction-oxidation state in the electron transport chain, as NADH 
fluorescence is increased in tumors reliant on glycolysis, whereas increased FAD 
fluorescence corresponds to more oxidative tumors [46]. It should be noted that the ratio of 
NADH and FAD does not directly report on glucose uptake nor mitochondrial activity given 
that cytosolic NAD(P)H also contributes to endogenous fluorescence that is similar to that of 
NADH, and FAD fluorescence is relatively weak [47]. Our group has developed a novel 
technique to quantify glucose uptake and mitochondrial metabolism using the fluorescent 
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glucose analog 2-NBDG [48, 49] and TMRE [50, 51] in tumor models. We have extensively 
validated the capability to image 2-NBDG and TMRE uptake in cells in vitro and in vivo 
using a murine window chamber model [48, 49, 51]. Further we have demonstrated that 2-
NBDG, TMRE, and SO2 imaging differentiates the adaptive phenotype of metastatic tumors 
from non-metastatic breast tumors [51] and used this as the foundation to develop an 
innovative strategy to measure 2-NBDG and TMRE simultaneously using intravital 
microscopy [50]. To translate simultaneous quantification of key metabolic endpoints to solid 
tumor models that are often used for therapeutic studies [52], we have developed a Monte 
Carlo (MC) algorithm, which when used with spectroscopy measurements of reflectance and 
fluorescence, quantifies tissue [Hb], SO2, scattering [53, 54], and turbidity-free 2-NBDG and 
TMRE fluorescence [44, 55, 56]. 

In this study, we demonstrate near-simultaneous optical spectroscopy and MC modeling 
[44, 55, 56] to quantify vascular SO2 and [Hb] along with 2-NBDG and TMRE uptake of a 
flank tumor model in vivo. We were able to adopt the sequential injection strategy previously 
developed for intravital microscopy to perform near-simultaneous quantification of glucose 
uptake and mitochondrial membrane potential in vivo. We observed that 4T1 tumors had a 
significant increase in 2-NBDG uptake, TMRE uptake and [Hb], but decreased SO2 and 
scattering, compared to normal flank tissues. We also demonstrate that glucose uptake and 
oxidative phosphorylation quantified from spectroscopy were concordant with our formerly 
reported microcopy results [50]. Although 4T1 tumors have been considered as primarily 
glycolytic in the past [16, 22], our results demonstrate that it also relies on mitochondrial 
metabolism. A strong correlation was also observed between the metabolic (2-NBDG and 
TMRE) and vascular endpoints (SO2 and [Hb]) in 4T1 tumors. None of these correlations 
were observed in normal tissue. The correlation studies suggest a strong coupling between 
substrate availability and demand in 4T1 tumors, but not in quiescent normal tissue. 
Quantitative optical spectroscopy is an effective tool for near-simultaneous in vivo 
quantification of vascularity and the major axes of metabolism in cancer, which is important 
for studying the mechanisms underlying cancer progression, metastasis, and resistance to 
therapies. Our technology will be able to seamlessly connect insights from in vitro studies to 
those from whole animal or patient imaging through local tissue measurements in vivo. 

2. Materials and methods 

2.1 Flank tumor model 

All in vivo experiments described here were performed according to a protocol approved by 
Duke University Institutional Animal Care and Use Committee (IACUC). Female athymic 
nude mice (nu/nu, NCI, Frederick, Maryland) aged 8 to 10 weeks were used for these studies. 
All animals were housed in an on-site housing facility with ad libitum access to food and 
water and standard 12-hour light/dark cycles. A non-tumor animal study was used to further 
evaluate the sequential injection protocol for near-simultaneous optical spectroscopy of 2-
NBDG and TMRE in a flank tumor model. A total of 20 non-tumor animals were randomly 
assigned to (1) TMRE only group (N = 6, 100 µL dose of 75 µM); (2) 2-NBDG only group 
(N = 7, 100 µL dose of 6 mM); and (3) TMRE→2-NBDG with 20-minute delay group (N = 
7), the amounts and concentrations of TMRE and 2-NBDG used in the sequential injection 
group were exactly same as those used in the 2-NBDG only or TMRE only groups. Mice 
were fasted for 6 hours before optical spectroscopy to minimize variance in metabolic 
demand [48]. A separate group of tumor animal study (N = 9) was performed to demonstrate 
the usability of our protocol in solid tumors. These mice received a subcutaneous injection of 
4T1 cells (0.1 mL of cell solution with a concentration of 106 cells/mL) in the right flank 
under isoflurane anesthesia. The mice were returned to the cage and monitored continuously 
for two weeks after the tumor cell injection. On day 10 after the tumor injection (tumor size is 
~6 mm in diameter), mice were fasted for 6 hours and anesthetized with isoflurane for the 
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spectroscopy study. All tumor animals received injection protocol (3) TMRE→2-NBDG with 
20-minutes delay (100 µL dose of 75 µM TMRE→100 µL dose of 6 mM 2-NBDG). 

2.2 Optical measurements 

The optical spectroscopy system and fiber-probe were described in detail previously [44]. The 
optical measurement system is briefly illustrated in Fig. 1(A). The fiber-optics probe (Fig. 
1(B)) consisted of 19 fibers for illumination and 18 surrounding fibers for detection. The 
numerical apertures of illumination fibers and detection fibers were all 0.22. The core 
diameters of the illumination and detection fibers were 200 μm. The sensing depth of the 
probe was estimated to be 1.5 mm from tissue-mimicking phantom studies. To count the lamp 
throughput change with time, all diffuse reflectance and fluorescence spectra on each set of 
experiments were calibrated using a diffuse reflectance standard (20%, Spectralon, 
Labsphere) and a fluorescence standard (USF 210-010, LabSphere), respectively. To further 
correct fluorescence spectra for wavelength response, the fluorescence spectra were further 
calibrated by a NIST-approved tungsten calibration lamp (Optronic Laboratories Inc.). All the 
optical measurements were performed on animals under anesthesia using a mixture of 
isoflurane and room air (1.5% v/v), and a heating pad was used to help mice maintain body 
temperature. Optical measurements on normal and tumor-bearing mice were obtained by 
placing the fiber probe gently on the flank (Fig. 1(C)) with the help of a custom designed 
probe holder (Fig. 1(B)). Diffuse reflectance spectra were acquired from 400 nm to 650 nm 
(integration time: 3.8 ms). Fluorescence emission spectra were acquired from 520 nm to 600 
nm (integration time: 2 s) using excitation at 488 nm and from 565 nm to 650 nm (integration 
time: 5 s) using excitation at 555 nm. The 488 nm light was typically used for 2-NBDG 
excitation, while the 555 nm light was used for TMRE excitation. As reported previously, the 
use of these two light sources will result in negligible optical cross-talk between the 
fluorescence channels when biologically relevant concentrated TMRE (75 µM of 100 µL) and 
2-NBDG (6 mM of 100 µL) were used [50]. All measurements were acquired in a dark room 
to minimize background noise. Prior to any injection, baseline diffuse reflectance and 
background fluorescence spectra (excited by 488 nm and 555 nm respectively) were 
measured from the tissue region of interest. After the injection, optical measurements on each 
mouse were acquired continuously for a period of 80 minutes (TMRE only group or 
TMRE→2-NBDG with 20-minute delay group) or 60 minutes (2-NBDG only group). Each 
animal was euthanized after the completion of all optical measurements based on the IACUC 
protocol. After optical measurements on each animal were complete, reference spectra on a 
diffuse reflectance standard (20%, Spectralon, Labsphere) and a fluorescence standard (USF 
210-010, LabSphere) were measured for future calibration. 

Xenon Lamp 

Excitation 

Instrumentation 

Emission 

Instrumentation 

Optical 

Detector

(A)  

Laptop Flank model 

Illumination 

Probe holder  

(B)

 

(C)  
 

 

Fig. 1. (A) Schematic of the optical measurement setup; (B) Fiber-optics probe and custom 
designed probe holder; (C) Photo of a typical normal flank under optical measurement. The 
measurement site was marked by surgical pen. 
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2.3 Calculation of vascular and metabolic parameters 

In order to compare fluorescence intensities between tumor and normal tissue, it is essential 
to correct the tissue absorption and scattering induced distortions of the measured 
fluorescence signal. Both diffuse reflectance and fluorescence spectra across the wavelength 
range 500 nm to 650 nm are needed to remove absorption and scattering distortions on 
fluorescence using an inverse MC model. Our previously developed scalable inverse MC 
model [44] was used to extract tissue scattering, absorption, native fluorescence of 2-NBDG, 
and native fluorescence of TMRE from in vivo optically measured spectra. The reflectance 
and fluorescence-based inversion MC model has been decried in detail previously [44, 55, 
56]. Generally, the MC model assumes oxygenated hemoglobin, deoxygenated hemoglobin, 
and overlying mice skin as absorbers while cells and cellular components as scatterers. The 
tissue absorption coefficient is calculated by utilizing the widely used extinction coefficients 
reported by Scott Prahl [57], and the tissue scattering is calculated using Mie theory for 
spherical particles [58]. The MC inverse model adaptively fits the modeled diffuse reflectance 
to the measured tissue reflectance until the sum of squares error between the modeled and 
measured diffuse reflectance is minimized. Since the MC model works on an absolute scale 
while the tissue measurements are relative to a reflectance standard, a reference phantom with 
known optical properties is created to scale the tissue optical properties accurately [44]. The 
MC fluorescence model assumes that the measured fluorescence is a function of fluorophore 
concentration, absorbed energy probability and fluorescence escape probability [55]. The 
absorbed energy probability and fluorescence escape probability rely on optical properties at 
excitation wavelength and emission wavelength respectively [55], thus they can be easily 
simulated once the absorption and scattering information is extracted to quantify intrinsic 
fluorescence. The extracted absorption spectra between 520 nm and 600 nm were used to 
estimate SO2 and total hemoglobin concentration. The extracted intrinsic 2-NBDG and 
TMRE fluorescence spectra were used to estimate the glucose uptake and MMP. Specifically, 
the mean of the peak-band (emission peak wavelength ± 10 nm) fluorescence intensity of 
intrinsic 2-NBDG and TMRE spectra were used to represent the 2-NBDG and TMRE signal. 
The 2-NBDG and TMRE signals taken at different time points were used to create the kinetic 
uptake curves. Comparison of mean kinetic curves across animal groups was performed using 
a two-way analysis of variance (ANOVA) test followed by Tukey-Kramer post-hoc tests. The 
fluorescence intensities, [Hb], SO2, or average scattering among different groups were 
compared with a two-sample t-test. A p-value < 0.05 was considered to be statistically 
different among the two groups under comparison. 

3. Results 

3.1 Sequential injection of TMRE and 2-NBDG enables near-simultaneous 
measurement of glucose uptake and MMP in a flank model 

Our former study [50] has demonstrated that there is neither significant optical cross-talk in 
tissue mimicking phantoms nor chemical crosstalk by mass spectrometry analysis between 2-
NBDG and TMRE, suggesting that they are suitable for combined fluorescence imaging. 
However our in vivo non-tumor window chamber study showed that there was strong 
biological cross-talk when we injected the two probes at the same time. Specifically, TMRE 
signal was significantly attenuated by 2-NBDG when the two probes were injected 
simultaneously. We established that injecting TMRE first and then 2-NBDG after a 10-20 
minute delay results in negligible crosstalk during simultaneous imaging of TMRE and 2-
NBDG in a non-tumor window chamber model. Here we wanted to further establish that our 
previously validated sequential injection strategy [50] is applicable for quantitative optical 
spectroscopy of turbidity corrected TMRE and 2-NBDG fluorescence in a flank tumor model. 
Towards this goal, we compared turbidity-corrected fluorescence spectra measured from mice 
receiving injections of either 2-NBDG alone, TMRE alone, or TMRE followed by 2-NBDG 
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TMRE complements these endogenous fluorescence imaging approaches in that it reports on 
metabolic endpoints that are related to but distinct from the redox ratio endpoints. 

We have previously demonstrated near-simultaneous imaging of glucose uptake, 
mitochondrial membrane potential of tumors in dorsal window chamber models using 
intravital microscopy [50]. Our former study confirmed that there is neither significant optical 
cross-talk in phantoms nor chemical cross-talk in mass spectrometry samples between 2-
NBDG and TMRE [50], suggesting that they are suitable for combined fluorescence imaging 
when injected in a staggered manner (TMRE followed by 2-NBDG after a 10-20 minute 
delay) into the animal model. In this study, we further confirmed the effectiveness of the 
sequential injection strategy for near-simultaneous optical spectroscopy of 2-NBDG and 
TMRE uptake in a flank tumor model. The consistency in the data obtained with the 
spectroscopy system and our formerly reported microscopy systems demonstrates the 
robustness of our technique for near-simultaneous measurement of glucose uptake and 
mitochondrial membrane potential. Dorsal window chambers are by design optically thin and 
therefore provide an excellent model system to image small tumors with an intact tissue 
microenvironment via microscopy, however the dorsal window chamber cannot be imaged 
longitudinally beyond a few weeks, which limits its application to short-term in vivo studies 
[60]. In contrast, solid tumor models are particularly well-suited for long-term in vivo studies 
using optical spectroscopy such as monitoring tumor growth and assessing response to 
treatment [61], thus it is most often used for therapeutic studies [52]. 

Using our method, we were able to recapitulate known metabolic phenotypes in normal 
tissue and tumors. We demonstrated that 4T1 tumors have high mitochondrial activity in 
addition to glycolysis. The increased mitochondrial metabolism and glycolysis in 4T1 tumors 
compared to the normal flank recapitulated the results from our previous intravital 
microscopy studies [50, 51]. The increased 2-NBDG uptake in 4T1 tumors also matched well 
with published reports including a Seahorse Assay study [2], magnetic resonance 
spectroscopy studies [2, 62], metabolomics study [63], and FDG-PET study [62], all 
suggesting that 4T1 tumors have increased glucose uptake compared to normal tissue. It is 
interesting to note that the 4T1 tumors also have high mitochondrial activity in addition to 
glycolysis [5], which is consistent with the results published previously [16]. Specifically, 
Simões et al [16] utilized both magnetic resonance spectroscopy and the Seahorse Assay to 
characterize the tumor metabolism in which they captured both increased glycolysis and 
increased oxidative phosphorylation activity in 4T1 tumors compared to its sibling non-
metastatic tumor lines. Several studies showed that 4T1 tumors, which are highly metastatic 
and aggressive, are likely more “adaptable” to micro-environmental changes [16, 22, 64]. 
These “adaptable” tumors have the capacity to rely on both glycolytic and mitochondrial 
metabolism under a range of oxygen conditions allowing them to survive therapeutic stress, 
promoting negative outcomes such as increased recurrence [65], migration [66] and 
metastatic propensity [67]. 

The absorption and scattering properties for both normal flanks and small solid 4T1 flank 
tumors measured by our quantitative optical spectroscopy system are consistent with 
published reports [68, 69]. We observed that 4T1 tumors have higher absorption and lower 
scattering coefficients compared to normal tissues. The increased absorption in 4T1 tumors is 
likely caused by angiogenesis [44, 70, 71] as evidenced by the increased hemoglobin 
concentration in tumors. In fact, angiogenesis induced by 4T1 tumor cells begins at a very 
early stage [72], i.e., when the tumor mass contains roughly 100-300 tumor cells. Moreover, 
4T1 tumors were found to have robust HIF-1a and VEGF levels [73] that could promote 
angiogenesis and hypoxia. Our spectroscopy study showed that solid flank 4T1 tumors had 
significantly lower baseline SO2 values compared to normal tissues, suggesting that these 
solid flank tumors likely have regions of hypoxia [74, 75]. It is worth mentioning that our 
former microscopy study found that the baseline SO2 values were comparable between 
normal tissue and 4T1 tumors in window chamber models [51]. This difference in the 
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baseline SO2 values of 4T1 tumors in window chambers and flanks suggests that the baseline 
SO2 levels in tumors are related to tumor size; small 4T1 tumors in window chambers (~2 
mm in diameter) have higher oxygenation values while the larger 4T1 tumors in flank tumors 
(~6 mm in diameter) are more likely to be hypoxic. Hypoxia plays an important role in tumor 
cells that evade traditional therapies [76–78]. Our non-invasive optical quantification of 
vascular endpoints in animals offers an opportunity to study the tumor microenvironment and 
its effect on tumor metabolism. 

We also demonstrated that the metabolic endpoints are positively correlated with their 
corresponding vascular endpoints for 4T1 tumors but not for normal tissue. Moreover, optical 
spectroscopy of key metabolic endpoints reveals a strong positive correlation between 2-
NBDG and TMRE uptake in 4T1 tumors but not in normal tissue. We did not observe 
correlations between metabolic endpoints and baseline SO2 values for normal animals which 
is likely attributed to the high baseline SO2 values seen in normal tissue. In contrast, there was 
considerable variance in vascular endpoints for the solid 4T1 tumors which is likely due to 
the fact that tumor hypoxia is unstable both spatially and temporally [79]. The positive 
correlations between metabolic and vascular endpoints suggest that 4T1 tumors highly rely on 
substrate availability [16]. 

5. Conclusion 

Our preclinical study demonstrates that optical spectroscopy is an effective tool for 
simultaneously quantifying vascularity and metabolism of cancer, which is critical to 
understand mechanisms underlying cancer progression, metastasis and resistance to therapies. 
Quantitation of tumor mitochondrial membrane potential and glucose uptake could provide 
insight into how metabolism modulates therapeutic outcomes and tumor cell survival 
following therapy. The associated tumor vasculature within the tumor microenvironment also 
influences tumor metabolism and being able to quantify both energy supply and demand will 
provide a holistic view of tumor bioenergetics. Quantitative optical spectroscopy enables 
longitudinal in vivo studies, at a length scale that complements existing methods, and thus has 
the potential to facilitate novel inter-disciplinary studies in cancer pharmacology. 
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